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ABSTRACT

This paper describes a method for discretizing general linear two dimensional elliptic PDEs
with variable coefficients, Lu = g, which achieves high orders of accuracy on an extended range
of problems. The method can be viewed as an extension of the ELLPACK 6 discretization module
HODIE* (an acronym derived from “High Order Difference Approximation with Identity Expan-
sion”), which achieves high orders of accuracy on a more limited class of problems. We thus call this
method HODPIEX. HODIE will achieve O(h*) accuracy on general problems with no cross derivatives
and order as high as O(h®) on certain problems with constant coeflicients. HODIEX will achieve
O(h*) on general problems including those with cross derivatives and O(h®) or higher on many
other problems. The more smooth the solution and coefficients the higher order is possible up to a
maximum theoretical value which is problem dependent. The values of the approximate solution U
are determined at mesh points by solving the system LU = Ing where LyU is a linear combina-
tion of values of U at the stencil points and Ing is a linear combination of g at a set of evaluation
points. An advantage of HODIE methods, including the one described here, is that they are based
on a compact 9-point stencil which yields linear systems with a smaller bandwidth than if a larger
stencil were used to achieve higher accuracy. Details on finding the discrete operators Ly, and Jp and
programming considerations are discussed. Performance on several test problems is reported, along
‘with comparisons with HODIE and 9 point ster (a classical finite difference method which achieves
@(h?) accuracy).

1. INTRODUCTION

A general linear second order elliptic PDE in two dimensions with variable coefficients may be
written
Lu = QUigg + bigy + cligy + dug + ety + fu=g, (1.1)

where a, b, ¢, d, e, f, and g are smooth functions of z and y on a simply connected domain D
with a piecewise smooth boundary 8D. Assume that grid size hy = hy = h and # is the number of
interior grid points in each dimension. In this paper we assume Dirichlet boundary conditions. We
also assume that D is rectangular, although extensions to nonrectangular D are possible. Using a

* This work was supported in part by Department of Energy Grant DE-FG05-88ER25068.
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standard compact 9 point stencil, approximation of the various partial derivatives of © at a point
(;,;) are obtained with traditional finite differences by the formulas

_ Uiprje1 = U1 — Ui g + Uicaja . Uig1,j = 20 + Uima
um'y ~ 4h2 y Upg ™ k2 )
Ui =204 Ui Uiy = Uity Ui = Ui j—1
Hyy & h2 Ue N T W R 2h !

(12)

where U; ; = U(z;,y;) at the nine stencil points. These approximations on an 7 X » grid result in a
linear system of n® equations of the form

AU =R (1.3)

which, for sufficiently smooth problems, will have O(h®) accuracy. Collatz! demonstrated that a
more accurate approximation could be obtained by averaging the source term g over additional
points. His mehrstellenvarfahren method (literally more points method) replaces derivatives of g
with divided differences and determines coefficients by equating coefficients of linear combinations
of Taylor expansions of » and g. Lynch and Rice? derive the HODIE method which use no derivatives
and also achieves a higher order. Lynch’s HODIE program was incorporated in ELLPACK®, a large
package for solving elliptic PDEs, of which H ODIE is only one of some 50 different modules.

HODIE can achieve O(h*) and O(hS) accuracy, although O(h®) accuracy is achieved only on
a very limited class of problems. To achieve O(h*) accuracy, HODIE requires no cross derivatives,
or equivalently b= 0. Hb=0anda=c=1 then at least @(h*) accuracy is achieved. Finally, to
achieve O(h®) accuracy requires b=0,e¢=c =1, dy = €, f—constant, and no Neumann boundary
conditions. In HODIEX we extend Lynch’s method to allow higher orders on a more general class
of problems and in fact achieve a minimum order of accuracy of O(h*) on any general linear second
order PDE as described by equation (1.1).

2. THE HODIEX APPROXIMATION

2.1 Motivation
Consider equation (1.1) withe=landb=c=d=e=f=0, yielding

Bpg = §. (2.1)

After dropping the unused subscript j, the classical finite differences displayed in equation (1.2)
yield the approximation

1
LyU; = EZ'(U"‘H - 2U; + Ui_1) = ;. (2.5)

at the point z; where U; = U(z;) and g; = g(=;). The operator Ly, defined by equation (2.5) is exact
if u is in the space Ps of polynomials with degree at most 3. To sce this assume

u = a+ bz + ex? + da’.
Then at the point z; = 2 + th we gel
| 1
Lyu; = -h—z(um — 2u; + uin1) = 2¢+ 6dz; = (Uge)i = i
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where u; = u(z;) and g; = g(2;)-

Equation (2.5), however, only achieves O(h?) accuracy. We seek a higher order of accuracy and
thus consider an approximation exact on Py. To do this we introduce an operator [j, and consider
the following redefinition of the operator Ly:

LU = 31-2"(041 Uip1 + 02U; + 03Ui_1) = P1git1 + Bagi + Bagi-1 = Ings, (2.6)
where ay, 02, 03, B, f2, and (5 are undetermined weights which define the operators Ly and Ij.
Equation (2.5) may be viewed as a special case of equation (2.6) where the approximation is only
required to be exact on P3. To require (2.6) to be exact on Py we use the following approach.

Select a basis for P4 centered at the point z;:

{p1, 92,73, P, 5} = {1, (& — &), (& — 2:)%, (2 — 2:)((@ — 2:) = B%), (2 — &) (& — 2:)" - h?)}

chosen so that at the points z;41, z;, and z;-1 we have py = p5 = 0. Tor notational convenience
we will henceforth assume that each such stencil is centered at the origin resulting in the simpler
notation

{P15p29p31p4,p5} = {17377 3235(332 - h2),$2($2 - hz)}

Requiring Ly, to be exact on Py gives
Lupr = In(Lpe) s k=1,...,5 (2.7}

which yields the 5 % 6 linear system

111 0 0 0y /™ 0
10-1 0 0 0 ';"f 0
101 2 -2 -2 ﬁ?’ =10 (2.8)
000 6 0 6 ﬁi 0
0 0 0 -10 2 -10 2 0
B3
This system is consistent and by assuming some convenient normalization such as
B+ P+ 8 =1, (2.9)
or assuming a value for one of the #’s such as
B3 =1, (2'10)

the system is reducible and is then equivalent to the linear system
Al Ag oy 0
0 Az /\B/) \r)
The s are computed first by solving the system

Aaﬁ =7r.
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Then the «’s are computed by solving the system
Aja=—-A;3f.
In this case the result using equation (2.10) is
ar=o3 =12, ap=—24, =Bz =1, and f = 10 (2.11)

which yields the new approximation
1 1
LyU; = ) (U5+1 - 2U; 4+ Ui—l) = 2 (g,;..;.1 + 10g; -+ g,r.._l) . (2.12)

Simple Taylor series expansions easily verify that this approximation has O(h?) accuracy. Equa-
tion (2.12) is known as the Stormer-Numerov formula?.

Using equation (2.10) to compute (2.12) yields a 5 X 5 linear system while using equation (2.9)
yields a 6 x 6 linear system. Although equation (2.10) was used in computing the values given in
{2.11), it is the normalization of the 5’s by equation (2.9) that makes the operator I} a perturbation
of the identity operator. This normalization leads to the left hand side of (2.12) being the same
as the left hand side of (2.5) as shown in equation (2.12). The left hand sides of standard finite
differences and the left hand sides generated by HODIFE methods are not always the same, and in
general, after the normalization of (2.9), HODIE methods will generate stencils which differ from
classical finite differences by O(h).

2.2 Generalization

HODIEX is a generalization of the above described procedure. A rectangular » X n mesh is
put over D) and at each mesh point an estimate U is obtained for u. To derive the HODIEX
approximation consider a mesh point (z;,%;). There are nine stencil points involved in the equation
corresponding to each mesh point, («; + kh, y; + k), k,l = —1,0,1. Let U;, ¢ = 1,...,9, represent
the values of the approximation of u at these stencil points. Define (z;,%;), 7 =1,...,J to be a set
of distinct evaluation points (which may or may not include the stencil points) and let g; = g(z;, ¥;).
Then a single HODIEX equation is given by

9 J :
1
L= ﬁZaiUé = Zﬁjgj = Ihg. (2.13)

=1 =1

If only the central stencil point is used as an evaluation point then the method reduces to standard
finite differences and achieves O(h%) accuracy. It is the use of multiple evaluation points which gives
this method high order accuracy. The a’s and B’s are determined by requiring the approximation
to be exact on some finite dimensional vector space in R? such as the polynomials P, of maximum
total degree m. The linear system resulting from equation (2.13) is block tridiagonal, diagonally
dominant for sufficiently small A, and banded with half bandwidth n -+ 1.

In general an approximation exact on P, will have at most G(A™1) accuracy, although for
certain special cases higher orders are possible. Also, for certain cases, there is a maximum order
which may be obtained for the differential operator using a compact nine point stencil and the only
solution to equation (2.3) will be the trivial solution. For example the maximum order using such a
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nine point difference scheme for the Laplacian is QO(h®). This is because harmonic polynomials exist
in Py which are zero at all but the central stencil point’.

The first step in counstructing a HODIEX approximation is to decide on the desired order; this
determines the linear space, the set of basis elements, and the number of evaluation points. For
order O(h™~!) we choose Py, which has dim = gm—"'l)ém—“l basis elements.

The first nine basis elements are the same for all spaces:

mrys
pkzm,k:3r+s,r,3:0,1,2. (2.14)
The remaining basis elements pyo through pa;,, are chosen so that each has a factor z{z® — h?) or
y(y? — h?) and thus will equal 0 at the left hand side stencil points. The operators Ly and I are
computed using these basis functions by forming the linear system

g J
1 .
Lppx = 7 E oi{pr)i = E Bi(Lpi); = InLpy, , k= 10,...,dim. (2.15)
i=1 =1

To solve this system we first select the evaluation points. J = dim —9+ 1 right hand side evalu-
ation points are required since we have 9 stencil points and one normalization equation. Selection of
evaluation points will be discussed further in the next section. The above choice of basis functions
makes equation (2.15)} reducible and we may solve for the o’s and f’s separately.

The next step is computing the §’s by solving the system

J-1
> BilLpw); = —(Lpr)ay k = 10,...dim (2.16)

j=1

where we have set 8y = 1. The coefficient matrix in equation (2.15) is always square since it has
(dim — 10) -+ 1 rows and J — 1 columus and J — 1 = (dim — 9+ 1) — 1 = (dim — 10) + 1.

Solving equation (2.16) at every grid point can be very expensive computationally, and special
care must be observed in solving for the 8’. Although, with the proper choice of evaluation points,
the system will always be consistent, it may be singular and thus not have full rank. In HODIFE
a very fast solve is obtained for Py; if order = 6 is requested and the PDE meets the previously
mentioned criteria, then an update to the P, solution gives the Ps solution. Since HODIEX can
use any of the polynomial spaces Ps, Py, Ps, ... with a general second order linear two dimensional
PDE, a more general solve is used. '

In an early version of HODIEX this system was solved by a least squares solution generated
through a QR factorization, however the consistency of equation (2.15) allows the present version
of HODIFEX to obtain a more precise solution by using Gaussian elimination with full or partial
pivoting. Since achieving a higher order requires going to a larger linear space which results in a
larger linear system to solve for the fs, the tradeoff for higher order is the resulting increase in
computation time.

After evaluating the §’s, the o’s are computed by solving the system

9

J
1
‘]‘z‘gzaé(lﬂk)i = Bi(Lpe)i  k=1,...,9. (2.17)
=

i=1
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In solving for the @’s notice that the coeflicient matrix in the linear system is

{(mh ()2 -.. (;)o

M) (p2)e ... (p2)o
( . ( . . . {2.18)
(P9)1 (Ps)z “ee (Pg)s
In fact the basis functions were so chosen that this matrix is
(1 11 1 111 1 1 \
01 -1 0 01 -1 -1 1
01 1 0 01 1 1 1
o0 ¢ 1 11 1 1 1
o0 0 -1 11-1 1 -1 {2.19)
6 00 0 01 1 -1 -1
0o 00 0 0 1 -1 1 -1
06 06 0 01 -1 -1 1
\c 0 0 0 01t 1t 1 1 /

and the solution can be computed directly (without factoring the matrix) given a right hand side.
Note also that this system is independent of the operator L and the central stencil point.

At this point we have determined the operators Ly and Ij,. Unless we have constant coefficients
in the PDE, this procedure must be carried out at each grid point. The final step is to solve the
gystem

LhUz',j = Ihgé,j, ’i,j: 1,...,’1"& (2.19)

to obtain the estimates U of u. Equation (2.19) is just the linear system described by equation (1.3).

2.3 Selection of Evaluation Points

The selection of evaluation points is a eritical factor in obtaining the maximum possible order
for any particular linear space. An improper choice of evaluation points can reduce the order by
levels of magnitude. The evaluation point stencils used by HODIEX for Ps, Ps, Pe, and Pr are
shown below:

° ° °
o o .
Py e o o], Ps:10 o o o o],
s o °
. ° .
[ ° ° 3 o\
° o s o . ° . ° °
) ° ]
Pe:| o o o o, Pr:|le o o T o
® L] L
* e 0o o o ) . ° . .

\. ] ® ® .)

In order to maximize symmetry, the central stencil point is not used for Ps and Py. In all cases
the stencils shown lie within the standard 9-point compact finite difference stencil. An obvious cost
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of HODIE methods is the extra evaluations of the source term g and the PDE coefficients. Since
these stencils overlap as the HODIEX discretization moves from grid point to grid point, many of
these evaluations can be re-used. The current version of HODIEX does 3 evaluations of g per grid
point for Py, 6 for Ps, 9 for Ps, and 14 for Py, The tradeoff for a more efficient implementation
using less evaluations is more memory to store results.

3. TEST PROBLEMS

Four test problems were selected. The first two problems have no cross derivatives terms while
one problem has variable coefficients and the other has constant coefficients. Both of the second
two problems have cross derivatives terms, and again one problem has variable coefficients while the
other has constant coefficients.

Fach test problem has the same domain, the unit square, with Dirichlet boundary conditions.
We chose the function g(z,y) so that the true solution is known. The four problems chosen are as
follows:

Problem 1.

This problem is general with variable coefficients but no cross derivative term. The PDE
operator is self adjoint and

which has the true solution
u(z,y) = 0.75¢"Y sin (rz) sin (ry).

Problem 2.
This problem is Poisson’s equation

It = gy + 1y

with true solution
u(z,y) = 3¢ (z - 2?) (y — y*).

Problem 3.
This problem has a cross derivative term and variable coeficients with

Ly = atige + bugy + ctiyy,
where a = 1 + u}, b = —2u%, and ¢ = 1+ 42, and with true solution
u(z,y) = e*tv.

Problem 4.

Like Problem 3, this problem has a cross derivative term, but the coefficients are constant. We
have
Ly = Qugy = Ugy + 42y,

with true solution is
u(z,y) = (z — 3y)* Y.
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4. PERFORMANCE RESULTS

Bach of the test problems are run for n = 8, 16, 32, 32, and 128. In each case HODIEX is
computed for P4 through P; even though the order may no longer be increasing. For each problem
9 point star is run; HODIE is only run on Problem 1 and Problem 2 which have no cross derivative
term. Problem 2 also allows HODIE to be run with order = 6 for O{h%) accuracy.

In the tables “disc” is the discretization time while “total” is the total time including band
Gauss elimination. We use the infinity norm to compute the error (the maximum difference between
the true solution and the approximate solution at each grid point). Orderis computed by comparing
the reduction in the infinity norm of the error in one step with the error from the previous step. The
step size is being reduced by %;—'_z_’% where n; and 73 are successive numbers of interior grid points,

hence we have
m+1\" €2
= [ = 4.1
(nz + 1) (61) (41)

where e; and e; are the errors on two succeeding steps and where 7 is the order. Hence

(lﬂg €9 — IOg 81)
= . 4.2
" log(ni + 1) —log(na + 1) (42)

9 point star achieves O(h®) accuracy on Problem 1 while both HODIEX and HODIE achieve

O(h*). However, notice that HODIEX achieves a slightly better accuracy using Ps, and then the
accuracy drops off for P, or Py indicating maximum order is achieved on Ps.
9 point star again achieves (¥(h%) accuracy on Problem 2. HODIE achieves O(k*) and on this
problem HODIE may be run with an option for order = 6 which yields O(h®) accuracy. HODIEX
is very consistent achieving O(h%), O(ht), O(h%), and O(h®) respectively on Py, Ps, Ps, and Pr.
Also note that HODIEX’s P; and Py are faster than HODIE's sixth order while obtaining the same
accuracy.

Again 9 point star achieves O(h?) accuracy on Problem 3. HODIE cannot be tun on this
problem due to the cross derivative term. HODIEX performs well on P, and Ps achieving O(h®)
and O(h*) respectively, but with little improvement for P or Pr.

Finally, for Problem 4 that 9 point star again achieves ((h?) accuracy. HODIE cannot be run
on this problem due to the cross derivatives. HODIEX performs well on P4 and Ps achieving O(h3)
and O(h*) respectively, but beyond Ps there is no improvement (data not shown).

These results are shown on the attached plots. For each problem there are two plots, one
showing achieved order and the other a log-log plot of total time versus error.

5. CONCLUSIONS

On the g_eneral problem with no cross derivatives, FODIEX and HODIE achieved nearly iden-
tical accuracy while HODIFE runs faster. However, on problems with constant coefficients and no
cross derivatives HODIEX runs faster while HODIEX and HODIE achieved similar accuracy. Both
are greatly superior to 9 point siar requiring much less time to achieve the same accuracy.

On general problems with cross derivatives, HODIEX consistently achieved at least O(h*) and
was much faster than 9 point star with the same number of grid points on problems with constant
coefficients. HODIEX also tan faster than 9 point star on the problem with variable coefficients to
obtain similar accuracy. HODIFE of course will not run on these problems.
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TABLE 1: Data Problem 1. g(z,y) = (¢"¥u;), + (e™™uy), ~ o

HODIEX P, HODIEX Ps HODIEX 75
n error disc total error dise total error disc total
8({6.1E—-5 .32 B71 16FE -5 1.15 1.20 | 6.98 — 4 3.00 3.05

16 | 4.9E—6 1.58 220 12K -6 4.60 5.22 |6.7E -5 12.20 12.83
321 34E -7 5.37 12.89 | 85E -8 19.13 26.65 | 4.TE—5 48.86 56.36
64| 22FE -8 23.12 12997 | 56E—-9 73.28 180.45|4.8E—7 20068 307.28
128 | 14F -9 98.76 1873.13 | 3.6E — 10 298.67 2075.80 | 6.5E — 8 798.05 2574.55

HODIEX P; 8 Point Star HODIE
n error disc total error disc total error disc total
8149F -3 7.15 7.20 | 8.6E -3 53 b6 | 6.4F -5 B7 94

16 | 40K -5 28.70 2933 | 25E-3 93 1.03 [5.1E—~6 1.47 2.10
32| 19E-6 11461 12211 | 6.5E—4 1.73 9.03136E—-7 3.77 11.27
64 | 26F -6 46046 567.31| 17E-4 475 10933 [24FE -8 12.88 119.03
128 | 3.0E -6 1824.64 3601.84 | 43E~5 16,72 1757.87 | 1.6E -9 47.70 1811.45

For good results, the selection of evaluation points is critical. We tried various selections on
the linear spaces above Py, but no conclusions were reached pertaining to the optimal points, The
optimal selection of the evaluation points is problem dependent. HFODIEX allows evaluation points
to be easily changed by just choosing coordinates.

Although no results for spaces higher than P7 are given in this paper, FODIEX can be run on
these spaces. However, obtaining order above O(h®) appears to have questionable value. On those
problems for which the discretization exists, the error already approaches machine epsilon with 100
grid points. '
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TABLE 2: Data Problem 2. g(z, ) = tyy + ttyy

HODIEX P, HODIEX Ps HODIEX Ps
n error disc total error disc total error disc total
8} 14FE -5 A0 A7 10E -4 12 A9 86K -6 20 27
16| 1.1FE-6 A7 791 64FE -8 40 1.031 34FE -7 .70 1.42
32| 79F -8 78 8.28 | 34FE -9 1.10 860 13E-8 227 9.99
64| 52E—-9 3.17 11014 |29E—-10 4.43 111.58 | 55E—12 7.98 115.13
128 | 3.3 -10 12.80 1790.15 | 5.1E~11 18.17 1796.62 [ 2.85 — 14 3257 1808.19
HODIEX Py 9 Point Star HODIE
7 error dise total error disc total error disc total
8t 1.2E~-7 .30 37 3565F -3 A48 531 43E-5 73 .78
16| 2.6FE-9 .90 1531 9.7E—-4 .80 Q0 34F -6 95 1.57
32 10K -10 2.83 1033 | 26F—4 1,18 8.48 | 24F -7 1.78 9.28
64129F—-12 954 115.70| 67E-5 258 10943) 16F—8 507 113.55
128 | 14E - 14 38.72 1821.00] 1.7E—5 8.15 1794.22| 1.1E—9 18.10 1817.43
HODIEX (order=6)
n erTor disc total
8| 6B6F-8 .80 .85
i6| 15E-~9 1,22 1.84
32 128E—-11 290 10.40
64 | 47EF—-13 950 117.98
128 | 25K —14 40.97 1840.80
TABLE 3: Data Problem 3. ¢(z, Y) = Qlizg + Dtigy + cttyy
HODIEX P, HODIEX Ps HODIEX Pg
n error disc total eIToT dise total error disc total
8| 85K —~6 27 321 96K -8 1.00 1.051 94F -9 3.07 3.12
16 153K -6 1.38 203 7T6E-9 4.65 5.27 | 8.6F —-10 12.55 13.17
32| 2.2F—7 5.83 1333 1 5.3F - 10 18.47 2595 | T4F -~ 11  50.32 57.80
641 3.0F -8 23.90 130.78 | 3.5E—11 7434 181.16 | 5.5E — 12 198.83  305.54
128 39F -9 90.54 1886.49 | 2.9FE — 12 294.27 2070.95| 1.0E — 12 797.32 2580.47
HODIEX P; 9 Point Star
71 error disc total erTor disc total
81 2.0FE -8 7.32 737 14FE -3 .73 .80
16| 3.70-~9 28.93 2025 | 3.9F -4 .93 1.55
32 | 40K - 11 11611 12372 11E—-4 1.67 9.19
64 | 14F —12 449.31 556.62| 2.8E -5 4.57 112.15
128 | 9.8£ ~13 1805.50 3588.13| 7.0E—6 16.00 1803.35
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TABLE 4: Data Problem 4. g(z,y) = 4ug, — Ugy + Ly,

HODIEX P4 HODIEX P 9 Point Star
n error disc total erTor disc total error disc total
3|1.0E-5 .07 A2 1 5.2E—6 A2 71 11E -2 .63 .68
16 | 1.AE -6 A7 80| 41E-—7 37 891 32FE-3 1.7 1.79
321{15F~7 .82 832| 29K -8 1.38 876 | 8.5EFE~4 2.58 10.08
64 | 1L.O9E -8 327 11042 19E-9 488 111.88]22F —4 8.18 115.56
128 | 2.3FE -9 13.53 1790.21 | 1.2E — 10 20.60 179780 | 5.5FE -5 32.90 1818.62
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