Parallel ELLPACK for
Shared Memory Multiprocessors*

Calvin J. Ribbens, George G. Pitts, and Layne T. Watson

TR 92-56

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

December 20, 1992
*This work was supported in.part by Department of Energy Grant DE-FG05-88ER25068 and Air

Force Office of Scientific Research Grant F49620-92-J-0236. The authors also gratefully
acknowledge the use of the Argonne Advanced Computing Research Facility.

PARALLEL ELLPACK FOR SHARED MEMORY MULTIPROCESSORS

Calvin J. Ribbens
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106

George G. Pitts
Department of Mathematics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0123

Layne T. Watson
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106

ABSTRACT

This paper describes a parallel version of ELLPACK for shared memory multiprocessors.
ELLPACK is a system for numerically solving elliptic PDEs. It consists of a very high level langunage
for defining PDE problems and selecting methods of solution, and a library of approximately fifty
problem solving modules. Each of the modules performs one of the basic steps in solving an
elliptic PDE: discretization, reordering of equations and unknowns, linear system solution, etc.
ELLPACK may be used to solve linear elliptic PDEs posed on general two dimensional domains or
in three dimensional boxes, nonlinear problems, time dependent problems, and systems of elliptic
equations. Earlier work considered three discretization modules (five point star, hodie, and hermite
collocation), two linear system solution modules (linpack spd band and jacobi cg), and a triple
module (hodie fft) which includes both discretization and solution, all for rectangular domains and
simple boundary conditions. Here we describe parallel versions of six additional modules (hermite
collocation, hodie helmholtz, five point star, band ge, sor, symmetric sor cg) for general boundary
conditions and domains, and discuss modifications to the ELLPACK preprocessor, the too] that
translates an ELLPACK “program” into FORTRAN. The parallelization strategy is based on
kernels, with the machine dependent and performance critical code located in a relatively small
number of kernels. We report performance of these parallel ELLPACK modules on a Sequent
Symmetry S81 shared memory multiprocessor with 26 processors for two simple test problems,
and a problem involving a composite laminate with spatially varying fiber orientations.

1. INTRODUCTION.

Mathematical software packages are an important component of large scale scientific comput-
ing today. The usefulness of such packages in building systems that solve large scale numerical
problems is widely recognized. The community has come to depend on the availability of good
algorithms, implemented in quality software, for a great number of problems or important subprob-
lems. The significance of parallel computation for large scale scientific computing is also widely
recognized. The contemporary scientific computing environment is characterized by a wide variety
of high performance vector and /or parallel computers—from supercomputers with a few very pow-
erful vector processors, to shared memory machines with tens of processors, to distributed memory

1

machines with hundreds or thousands of processors. As parallel and vector computers become more
and more common, and especially as they begin to be used as general purpose scientific computing
engines, there is a great need for quality mathematical software packages on these machines.

At present there are only a few examples of large numerical packages available for parallel
machines, This situation is not surprising given the rapid evolution in hardware, the unstable and
immature software environments on most new parallel machines, and the many difficulties inherent
in building good parallel mathematical software. Existing mathematical software packages are
difficult to parallelize because they are large, complex, and often have many customers who do not
want to see significant changes in a package to which they have grown accustomed. At the same
time, building completely new packages designed specifically for a parallel and/or vector machine is
a very time consuming and costly proposition. Given the importance of having good mathematical
software on parallel machines and the huge investment in existing sequential packages, it is natural
to consider ways in which existing packages can be evolved toward efficient implementations on a
range of parallel machines.

In recent work!®*? we have compared several approaches to parallelizing a large mathematical
software package for a particular class of machine, namely a shared memory multiprocessor, We
have focused on ELLPACK!3, a well-known package for solving elliptic partial differential equations
(PDEs). Three general strategies are compared in our work: explicit “by-hand” parallelization
using nonportable language extensions, automatic parallelization using a commercially available
precompiler (KAP7), and a two-level approach based on explicit parallelization of a set of low-level
primitives and reformulation (as needed} of the code to use these primitives.

In connection with the third approach, we have proposed a set of primitives or kernels appropri-
ate for PDE software. The set includes the three levels of dense Basic Linear Algebra Subprograms
(BLAS)?**8 a few kernels from a proposed set of sparse BLAS?!, plus kernels that are unique to
PDE solving software. These PDE solving kernels are described in detail by Ribbens and Pitts!!.
The motivation is to define a set of low-level kernels on top of which sophisticated algorithms can
be built. The goal is both portability (in that the algorithms are written in terms of higher level
constructs) and efficiency (assuming the kernels themselves are efficiently implemented on various
machines). ,

Our experience is that the two-level approach, with a set of efficiently implemented kernels
- supporting the rest of the code, is a good one. It seems to represent the best way to balance
the conflicting goals of parallel performance, programmer effort, and portability. Some work is
certainly required to modify existing software to be based cleanly on the kernels, but we find that
this is comparable to the explicit paralielization, with the added benefit that you only have to do it
once. From then on, as you move from machine to machine you only need to implement the kernels
efficiently. The automatic strategy saves work when it works, but we find it incapable of dealing
with typical complex codes. The automatic parallelization strategy has considerable difficulty
with most of the code and is unable to achieve reasonable parallel performance without significant
assistance from the programmer. A very significant amount of rewriting is necessary to achieve
good parallel performance on several of the modules using the explicit parallelization strategy. The
two-level approach does require some effort in implementing the kernels efficiently, but the amount
of code that needs close attention is manageable, and the resulting parallel performance is very
similar to that achieved with the explicit by-hand strategy.

The purpose of this paper is to describe a parallel version of ELLPACK for shared mernory
- multiprocessors. ELLPACK is a system for numerically solving elliptic PDEs. It consists of a very
high level language for defining PDE problems and selecting methods of solution, and a library of

2

Table 1. Newly parallelized ELLPACK modules.

Module Purpose

HERMITE COLLOCATION | Discretizes a general elliptic operator with general linear
boundary conditions on a two-dimensional rectangular do-
main. Uses collocation and Hermite bicubjc basis functions.

HODIE HELMHOLTZ Discretizes the generalized Helmholtz equation with general
linear boundary conditions on a rectangle. Uses second,
fourth, or sixth order accurate compact finite differences
(HODIE) depending on the problem,

5-POINT STAR Discretizes the variable coefficient equation qu,, + €y, +
dug + eu, + fu = g with general linear boundary conditions
on a general two-dimensional domain. Uses classical finite
differences,

BAND GE Solves a real banded system of linear equations. Computes
an LU factorization using scaled partial pivoting.

SOR Classical successive overrelaxation with adaptive selection of
B relaxation factor (from ITPACKS).

SYMMETRIC SOR GC Symmetric SOR with conjugate gradient acceleration (from
ITPACK).

approximately fifty problem solving modules. Each of the modules performs one of the basic steps
in solving an elliptic PDE: discretization, reordering of equations and unknowns, linear system
solution, etc. It is straightforward to use ELLPACK to solve linear elliptic PDEs posed on general
two dimensional domains or in three dimensional boxes. The system may also be used to solve
nonlinear problems, time dependent problems, and systems of elliptic equations. The problem
solving modules comprise over 100,000 lines of FORTRAN.

Ribbens and Pitts!® and Ribbens et al.1? describe parallel versions of six ELLPACK modules
and report performance on a Sequent Symmetry S81, The modules previously considered include
three discretization modules (five point star, hodie, and hermite collocation), two linear system so-
lution modules (linpack spd band and Jacobi cg), and a triple module (hodie fft) which includes both
discretization and solution. All these modules were for rectangular domains and simple Dirichlet
or Neumann boundary conditions. Here we describe parallel versions of six additional modules
(see Table 1) for general domains and general boundary conditions, and discuss modifications to
the ELLPACK preprocessor, the tool that translates an ELLPACK “program” into FORTRAN.

Section 2 describes the two-level parallelization strategy introduced above, with the machine
dependent and performance critical code located in a relatively small number of kernels. Section 3
describes the three test problems—two simple mathematical test problems and a realistic composite
laminate problem with spatially varying fiber orientations. Section 4 describes the BLAS and ELL-
PACK modules under consideration, and Section 5 presents and discusses the parallel performance
results on a Sequent Symmetry S81 shared memory multiprocessor with 26 Processors. Section 6
concludes,

2. STRATEGY FOR PARALLELIZATION.

Ribbens and Pitts!®1? considered in detail three parallelization strategies: (1) explicit manual
parallelization, (2) automatic parallelization via compilers, and (3) a two level strategy. In terms
of parallel performance, programmer effort, and portability, overall (3) seemed to be the best ap-
proach. Therefore the approach we consider here for parallelizing a large mathematical software
package is a two-level strategy built on parallel implementations of a set of low level primitives.
This approach is motivated in essentially the same way as the three levels of Basic Linear Algebra
Subprograms (BLAS)**®, In fact, for PDE applications, these kernels themselves are of consider-
able use. Several of the modules in ELLPACK already make use of Level 1 BLAS, so this approach
is quite natural for this package. If the number of kernels can be kept relatively small, if an efficient
implementation of the kernels is available on a given machine, and if the most time consuming code
in the package can be written in terms of these kernels, then a good balance between performance
and portability can be achieved. However, there can be considerable work involved if the existing
code makes no use of the kernels.

In Table 2 we list the kernels used for the experiments reported in this paper. The first set are
taken from the dense BLAS, sparse BLAS or iterative BLAS?. The leading “d” indicates double
precision data. The second set of five kernels are simple vector operations. The final set of six
kernels are more unique to PDE solving. For example, it is useful to have an operation stuich as
foreach_point which allows a given computation to be performed in parallel at each grid point of
a rectangular grid. Similar operations over finite element discretizations are obviously possible.
We also need operations that apply a function to each horizontal or vertical grid line. It may also
be efficient to organize a foreach_point computation by lines in order to improve granularity. The
foreach_proc function is used for initializations that need to be done only once for each process.
Note that the members of this last block of operations are not kernels in the traditional sense, in
that they do not represent a single simple operation. Instead, they might be termed “operators” or
“parallel control structures” since they take an arbitrary function and apply it at each grid point,
line, process, etc. For our purposes they do meet the most important criterion for kernels: they
hide nonportable details in a small section of code, allowing the large majority of code to remain
as is. For purposes of this paper we did no special optimizations of the kernels themselves. We
simply implemented them in FORTRAN, using the language extensions available under Sequent’s
ATS FORTRAN compiler. It is worth mentioning that each of the last set of kernels takes only a
small fixed number of parameters. This means that to do complex operations at each point, line,
etc., one may have to pass considerable data in COMMON blocks. This is not attractive in many
cases. A better alternative might be to allow a variable number of parameters to be passed along
with the function or subroutine which is to be applied in parallel. A kernel allowing this would
not be implementable in FORTRAN on many systems, however.

3. TEST PROBLEMS.

This section describes three test problems of varying complexity: a Helmholtz problem, a
variable coefficient self-adjoint problem on a general region, and a realistic composite laminate
problem. Not every ELLPACK module is applicable to every problem, e.g., the hodie helmholiz
module is only applicable to the Helmholtz PDE. Similarly, not every solution module can follow
any discretization module. Only band ge can be used with hermite collocation on general problems,
but all three solution modules band ge, sor, symmetric sor cg, can be applied to the five point star
discretization of a self-adjoint differential operator.

4

Table 2. Parallel kernels for pde solving.

Name (Source) | Function

daxpy (BLAS1) | vector update: Yye—oazr+y

dcopy (BLASI1) | copy one vector to another: Yye—z

ddot (BLAS1) | dot product of two vectors: Ty

dgbmv (BLAS2) | band matrix vector multiply: y — aAz + Sy
dgemm (BLAS3) | matrix matrix multiply: C «— aAB + 8C

dgemv (BLAS2) | matrix vector multiply: y « adz + gy

dger (BLAS2) | rank one update: A « azyT + A

dgthr (SPBLAS) | vector gather: z; — Yk,

dscal (BLAS1) | scale a vector by a constant: z « az

dsctr (SPBLAS) | vector scatter: Yk — T;

dsyrk (BLAS3) | perform a symmetric rank k update: ¢ — aA4AT + 8C
dtbsv (BLAS2) | solve a single banded triangular system: z « A-1z
dtrsm (BLAS3) | solve triangular systems of equations: B « aA™1lR

dyasx2 (ITBLAS) | sparse matrix-vector multiply: y; « 3; + a E;-;l @i Tyn;

dvadd componentwise vector addition: y; « Ti+ ;i

dvfill vector fill: z; ~ o

dvmult componentwise vector multiplication: T; — ziy;
dvrecp componentwise vector reciprocal: g; « 1 /zi

dvsqrt cormponentwise vector square root: y; < VIi

eval grid evaluate a real function on a grid, returning a matrix
eval_grid_int evaluate an integer function on a grid, returning a matrix
foreach . point execute a subroutine once for each point in grid
foreach_hline execute a subroutine once for each horizontal grid line
foreach_vline execute a subroutine once for each vertical grid line
foreach_proc execute a subroutine once for each process

3.1. Helmholtz problem.

We have chosen a Helmholtz problem in which the right side is entire but nearly singular and
for which the selution has a boundary layer:

cosh(ay)

Uzs + Uyy — 100u = 0.5 (o - 100) cosh(a)

with Dirichlet boundary conditions imposed on the unit square. The parameter o adjusts the
strength of the y-side boundary layer and the solution is nearly singular:

_ cosh(10z) cosh{ay)
u(z,4) =05 (cosh 10 + cosha /°

All three discretization modules, hodie helmholtz, five point star, and hermite collocation, and all
three solution modules are applicable to this problem.

3.2. Variable coefficient self-adjoint problem.
Consider the problem (in self-adjoint form)

1
zy ~zy _ —
(e ur)x+(e uy)y 1+$+yu f(z’y)7

5

with Dirichlet boundary conditions imposed on the quarter unit circle in the first quadrant, where
[is chosen so that the true solution is

u(z,y) = 0.75¢"Y sin(rz) sin(ry).

The applicable discretization modules are five point star and hermite collocation, although for the
latter we must use a rectangular domain.

3.3. Composite laminate problem.

This is a problem recently considered in a paper by Zafer Giirdal and Reynaldo Olmedo®,
in which solutions to the plane elasticity problem for a symmetrically laminated composite panel
with spatially varying fiber orientations are computed. The fiber angles vary along the length of
the composite laminate, resulting in stiffness properties that change as a function of location. This
in-plane response of a variable stiffness panel is governed by a system of coupled elliptic partial
differential equations:

My 8% BA(2) 8
An(ﬂ?)gﬁ + Aﬁe(ﬁ)abyz + %"% = p(z,y)

0%y L a4 &
Aenle) g + Am(a) gy + P2 D0y

where

6‘21) BAH(Z?) v
8zdy Bz oy’
%u OAgg(z) du
dzdy = bz Oy’

p(2,y) = — [A12(z) + Ags(z)]

(2, y) = — [A12(2) + Ags(x))]

and the A’s are determined using the invariants for an orthotropic lamina. The boundary condi-
tions, corresponding to Case 2 in Giirdal and Olmedo®, are

atz =0, u =19, (symmetry) -
g—z =0, (symmetry, no shear)
at z = af2, u =1, (applied displacement)
adv
7. =0 (no shear)
at y =0, v=10, (symmetry)
d
5;-5_ =0, (symmetry)
at y = /2, v=0, (restrained)
7]
5:—;- =0, (no shear).

. The only applicable ELLPACK discretization module is hermite collocation.

6

4. ELLPACK MODULES.

In this paper we focus on six modules of ELLPACK (hermaite collocation, hodie helmholtz,
five point star, band ge, sor, and symmetric sor cg) which, although only a fraction of the code
in ELLPACK, are representative of important classes of codes in the package. The first three,
hermite collocation, hodie helmholtz, and five point star, are discretization modules, while the last
three, band ge, sor, and symmetric sor cg, are solution modules. We give a short description of
these modules here; for complete details on these and other modules in ELLPACK see Rice and
Boisvert!. In the following n, is the number of = grid points with spacing h., n, is the number
of y grid points with spacing h,, and if b, = hy then the spacing is simply referred to as k.

Hermite collocation.

This module, written by William F. Mitchell'®, discretizes a general elliptic operator with
general linear boundary conditions on a two-dimensional rectangular domain D:

Lu = atzr 4 bugy + cuyy + dug + euy + fu=g

on [subject to the boundary conditions
ou ,
Muy=g 3o +ru = pus + quy +ru = ¢

on 9D, and a, b, ¢, d, ¢, f, g, p, ¢, 7, 5, and ¢ are functions of z and y.

This module implements finite elements to obtain a Hermite bicubic piecewise polynomial
approximation to the solution. The coefficients of the approximation are determined by satisfying
the problem exactly at a set of interior collocation points. Similarly the boundary conditions are
satisfied at a set of boundary collocation points. The mathematical formulation is the same as
hermite collocation with simple boundary conditions except for the collocation equations corre-
sponding to the boundary. The equation cannot be in self adjoint form and must have a unique

_solution. The resulting linear system has bandwidth 4n,. The majority of the work is in function
evaluations and computation of the discretization coefficients. The discretization error is generally

O(h*).
Five point star.

This module was written by Ronald F. Boisvert and John J. Nestor, ITT*3. It discretizes a
general linear elliptic partial differential equation with no cross derivatives sub ject to a combination
of Dirichlet or Neumann boundary conditions on a general two-dimensional domain D:

Lu=aues +cuyy+duz +euy+ fu=g
on D) subject to the boundary conditions

Mu=s (S_Z) +re=puz +quy, +ru=4¢
on 8D, and a,¢,d, e, f, 9,9, g, r, s, and ¢ are functions of z and .

- The approximation is determined by classical second order finite differences. Centered dif-
ference formulas are used to approximate derivative boundary conditions, with fictitious points
outside the boundary eliminated by applying the PDE on the boundary. The bandwidth of the
resulting linear system is n,. For smooth problems on uniformly spaced grids the discretization
error is O(h?), while for nonuniformly spaced grids it reduces to O(h). Performance is dominated
by function evaluations and computation of the coefficients of the discretization.

7

HODIE Helmholtz.

This module was also written by Boisvert and Nestor. It discretizes the Helmholtz equation on
arectangular domain D subject to boundary conditions having no tangential derivative components
with constant boundary condition coefficients or periodic boundary conditions:

Lu=ter+tty, +fu=g
on D subject to the boundary conditions

Mu = pug + su = ¢ on Dy,
Nu = quy +tu =1 on Dy and/or

periodic on D3,

where 0D = D;UD;UD; and f, g, ¢, and ¢ are functions of z and y, and p, g, s, and ¢ are constants
unless order 2 is requested, in which case p, g, s, and ¢ may be variable. The method uses HODIE
compact finite differences (3 x 3 stencil) and may obtain discretization errors of O(ht + hE) where
k = 2,4, or 6. However, as a higher order is requested the class of applicable problems decreases.

Band GE.

This is a solution module derived from the LINPACK? band solver in which row equilibration
has been added by Wayne R. Dyksen!®, It solves a real banded system by producing an LU
factorization using Gaussian elimination with scaled partial pivoting. An ELLPACK interface
routine reformats the linear system into LINPACK band storage in which diagonals are stored as
TOWS.

SOR and Symmeiric SOR CG.

These are iterative solution modules based on routines from ITPACK 2C and modified for
ELLPACK by David R. Kincaid et al.’® SOR solves a linear system of equations of the form

Au = b,

where A is both positive definite and cither symmetric or nearly symimetric. These iterative
methods correspond to a splitting of the matrix A in the form

A=Q-(Q-4),

where the nonsingular matrix Q is called the splitting matrix. To derive the basic iterative method
we rewrtite the linear system as

Qu=(Q— A)u+b,

and the iterative method ijs
Qul™) = (@ — A)u™ 15,

The splitting matrix for SOR is
w‘l(D —wC _r_,)

while for symmetric SOR it is
[w(2 - w)]"H(D -~ wCL)D~YD - wCrr)

8

where
A=D+CpL+Cy

and D is diagonal, Cy, is strictly lower triangular, and Cy is strictly upper triangular. Conjugate
gradient acceleration may then be used when both A and @ are symmetric positive definite in the
form

Wt =y [’Tn+1(G"'(n) +E)+(1- 7n+1)u(”)] + (1= pagr)ulD)

with p; = 1 and

-1
Prt1 = [1 - ’rn+1(7npn)‘1(6(”),Qaiﬂ))/(g(n—l)’Q,g(n—n)] ,

-1
Taa = [1= (60,QG5M) (60, Qs™)]
where G = I— Q7 1A, k = Q'b, and the psendo-residual vector is given by 6™ = Gu™ £k — u(™.

5. PERFORMANCE RESULTS.

Tables 3-6 present computation times in seconds on a Sequent Symmetry S81 for various
numbers of processors, along with speedup §, = (sequential time}/(time for p processors) and
efficiency w = §,/p. Tables 3 and 4 present various discretization times for the Helmholtz and self-
adjoint problems. Table 5 presents the total time for the composite laminate problem, for which
only band ge was parallelized. Finally, Table 6 presents times for three solution modules. For the
Helmholtz and self-adjoint problems we used a grid size of 128 x 128, resulting in linear systems
of dimension 65536 for hermite collocation and 15876 for hodie helmholiz and five point star. For
the composite laminate problem a grid size of 15 x 15 was used, with a total of 10 outer iterations.
It is clear that the computation times of the solution modules dominate the discretization times.
For the self-adjoint problem, the parameter @ = 20. This parameter does not affect run times, but
only the singularity of the problem and the accuracy of the computed solution.

The various timings were obtained on the 26 processor Sequent S81 at Argonne National
Laboratory. All computation times reported in the tables are the average of at least three runs; the
variation between separate runs is generally less than 3%. Note that the sequential times, on which
the speedup and efficiency are based, are times taken by the standard ELLPACK implementation.
This partially explains the speedups greater than one, since sometimes rewriting the ELLPACK
code to use the kernels results in an improvement even for one processor. The parallelization of
each discretization and solution module is described below, along with remarks on our results.

Hermite collocation.

There are two versions of hermite collocation in ELLPACK-—one assumes homogeneous bound-
ary conditions and the other does not. We parallelized the former module in connection with an
earlier paper’®; here we discuss the work required to construct a parallel implementation of the
more general version of hermite collocation, using the parallel kernels. Although the two versions
of the module are similar, there are significant differences in how they handle the boundary condi-
tions. Our parallel implementation is based on two primary steps: humbering the equations and
unknowns and generating the equations. Each step is organized in such a way that a single parallel
task corresponds to a vertical column of square elements. Thus, the equations for a given column of
. elements are numbered and generated independently from the equations for another column. This

9

Table 3. Helmholtz problem.

Hermite collocation five point star HODIE Helmholtz
p | time Sp w | time 5, w | time S5 w
1] 38.13 1.02 1.02 | 7.88 B2 .92 111.00 1.07 1.07
211925 2.03 1.01 |4.03 1.80 .90 5.68 2.08 1.04
4| 9.87 3.95 99 1 2.08 3.48 .87 3.12 3.78 95
8| 5.25 7.43 .03 | 1.08 6.71 .84 1.78 6.64 .83
16 | 3.10 12.59 .79 65 11.15 .70 1.17 10.10 .63
24| 2.30 16.97 71 57 12,72 53 112 10.74 45

Table 4. Variable coefficient self-adjoint problem.

Hermite collocation five point star

p | time Sp w time S5 w

115422 1.08 1.08 |10.53 1.05 1.05

212733 215 1.07 | 650 1.70 .85

411390 423 1.06 | 3.73 298 .74

8| 7.20 818 1.02] 232 478 .60
16 | 3.88 15.17 95 | 1.63 6.81 .43
24| 3.03 1943 .81 1.40 7.93 .33

requires considerable code modifications in the original sequential version. The parallel kernels
used are dvfill and foreach_vline.

The data in Tables 3 and 4 show good parallel performance for our implementation. There
is some advantage over the sequential code even for one processor, and we see good reductions in
the time taken by the module as processors are added. The speedups for the variable coefficient
problem are slightly better simply because there is a bit more parallelizable work to do (i.e.,
evaluating PDE coefficients). Note that hermite collocation requires a rectangular domain, so the
data in Table 4 is from the same differential operator posed on the unit square. ELLPACK has a
discretization module, collocation, which allows nonrectangular domains; its parallelization would
be similar to what was done for hermite collocation. We did not use the parallel version of hermite
collocation for the composite laminate problem (Table 5) because the code defining the problem
coefficients was relatively complicated and assumed sequential execution. COMMON blocks were
used in such a way that the PDE coefficient functions could not be evaluated at different points
concurrently. This points to a potential problem in parallel PDE software: users’ code must often
be written in such a way that it can be executed concurrently. It is not always possible to build
the system so that the user can be oblivious to the parallelism that is occurring.

HODIE Helmholtz.

_ The usual function evaluations necessary to compute the right and left hand side stencils used

by the HODIE method are minimal since the coefficients are constant. The method does, however,
require extra right hand side function evaluations in applying the right hand side stencil. Hence
one can see that there is more time spent in this discretization than in five point star in which
no such extra work is required. This extra work, however, results in a fourth order method for

10

Table 5. Composite laminate problem.

Hermite collocation + band GE

P time Sp w
1 480.3 0.98 0.98
2 369.0 1.28 .64
4 242.8 1.95 .49
8 181.8 2.60 .33
16 150.5 3.14 .20
24 144.7 3.27 14

hodie helmholtz while five point star is only second order accurate. For the chosen mesh size,
approximately 10% of the time was spent in initialization, 70% was spent in discretization, and
20% was spent in post-processing. In the initialization we used the PDE kernels dofill and fill
(cf. Table 2). In the discretization code the main loop over the n X n mesh of points. The
outer loop copies right hand side data to a FORTRAN COMMON work area; hence to avoid
making COMMON changes, the inner loop was parallelized rather than the outer loop, affecting
the granularity and resulting performance. The inner loop used foreach_proc. The outer loop used
deopy. Post-processing transfers the known boundary conditions to the right hand side of the
resulting linear system, and required both foreach_proc and some vector clearing with dufill.

The results in Table 3 reflect some speedup in the paralle] code with only one processor over
the sequential version of the module., We see however that the improvements tail off very sharply
after 16 processors, and that the speedups are not quote as good as for hermite collocation or five
point star. The part of the code that had to be left sequential, and the loss in granularity due to
the complicated way in which COMMON blocks are used in the code, account for the degradation
in paralle] performance.

Five point star.

There are two versions of five point star in ELLPACK—one for rectangular domains and one
for general domains. We considered the simpler rectangular domain case in Ribbens and Pitts??.
For the general domain case one can only parallelize the generation of the interior equations. Very
significant code modifications would be needed to achieve any parallelism at all in the genera-
tion of the boundary equations. Even to achieve the parallelism that we did, considerable code
modifications were required.

The main problem is that the numbering of equations and unknowns is an inherently sequential
process when the domain is irregular. There is no way to know what unknown number to assign
to a given grid point until all “previous” grid points have been visited. Here “previous” is defined
by some regular ordering of the grid points, such as the left-to-right, bottom-to-top ordering used
by five point star. Since the interaction of the domain boundary and the grid is potentially very
complicated and, in general, impossible to anticipate, one must simply visit the grid points in order,
deciding which will correspond to equations and unknowns, and which will not. Our strategy is to
do this in an initial {sequential) pass that does as little work as possible. However, we do generate
the boundary equations during this first pass, because you have to do much of the work required
to generate an equation in order to decide if one is necessary. Then in a second (parallel) pass over
the grid points we generate the interior equations. We use foreach_hline, so that generating the

11

Table 6. Sclvers on 5-point star discretization of Helmholtz problem:.

band GE SOR symmetric SOR CG

p| time Sp w time Sy w time S, w
111730.2 1.00 1.00 |2164 1.15 1.15 |828.7 1.08 1.08
2110125 1.72 .86 |112.0 2.23 1.11 | 457.8 2.04 1.02
4 5649 3.08 Nt 58.1 430 1.07 | 250.5 3.66 .89
8] 321.2 536 67 | 326 766 .96 [158.0 568 .71
16 | 265.1 6.56 .41 208 12,00 .75 | 112.7 8.00 50
24| 2451 7.20 30 175 1435 .60 99.6 8.97 .38

interior equations corresponding to a single horizontal grid line comprises a single parallel task.
The kernel dufill is also used for some initialization.

Tables 3 and 4 indicate that our parallel five point star module performs relatively well on the
Helmholtz problem but slightly less efficiently on the variable coefficient self-adjoint problem. The
reason is due to the geometry, not the differential operator. For the data in Table 4 the domain
used was a quarter of the unit circle, while for Table 3 the domain was the unit square. We see that
the difficulty in parallelizing the general domain case makes a noticeable difference in the parallel
performance, especially for 16 or more processors,

Band GE.

The band ge module is a modification of LINPACK’s dgbfa and dgbsl. The work is dominated
by vector operations (e.g., dazpy from BLASI) used to update the lower right submatrix as Gaus-
sian elimination proceeds. This step is equivalent to a rank one update of the form A = A + azyT,
implemented in the BLAS2 kernel dger. Hence, it is relatively straightforward to implement a
parallel version of band ge based on parallel kernels. The main modification required is that a row
interchange, which the original version does deep within the loop we want to parallelize, must be
pulled out of the loop and done before the main parallel step. There are also a few other BLAS1
kernels which are used in the parallel version. As is typical, as the number of processors grows
an increasingly serious bottleneck are the triangular system solves. Almost no speedup is possible
in these routines. For example, with a 96 x 96 grid (8836 equations) and p = 1 processor, 16.4
seconds out of 535.5 (3%) are spent in the triangular solves, while with p = 8 processors 8.8 out of
84.8 seconds (10%) are spent on this step. One step in the computation that is not parallelized is
the search for a pivot at each step. This could be parallelized a bit, but the overall improvement
would be small.

The paralle]l performance of band ge, illustrated by the data in Table 6, is reasonably good up
through eight processors. For more processors, however, the sequential bottlenecks start to become
serious. It should be noted that the paralle]l performance of band ge is better on matrices with
wider bandwidth, as would be generated by hodie helmholtz and hermite collocation, for example.
The reason is that the work in the dominant parallelized step of the computation grows like the
square of the bandwidth.

Regarding the composite laminate problem, notice that since bund ge is the only parallel step
of this computation, unimpressive speedups are the result. For this problem the systems which
band ge solves are only of dimension 900. Hence, it is not surprising that we achieve poor speedups.
Of the 480 seconds taken by one processor on the composite laminate problem, 436 seconds are
used by band ge solves; with p = 16 processors, 109 seconds of the 150 are spent in band ge. So
in addition to the poor speedups in the linear solves, there are approximately 40 seconds of purely
sequential computation.

12

SOR.

The parallel performance of sor depends heavily on what “indexing” module is used to reorder
the equations and unknowns. ELLPACK allows a matrix generated by any discretization module
to be reordered arbitrarily, essentially by specifying permutation matrices to be applied on the
right and left. For the standard five point star discretization with the so-called natural ordering
(left-to-right, bottom-to-top) sor parallelizes very poorly. The reason is that a triangular solve
is one of the dominant computational steps of the algorithm in this case; and it is well known
that triangular solves parallelize very poorly. On the other hand, if red-black ordering is used
the algorithm parallelizes quite well because the tridiagonal solve is replaced by a matrix vector
multiply and a solve with a diagonal matrix. The matrix vector product is implemented in the
parallel kerne! dyasz2. Several BLASI kernels are also used in our implementation.

The data in Table 6 show that the parallel code with one processor is significantly faster than
the sequential code. This is due to some loop reordering that was done in the parallel case which
makes a vector gather unnecessary, and due to the increased use of BLAS1 routines, several of
which are implemented with an eye toward sequential efficiency (e.g., loop unrolling, etc.). Parallel
efficiency for sor is good up through 16 processors; going to 24 processors for this problem does not
bring much improvement. The sor module does not parallelize quite as well as the even simpler
ITPACK module jacobi cg*®. The reason is that with red-black ordering the amount of data for
many of the parallel tasks is cut in half, and because there is some additional sequential work in
adaptively selecting the sor parameter w,

Symmetric SOR CG.

The parallel performance of symmetric sor eg suffers in the same way as sor if natural ordering
is used. The data in Table 6 are based on red-black ordering. Unfortunately, it is not uncommon
that this module works better sequentially if natural ordering is used. The Helmholtz test problem
used here is a dramatic example of this pattern. With natural ordering symmetric sor cg converges
in only 31 iterations; 202 iterations are needed if red-black ordering is used. Since red-black ordering
yields by far the better parallel speedups, it is very difficult to determine g priori which choice
gives the best parallel algorithm.

Our parallel symmetric sor cg is very similar to the parallel sor module. The primary work
is in the parallel kernel dyasz2 (sparse matrix-vector multiply) and several BLAS1 kernels. The
parallel speedups are somewhat worse than for sor because there is more sequential computation
here in computing the parameters for conjugate gradient acceleration. There are also a few more
dot products, for which most of the work is done in parallel, but which do require a sequential
combination of the results from each processor into a single value. This becomes a bottleneck as
the number of processors grows. We see that beyond 8 processors the parallel efficiencies drop
sharply for our example.

6. CONCLUSIONS.

Although only a small number of ELLPACK routines have been parallelized here and in
previous work, and only three test problems have been considered, some valid and significant
conclusions can be drawn.

* The user cannot be completely insulated from parallelization concerns. The composite laminate
problem illustrates two real difficulties in doing nontrivial engineering calculations with a
parallel mathematical software package: (1) The user must be at least somewhat aware of
the parallelism. In this case the ELLPACK code from Giirdal and Olmedo’ defining the

13

PDE coefficients was written in a way that assumed sequential execution. (2) This is not a
trivial calculation, yet the most easily parallelized step (the linear system solves) is not very
substantial — only 900 equations. The cost of the overall computation is due to the outer
loop (used to solve a system of coupled nonlinear equations), which is inherently sequential.
Other algorithmic approaches to the problem might parallelize better. For example, instead
of dividing the inner loop into two steps (first solving one equation and then the other), the
granularity could be increased by constructing one big system to solve in the inner loop. This
then requires more sophisticated programming, and stretches the capability of ELLPACK.

s Efficient use cannot easily be made of large numbers of shared memory processors. For our
test cases it was rarely efficient to go beyond 16 processors. More processors would only be
useful if the problems were even bigger, but then memory and swap space on the file system
become significant issues.

o lterative solvers are better suited to parallelization. Both here and in previous work we saw
that iterative solvers have better sequential times (this is well known for elliptic PDEs), and
they have better speedups. The advantage in speedup is reduced as bandwidth grows, though,
and as the iterative methods get more sophisticated (Jacobi to SOR to SSOR CG).

¢ Geometry (general domains} can cause serious problems for parallelizing discretization mod-
ules. This is true for any computation that is governed by geometry. Complicated boundaries
introduce some steps that are inherently sequential—you don’t know what to do next until
you've seen a certain amount of the “previous” boundary. Domain decomposition ideas could

help here, but only with a considerable increase in algorithmic complexity.

e The kernel-based approach is still vigble. Previously Ribbens and Pitts!® showed that the
kernel-based approach achieves virtually the same speedups as doing the parallelization by
hand (nonportably), but locates the parallel code in a relatively small number of routines.
It does take considerable work in some cases to re-organize the sequential code to use the
kernels, but once that has done, re-implementing the kernels on another shared memory ma-
chine should be straightforward. In principle the same remark applies to distributed memory
machines, although as mentioned above, perhaps the entire algorithm and computation needs
to be reorganized to take full advantage of a distributed memory architecture, where data
distribution is a much more serious and difficult problem. A way to quantify the advantage
of locating all the parallel code in the kernels is that there are approximately 100,000 lines
of code in ELLPACK modules, but the kernels (implemented for the Sequent)} only amount
to about 2,000 lines. Other advantages of the kernel approach (such as even improving the
sequential time) are mentioned in Ribbens and Pitts10:11.

Finally, while the kernel-based approach to parallel mathematical software, and the use of
mathematical software packages for real engineering problems are advocated, the results here sug-

gest that an efficient parallel production environment for engineering computations remains a
distant goal.

14

7. REFERENCES.

[1] D. S. Dodson and J. G. Lewis, “Proposed sparse extensions to the basic linear algebra sub-
programs,” ACM Signum Newsletter 20:1, 22-25 (1985).

2] 1. 7. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users Guide, STAM,
Philadelphia, PA, 1979, _

(3] 1. 7. Dongarra, J. DuCroz, S. Hammarling, and I. Duff, “A set of level 3 basic linear algebra
subprograms,” ACM Trans. Math. Softw. 186, 1-17 (1990). _

[4] J.J. Dongarra, J. DuCroz, S. Hammarling, and R. J. Hanson, “An extended set of FORTRAN
basic linear algebra, subprograms,” ACM Trans. Math. Softw. 14, 1-17 (1988).

[5] Z. Giirdal and R. Olmedo, “In-plane response of laminates with spatially varying fiber orien-
tations: ‘variable stiffness concept’,” AIAA J., to appear.

(6] D. R. Kincaid, J. R. Respess, D. M. Young, and R. G. Grimes, “ITPACK 2C: A FORTRAN
package for solving large sparse linear systems by adaptive accelerated iterative methods,”
ACM Trans. Math. Softw. 8, 302-322 (1982).

[7] Kuck & Associates, KAP/Sequent User’s Guide, Champaign, IL, 1989.

[8] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear algebra subpro-
grams for FORTRAN usage,” ACM Trans. Math. Softw. 5, 308323 (1979).

[9] T. C. Oppe and D. R. Kincaid, “Are there iterative BLAST?.” in Proceedings of the Copper
Mountain Conference on Iterative Methods, 1990,

[10] C. J. Ribbens and G. G. Pitts, “Strategies for paralielizing PDE software,” In Advances in
Computer Methods for Partial Differential Equations VII, G. Richter, ed., IMACS, 1992.

{11} C.J. Ribbens and G. G. Pitts, “Strategies for parallelizing PDE software,” Tech. Rep. 92-34,
Dept. of Computer Science, Virginia Polytechnic Institute & State Univ., Blacksburg, VA,
1992. '

[12] C.J. Ribbens, L. T. Watson, and C. deSa, “Toward parallel mathematical software for elliptic
partial differential equations,” ACM Trans. Math. Softw., 1992, to appear.

(13] 1. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACK, Springer-Verlag,
New York, 1985,

15

