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_ Abstract

This paper proposes & methodology to automate the construction of simulation programs
within the context of a simulation support environment. The methodology starts with a
simulation model specification in the form of a set of coupled state transition systems. The
paper provides & mechanical method of mapping the transition systems first into a seb of for-
mal assertions, permitting formal verification of the transition systems: and second into an
executable program. UNITY, a computational model and proof system smitable for devel-
opment of parallel and distributed programs through step-wise refinement of speciﬁcations,
is used as the specification and program notation. The methodology provides & means {0
independently verify the correctness of the transition gystems: one call specify properties
formally that the model should obey and prove them a8 {heorems using the formal specifi-
cation. The methodology 18 ilinstrated through generation of a simulation program solving
the machine interference problem using the time warp protocol on & distributed memory

parallel architecture.

Categories and Subject Descriptors: 1.6.5 [Simulation and Modelingl: Model Development
- modeling methodologies; 16.8 [Simulation and Modeling]: Types of Simulation — parallel,
distributed

General Terms: simulation specification, simulation verification, parallel simulation protocols,
UNITY
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Notation

c, ¢, cﬁ‘,’fn, cff,ffe coupling

C,C; condition

C set of couplings

Conp(C;) {C|(E",T,C) € (i}

€; edge

E, E' EY; set of edges in coupled state transition system

E4 set of edges in allocation graph

ES,; set of all execution sequences of a program with time formulas equal o zero
ES, set of all execution sequences of a program with arbitrary time formulas
G coupled state transition system

loc state variable denoting location of technician

L licll

M number of partitions of coupling set € in rule II

ME metric used in UNFTY induction proof

m machine

m.state state variable denoting state of machine m

m.d, m.i, m.u predicates denoting m.state=—down, inrepair, and up, respectively
m.a, ml predicates denoting loc = m and loc = m & 0.5, respectively

N number of machines in machine repairman problem

P,q,q assertion

P,Q,R,S,S; state variable

Pa program equivalent to coupled state transition system G

pr number of processors

PR, PR; processor

r number of edges in a coupling

8, 8 statement

S domain of state variable S

S set of state variables

T time formula

t program variable containing current simulation time

tnali] simulation time of next assignment corresponding to coupling ¢
w,w, w2 2 2" ey, 0, v, w, 2, 2'state variable value

v, v vertices

set of vertices in coupled state transition system

set of vertices in allocation graph

any set

simulation time increment for fixed time increment time flow mechanism
initial value formula

machine failure rate

machine repair time

b~ »mpgﬁq
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1 Introduction

Model representation, a critical process within the simulation model life cycle, involves the
translation of a conceptual model (the model that exists in the mind of the modeler) into one
or more communicative models (models that can be communicated to others) [2, p. 57]. Model
represenﬁation, commonly referred to as model specification, is designed to enunciate what a
model is to do as separate from how it is to be done [3] — to the greatest extent possible [10, 31].

The specification process is typically realized using a specification language. A myriad of
specification languages have been proposed for system development. Examples include AXIS [14],
PSL/PSA [32], PDL [5], RDL [15], JSD [6, 18], Entity-Life Modeling [29], and PAISLey (33,
34, 35). Several simulation-specific specification languages have also appeared, among them,
DELTA [17], GEST [24], ROSS [20], and the Condition Specification {25, 26].

Many extant software and simulation specification languages are formal in nature. Precision
in language syntax and semantics facilitates diagnostic analysis of specifications to assist in the
assessment of, among other things, model correctness and completeness {23, 26]. In addition,
formal reasoning methods are required to realize fully the automation-based paradigm [4] through
a simulation support environment.

Although methods for formal reasoning about sequential, general purpose computer programs
were first proposed twenty-five years ago [11], few methods permit formal reasoning about sim-
ulation model specifications. Simulation requires methods for reasoning about: (1) simulation
time, (2) prioritization of events or actions scheduled for the same simulation time, and (3) out-
put measures. While problems (1) and (2) are addressed in the areas of real-time systems [1, 28]
and communication protocols [30, Section 6.1}, no existing methods address problem (3). In
addition, a formal reasoning system for simulation must support model development using any
conceptual framework [9], time flow mechanism, sequential or parallel execution protocol [12],
and target computer architecture.

This paper is a first step towards developing a formal reasoning system for simulation. We

propose a methodology to automate construction and verification of sequential and parallel
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simulation programs from a commumicative model using the UNITY computation model and
proof system [7], introduced in Section 2. The proposed methodology supports multiple time flow
mechanisms, execution protocols, and target computer architectures. Within the methodology,
the first step generates a communicative model in the form of a coupled state transition system
(CSTS), which is formally defined in Section 3. The definition of CSTS requires the domain
of each state variable be discrete. The CSTS is an algebraic spectfication, defining all possible
transitions among simulation mode] state variable values, and all constraints that dictate when
cach transition may occur, The second step mechanically maps the CSTS to a set of UNITY
assertions using the rules of Section 5. A novel aspect of our methodology is that a simulation
modeler can state properties that a correct communicative model must possess, and then use the
UNITY proof system to formally verify the correctness of the CSTS. The third step mechanically
maps the CSTS to a UNITY program, using the rules of Section 4. Use of the rules guarantees
that the program meets the specification embodied by the CSTS. The fourth step maps the
UNITY simulation program to a time flow mechanism. A mechanical method of mapping to
fixed time increment and time-of-next-event is given in Section 6. The fifth step maps the
brogram resulting from step four to a target computer architecture. One heuristic for this step
is given in Section 7. The final step in the methodology maps the program resulting from step
five to a simulation protocol for sequential or parallel execution. A mapping to the time warp
protocol is outlined in Section 8, The methodology is summarized in Section 9, and illustrated

with the machine interference probleni.
2 Introduction to UNITY

Chandy and Misra’s UNITY is used as a basis for the methodology for several reasons:

¢ UNITY permits program development through stepwise refinement, desirable for simula-

tion program development.

¢ The UNITY computation model js based on a state transition system, which underlies

other proof systems (e.g., {27, 30]). Transition systems do not explicitly specify control
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flow (e.g., while and if statements in imperative programming languages), which is desirable
for two reasons. First, different parallel computers use different forms of control flow.
Second, sequential programmers are used to over-specifying control flow. In fact, efforts
to automatically transform sequential FORTRAN programs to parallel programs require

code analysis to identify what control flow constraints can be relaxed.

¢ UNITY proof rules are based on temporal logic, and real time extensions to temporal logic
have been proposed (e.g., [16]), which could be used to reason about simulation time and

ordering events and actions scheduled for the same simulation time.

¢ UNITY assertions permit algebraic as opposed to operational specification. Algebraic
specification naturally captures what a model is to do without specifying how it is to be

done, and hence is well suited to model representation.

® A proof system suitable for mechanical verification of UNITY proofs exists [13], which is

essential to achieving the automation-based paradigm.

UNITY provides a means to systematically develop and prove properties about programs
for a wide variety of applications and computer architectures, Architectures considered in-
clude sequential processors, synchronous and asynchronous shared-memory multiprocessors, and
message-based distributed processors.

UNITY supports program development by stepwise refinement of specifications. The final
specification is implemented as a program, and the program may be refined further. During early
stages of refinement, correctness is a primary concern. Considerations for efficient implementa-
tion on a particular architecture are postponed until later stages of refinement. Thus, one may
specify a program that may ultimately be implemented on maity different architectures, This
process can be envisioned as generating a tree of specifications, in which the root is a correct
but entirely architecture independent specification, and each leaf corresponds to a correct spec-
ification of an efficient solution for a particular target architecture. Development of a correct

UNITY program requires, at each stage of refinement, proof that the refined specification implies
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the previous specification. In addition, one must prove that the program derived from the most

refined specification meets that specification.
2,1 Computational Model

“A UNITY program consists of a declaration of variables, a specification of their initial values,
and a set of multiple assignment statements” [7, p. 9]. The UNITY computational model at
first appears to be somewhat unconventional. (The state of a program after some step of the

computation is the value of all program variables):

A program execution starts from any state satisfying the initial condition and goes
on forever; in each step of execution some assignment statement is selected nondeter-
ministically and executed. Nondeterministic selection is constrained by the following

fairness rule: Every statement is selected infinitely often.[7, p. 9]

“Infinitely often” means that at any point during program execution, every statement in
the program must be executed at some point in the future. (Note that the computational
model represents asynchronous execution of assignments in a parallel computer by interleaved
execution.)

A UNITY program never terminates. However, a program may reach fixed point (FP},
which is a computation state in which execution of any assignment statement does not change
the state. At FP, the left and right hand side of each assignment statement are equal, and an
implementation can thereafter terminate the program.

The UNITY computational model appears conventional if viewed as a set of state transition
machines, where execution of an assignment statement corresponds to a transition.

The UNITY goal of postponing questions of efficiency and architecture to late in the refine-
ment process is achieved by saying very little about the order in which assigniments are executed
during early specification stages, and by including control flow in the form of a detailed execution
schedule of assignment statements efficient, for 2 particular target architecture as a last step in

program development,
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2.2 Programming Logic

UNITY contains a formal specification technique that uses certain notation and logical relations.
Let p and ¢ denote arbitrary predicates, or Boolean valued functions of the values of program
variables. Let 5 denote an assignment statement in a program. The assertion P = ¢is read “if
p holds then ¢ holds.” The assertion {p}s{g} denotes that execution of statement s in any state
that satisfies predicate p results in a state that satisfies predicate g, if execution of s terminates.

The notation {(op var-list boolean—exzpr :: assertion ) denotes an expression whose value is
the result of applying operator op (e.g., quantifiers ¥ (for all) and 3 (there exists}), +, max, logical
operators A (and) and V (or)) to the set of expressions obtained by substituting all instances of
variables in the var—list that satisly the boolean-ezpr in the assertion. For example, if ¢ denotes
an Integer, (+i:1<i< N #) is an expression whose value is Z:Y_,l .

UNITY defines three fundamental logical relations: unless, ensures, and leads-to. The defi-

nitions below are those of Chandy and Misra.[7, Ch. 3

Unless: The assertion “p unless ¢” means that if p Is true at some point in the computation
and ¢ is not, in the next step (i.e., after execution of a statement) either p remains true or
g becomes frue. Therefore either ¢ never holds and p continues to hold forever, or ¢ holds
eventually (it may hold initially when p holds) and p continues to hold at least until ¢ holds.
Formally, punlessq = (¥s : sinF {pA—g} s {pVq}), where s is quantificd over all statements

in a given program.

Ensures: The assertion “p ensures q” means that if p is frue at some point in the computation,
p remains true as long as q is false, and eventually ¢ becomes true. This implies that the program
contains a single statement whose execution in a state satisfying p A —¢ establishes g. Formally,
pensuresq S punlessq A (s @ sin F' 1 {pA —q} 5 {q})where s is quantified over all statements

in a given program.
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program <name>
declare <var-decl-list>
initially <initial-list>
always <initial-list>
assign <stmit-list>
end { <name> }

Figure 1. UNITY Program

Leads-to: Leads-to is denoted by the symbol —. The assertion “p w— ¢” means that if o]
becomes true at some point in the computation, ¢ is or will be true. The formal definition of
leads-to is somewhat lengthy, and is not given here.

Based on the three fundamental logical relations unless, ensures, and leads-fo, additional

relations may be defined. We discuss two additional relations: until and invariant.

Until: The assertion “p until ¢” means that p holds at least as long as ¢ does not and that
eventually ¢ holds. The assertion p untilq relaxes the requirement that execution of exactly one

statement in a state satisfying p A —q establishes ¢. Yormally, p untilg = (p unlessq) A (p — q).

Invariant: An invariant property is always true: All states of the program that arise dur-

Ing any execution sequence of the program satisfy all invariants. Formally, ¢ is invariant =

{initial condition = ) A ¢ unless false.
2.3 Program Notation

UNITY generates two artifacts during the specification process: a list of assertions using the
logical relations introduced in Section 2.2 and an implementation of the assertions in a UNITY
program. The program syntax is shown in Figure 1,

The declare section specifies the variables used in the program and their types. The initially
section specifies the initial value of program variables. The always section can be thought of as
defining functions; function names appear on the left hand side of the symbol “=". The assign

section contains assignment statements performed during program execution.
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A <var-decl-list> is a list of variable declarations expressed using the syntax of the pro-
gramming language Pascal. The <initial-list> and <stmt-list> are identical in syntax, except
that “=” and “=" are used, respectively. A <stmi-list> has the form <stmt> O <stmi>
O-.-O<stmt>. The symbol “0” separates statements. A <stmt> is cither a quantified state-
ment list or a single statement. A quantified statement list, (Dvar-list . boolean-—expr
<stmt-list>}, denotes the set of statements obtained by instantiating the <stmi-list> with the
appropriate instances of variables in the var—list. For example, the assign section of Figure 2
contains one quantified statement list, which consists of N single statements.

A single statement has two forms: simple and quantified. Examples of simple single state-

ments are:
LYy =y Multiple assignment: swap y
and z.
xi'—‘-ylly:r Sameasz,y::y,m_

z:=yify>0 ~ Set z to absolute value of y.
~yify <0

yi=-yify<0 Set y to absolute value of y
(identity assignment if y > 0).

A quantified single statement has the form (I var-tist : boolean-ezpr :: <stme> }, where
<stmt> is a single statement. For example, the statement (|| : 0 <i < N = Ald] == Ali 4 1))
shifts A[1] to A[0], Af2] to All], ..., A[N] to AN — 1].

UNITY is illustrated using the following problem: Sort integer array A{0.N], N > 0, in
ascending order.{7, p. 32] The sort program specification states that any execution of the program
eventually reaches a computation state in which array element A[f] does not exceed the value of
element Afé + 1], for i = 0, 1, .. -» N — 1. This progress property is formalized in UNITY in the
following assertion: true — (A 0<i<N = Alt] < Al + 1]). Figure 2 contains a UNITY

program meeting this specification.
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program sort

assign
(Qi:0<i<N = AL, Afi+1) i= A[i + 1], A[j it Afl]>Afi+1))
end {sort}

Figure 2: Sort Array A into Ascending Order.

2.4 Program Development by Composition

UNITY facilitates program development by composing a large program from many smaller pro-
grams. A large program may be composed using one of two rules, union and superposition; we
use only the later. Software engineers have used some form of union and superposition rules
for years; UNTTY s contribution s a proof system by which one can deduce the properties of a
composite program from its component modules,

In superposition,

The program is modified by adding new variables and assignments, but not altering
the assignments to the original variables. Thus superposition preserves all properties
of the original program. Superposition is nseful in building programs in layers; vari-
ables of new layer are defined only in terms of the variables of that layer and lower

ones. {7, p. 154]

A superposition is described by giving the initial valnes of superposed variables and trans-

formations on the underlying program, by applying the following two rules:

Augmentation rule: A statement s in the underlying program may be transformed into a state-

ment s || r, where r does not assign to the underlying variables.

Restricted union rule: A staternent r may be added to the underlying program provided that r

does not assign values to the underlying variables.

Superposition is used in Section 6 to allow a simulation model to be specified without regard

for the time flow mechanism that will be used. A particular time flow mechanism may be
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superposed onto an underlying simulation program.
2.5 Architecture Mappings

A mapping of a UNITY program to an architecture specifies (1} a mapping of each assignment
statement to one or more processors, (2} a schedule for executing assignments (e.g., control flow},
and (3) a mapping of program variables to processors.

For example, to map a UNITY program to an asynchronous shared-memory architecture,
(1} above consists of partitioning the assignment statements, with each processor executing
one partition. Item (2) specifies the sequence in which each processor executes the statements
assigned to it. Item (3) allocates each variable to a memory module such that “all variables
on the left side of each statement allocated to a processor (except subscripts of arrays) are in
memories that can be written by the processor, and all variables on the right side (and all array
subscripts) are in memories that can be read by the processor.”[7, p. 83]

Although this mapping appears to be simple, it has a rather complex implication. A given
architecture guarantees certain hardware operations to be atomic, and the programmer can
only use these to build the synchronization mechanisms (e.g., locks and barriers). Meanwhile,
UNITY’s computational model is based on fair interleaving of atomically executed assignment
statements. Therefore to obtain an eflicient implementation one may need to refine the program
to a more detailed level that takes into account the atomic hardware operations available on a
target architecture. For example, a shared variable can be refined to be implemented by a set of
variables such that the hardware atomicity corresponds to the atomicity of UNITY assignment

statement execution.
3 Coupled State Transition Systems

A simulation model is represented as a coupled state transition system, which is a five-tuple

G=(8,0, V, E,C) in which:

® S is a finite set of stafe variables. Each variable § € & has as its domain a finite set,

denoted §.
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* O is a formula specifying the initial value of one or more variables in S

+ V is a set of graph vertices. Each vertex » € V is labeled by a state variable S € § and a

variable value u € §. All vertices in V are uniquely labeled.

¢ I is a set of directed edges. The vertices joined by each edge must have identical state

variable labels and distinct variable values,

*

C is a set of couplings. Each coupling c € C is a triple (£, T, C), where:

— E’ is a set of edges, such that B/ C E and the set of initial vertices for edges in B
have unique state variable labels. Each edge in E belongs to exactly one coupling in

C. (A vertex may belong to more than one coupling.)
— Tis a time formula, whose value is a floating point quantity.

— C is a condition, which is a Boolean function of variables in .

Time formulas may use random variates, written as a sequence. In random variate sequent s,
the first random variate is denoted “Head(s)” and is removed by the statement, “s := Tail (s).”

Figures 3 and 4 illustrate portions of CSTS’s. Each figure illustrates a coupling (F’, T, 8]
where E’ contains, respectively, one and three edges. The meaning of Figure 3 is that if the
value of variable § has been x for exactly T simulation time units, and if formula ¢ is true,
then S may be assigned the value y. The meaning of Figure 4 is that if the value of variables
§,5" and S” have been z,2’, and 2", respectively, for exactly T' simulation time units, and if
formula C' is true, then S, 5, and $" may be assigned simultaneously the values y, 3/, and y”,
respectively. However, in both Figures 3 and 4, the current simulation time (t in Section 4) wilt
not advance until either S is assigned y or another transition malkes (7 false.

‘Two graph edges are coupled if they belong to the same coupling. Coupled edges are denoted
graphically by drawing a path consisting of undirected edges whose endpoints lie on the edges

that are coupled; this is illustrated by the vertical line in Figure 4.
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Sx > Sy

c?

Figure 3: Portion of CSTS illustrating one edge, a time formula, and a condition.

S.x >» Sy

S x > sy

8" x" > Sty
c?

Figure 4: Portion of CSTS illustrating three coupled edges.
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Example 1 The classical machine interference problem is used throughout this paper to illus-
trate concepts [8]. In the problem, a set of N semi-automatic machines fail intermittently and
are repaired by one technician. Machine failure rates are assumed to follow a Poisson distribution
with parameter A. Upon arriving at a fajled machine, a technician can repair the machine in a
time period that is exponentially distributed with parameter #e A variety of service disciplines
are possible that specify how the technician selects a machine to repair.

This paper considers the patrolling repairman service discipline, in which a stngle technician
services all machines [21, p. 60]. In this problem, hereafter referred to as the machine repair-
man problem, (MRP) the technician traverses a path amongst the machines in a cyclic fashion
(0,1,...,N ~1,0,1,.. J). The technician walks at a constant rate and only stops walking upon
encountering a down machine. The technician takes constant time 7" to walk from one machine
to the next.

The state variables required to model the MRP are described below. Let m denote an integer

in the interval [0, N') and represent machine numbers,

Machines: FEach machine m is in one of three states: up, inrepair, or down. Associated with
each m is a variable m.state that takes on values up, inrepair or down. For convenience we

employ variables m.u, m.4, and m.d, defined as;

mau = (m.state = up)
m.i = (m.state = inrepair)
m.d = (m.state = down)

Therefore the value of m.state is up, inrepair, or doun if m is up, in-repair, or down, respectively.

Technician: The technician is in one of 2N states: at machine 0, leaving machine 0, at machine
1, leaving machine 1, . . -» ab machine N — I, and leaving machine ¥ — 1.
To represent these 2V states, we associate with the technician a state variable loc, that takes

on the 2N values 0, 0.5, 1, 1.5, 2, 2.5, o N—1, N —0.5, respectively. For convenience we
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employ boolean variables m.q and m.l, defined as;

mae = (loc=m)

md = (loc=m+0.5)

"Therefore the value of loc is 0 if the technician is at machine 0, the value is 0.5 if the technician

is traveling from machine 0 to 1, the value is 1 if the technician is at machine 1, and so on,

The symbol & is occasionally used in reference to loc; it denotes addition modulo N,

CSTS: A simulation model of the MRP is represented by the CS8TS Gy = ($,0,V,E,C) in

which:

* S={V¥m:0<m< N m.state} U {loc},

*O=(Vm:0<m< N m.u) A 0 (initially, all machines are up and the technician is

leaving machine zero, and

¢ V consists of 5N vertices, representing all labelings of state variable and variable value
pairs. The 5N vertices arise because state variable loc has 2N values in its domain and

each of the N variables m.state takes on 3 values.

* F consists of BN edges, which are specified in Figure 5. The figure illustrates five edges,

but each edge is quantified over the N values of m, yielding 5N vertices.

® C consists of the 5§ couplings {¢;{0 < i < 5N }. Bach edge in & belongs to a unique cou-

pling. Figure 5 gives the correspondence between couplings and edges, using the notation:
(Vm :: ci"fﬂ denote ¢y, ),
{¥Vm :: cé‘jfn denote CN4m ),
(¥m :: ¢i*3te denote C2N4m )

{(Vm = e5°%° denote C3N+m), and



Formally Reasoning About and Automatically Generating ... (January 8, 1993) 17
(Y iz e3'e® denote canrqm).

Therefore, couplings ¢y through e;x.; change the value of loc, and couplings ean through

esn~1 change the value of (¥Ym :: m.state).

In Figure b and all assertions in this paper, universal quantification over the values of variable
m is assumed. Exactly one edge belongs to each coupling in C. Coupling c;’lffn requires that
whenever the technician is at machine m and m is up, he leaves the machine. Coupling ¢%g,
requires that the fechnician arrives at machine m @ 1 exactly 1" simulation time units after it
leaves machine m. Coupling ci’m*® requires that machine m remains up for at least Head(m.))
time units, after which it goes down as soon as the technician is not at machine m. (cfl"ﬁn and
cf*@e together imply that machine m remains up for exactly Head(m.A) time units.) Coupling
citate requires that a down machine enters repair when the technician arrives. Coupling cftote

7

requires that a machine remains in repair exactly Head({m.g) time units. o

4 Equivalence between CSTS’s and UNITY Programs

Simulation time is assumed to be a floating point number, denoted by the type name “Hoat,”
and represented by program variable t. The program generated by the rules in this section reads
t, while additicnal code given in Section 6 updates t.

Defined below is an equivalence between CSTS’s and UNITY programs. CSTS G = (S, 9,
V, E, () is equivalent to UNITY program P. Let L =|| C ||, and let C = {e1,¢2,...,er}. The

program equivalent to G is defined below,
¢ The declare section:

— declares, for each S € S, variable § with type appropriate for domain $§; and

~ declares variables tna[1], tnaf2],. . ., tna[] of type float. (The name “tna” is a mne-

monic for “{simulation] time of next assignment.”)
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0
cloc_ loc, > loc,
1,mr m.a
m.u? mi
T
fOC_ loc, loc,
C2,m’ ml m®1.a
' true? ’
Head{m.)
C1state : m.state, (m.4) ) m.state,
m m.u m.d
-m.a?
0
czstate ) m.siate, im.state,
ate > msta
m.d m.a? m.i
Head(m.
CSState . m.state, (mu) m.state,
.M i
M4 true? m.u

Figure 5: CSTS for MRP. AJ] fi

gures are quantified over all yn
consists of 5N arcs.

(0 < m < N); therefore the graph
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¢ The initially section satisfies © and contains:
(Vi:1 <i< L tnali] = co).

¢ The assign section contains, for each coupling ¢; = ({e1,es,...6,},T,C), for 1 < j < L,
the following two statements. Let the mitial, (respectively, final) vertex of e, for1 <i<r,

be labeled by S;,2; (S;,%:). Let i be quantified over 1 < i < rin the following.

O #nalf]=t+T H{Ai 0 1<i<r o Si=ux)Atnaj] = oo

8 {tngfj] := o0 if{ni: 1<i<y o Si=e)Atnaj] <t AC

[ {llé:Si=wy if(Ai 0 1<E<r i Si=a) Atnalf] < tAC))

A special case of the above arises if time formula 7" is zero; in this case the assign section

contains one UNITY program statement:
O {|i:= Sii=y A 1 1<i<r s Si=2)AC)

Example 2 The UNITY program in Figure 6 is equivalent to the CSTS of Figure 5. Sequence
m.A (respectively, m.p) is implemented by array element Alm] (u[m]). The always section
equates elements of array tna to the symbolic names tnaloc 2, tnastate.1, and tna_state_3 to
help document the code. Note that array elements tnal0..N-1] and éna[3N..4N-1] are not used
because c{?,fb and c§’77® have time formulas of zero. Finally, note that the quantified assignment,

statements shown above appear as single statements (i.e.. the “||” operator is omitted) because
g ; P

the value of r in the above formulas is one. O

5 Mapping CSTS’s to UNITY Assertions

"This section describes formalization of a CSTS G = (8,0,V, E,C) as a set of UNITY assertions.
Generation of assertions permits the UNITY proof system to be used to establish the correctness
of the assertions, and hence of (.

The specification is constructed in a two step process:
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program MRP

constant N=...; MaxRepairs=...; T=...; All.N]=

declare
t : float
loc : (0.0,0.5,1.0,...,N-l.O,N—O.S)

state[0..N-1]: (up, inrepair, down)
tna[0..5N-1] : float

initially
[l t=0.0
J{i:0<ij56N:: tnafi]=co )
| () m = state[m]=up )
|| loc=0.5

always
| m:: tnaloc2lm] =
Il (I m:: tnastate.1]m) =
P m e tna_state_3[m] =

tna[N+m)] )
tna[2N+m] )
tna[dN+-m)] }

assign
{Implementation of e’}
O(Om: loc:=locp 0.5

{Implementation of cé‘?fn :}
O( Om: tnadoc2im] := ¢t 4+ T
O0( O m: {loc, tna loc 2{m] := loc @ 0.5, oo

{Implementation of cflate.)
O{ Om : tnastate_l{m] := t + Head(A[m])
O{am:
( state[m], tna state_1[m] := down, oo

{Implementation of cstate:}
0( O m :: state[m] := inrepair

{Implementation of cgiate;}
DO{ O m : tnastate.3[m] :i= t + Head(u[m])

20

s B[ N)=...;

{no state transitions scheduled}
1 all machines up }
{ technician leaving machine zero}

if [oc=m A state[m]=up )

if tnadoc_2[m]= co A loc=ma0.5 )
if tnadoc_2[m]< t A loc=ma0.5 )

if tna_state_fm]= oo A state[m]=up }

if tna_state_1[m]< ¢ A state[m]=up A loc # m })

if state[m]=down A loc=m )

if tna_state_3[m]=co A state[mn]=inrepair )

DO( Om :: (statelm], tna state_3[m] := up, oo if tnastate 3[m]< t A state[m]|=inrepair )
end { MRP}

Figure 6: UNITY Program for Machine Repairman Problem. Variable m is quantified over the
range 0 < m < N,
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Sy

Figure 7: Illustration of mapping CSTS’ to UNITY conjectures via rule I.

1. Formulate unless and leads-to conjectures according to rules I and IT, below.

2. Prove the conjectures using the UNITY program equivalent of ¢ with all time formulas

equal to zero.

"The final specification consists of those unless and leads-to conjectures whose proof succeeds and
an assertion of the form, “Initial condition = ©.” We use the notation ungess and v to denote
conjectures, while unless and — denote proven assertions.

Two rules generate UNITY assertions. The first rule states properties about transitions out
of individual vertices in G. The second rule states properties about simultaneous transitions

represented by couplings.

Rule I: For each vertex v € V in G, generate two unless conjectures and one leads-fo conjec-
tures as follows. Consider the set of all edges with initial vertex v; let # denote the number of
such edges, and let {e1,es,...e,} denote the edges. Let the label of vertex v be (S, z), and let
the final vertex of ¢; is be (S, %), for 1 < i < r. The definition of coupling implies that each edge
e; belongs to a distinct coupling; let edge e; belong to coupling (E';, T3, Cy). This is illustrated

in Figure 7. First, generate the conjectures:
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?
S=z A v Ci | unless \/ S=y
1<igr 1<igr

S=a A v C N \/ S=y
1<i<r 1<igr
In addition, if (- Vicicr Ci = true) (ie., it is not the case that one of the C;’s holds at every
point during the simulation), then additionally generate:
S=z A = \/Cg un;essS:r/\ \/C',;
1€igr 1<igr
The third assertion is only generated for efes,, citate, and ¢t of Figure 5.

The first assertion hypothesizes that if the value of state variable S is 2, and one of the
conditions C1,...,C, is true, then after the next change in any state variable value in the
simulation model, the value of S is either still # (and one of the conditions C4,...,C, is still
true) or changes to one of Y1,.-,¥. The second assertion hypothesizes that if the value of
state variable 5 is 2, and one of the conditions (1, ..., C. is true, then eventually S is assigned
one of g, ..., y.. The third assertion hypothesizes that if the value of state variable S is ¢ and
none of the conditions Cy,...,C, are satisfied, then the value remains # at least until one of the

conditions C4, ..., C, becomes true,

Rule IT: A vertex in a CSTS often has multiple outgoing edges, which must belong to distinct
couplings (by the definition of a coupling). Formulation of assertions about the effect of coupled
transitions requires partitioning the couplings into M partitions, denoted Cy, Cs, . .. yCar, 50 that
all transitions out of a vertex belong to the same partition. Formally, let ¢ = Ui<s<arCi, where
c,¢’ € C; if and only if the set of initial vertices of edges in ¢ and ¢ are not disjoint and
MicicarCi = 0. Let ConD(C;) denote the set of conditions labeling all couplings in partition
Cs; formally Conp((;) = {CE",T,C) € ¢;}. For each partition C; containing at least two
couplings, generate the following conjecture:

\/ CA /\ S'=LV(S,C) un;ess \/ /\ \/ S=u

ceCoNDIc;) SesSV(C) ceCoND(c,) [SesV(C)veRV(5,C)
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where, for each (E', T, Cyel,
¢ SV(C) denotes the set of state variables labeling initial vertices of edges in &' )

* LV(8,C), for each state variable § labeling an initial vertex Vg of an edge in B/, denotes

the variable value labeling Vs, and

* RV(5,C), denotes the set of variable values labeling the final vertices of all edges in B/

labeled by state variable S € §.

Example 3 The intention of rule IT can be explained through an example. Consider the CSTS
in Figure 8. There are two partitions. C; contains the edge whose initial and final vertices
are labeled by P, and C» contains all remaining edges. €; contains only one coupling, and
therefore rule II generates no conjectures for C;. Cy contains three couplings, and therefore rule

IT generates:

(Cl/\Q=wAR:y)V(CgAR=y/\S:z) unless
(Q:m'/\R:y’)V(R:y”/\S:z’)

The second assertion states that if state variables , R, and S have vahie z,y, and » and one of
the two coupling conditions Ch or CYy is true, then the three state variables retain these values
either forever or until the transition impiied by one set of coupled edges occurs (i.e., either @

and R are assigned 2’ and ¥, or Rand $ are assigned y" and 2/, respectively). i

Rules T and I7 ignore time formulas specified in couplings, and instead use the value zero
for each time formula. The UNITY computation model does not provide an explicit method
to reason about time. Nevertheless, UNITY is adequate for reasoning about simulation mode)
properties not involving time, because any property of a transition system with time formulas
equal to zero is a property of a transition system that represents non-zero formulas. We leave

the specification of and formal reasoning ahout simulation time as an open problem, 0

Lemma 1 Any property of CSTS G with all time formulas equal to zero holds for G with arbsi-

trary time formulas.
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To
P.w Co? —>» P.w

T
1 ]
Q,x 01? )Q,x
Ry

R,y

R.y"

Ty
S, 8.z
z Cy? > 8z

Figure 8: Illustration of mapping CSTS’s to UNITY conjectures via rule II.

Proof: Consider the UNITY program equivalent of 7, denoted Pg. The set of all execution
sequences of Pg with all time formulas in all couplings equal to zero, denoted ES., is a superset,
of the set of all execution sequences of Pg with arbitrary time formulas, denoted £S,. Therefore
any property that holds for all execution sequences in E\S; holds for all execution sequences in

BS,. O

Example 4 Consider again the MRP CSTS (Figure 5). Figure 9 lists the unless conjectures
corresponding to rule I. Figure 10 contains the leads.to conjectures corresponding to rule I. (Rule
I partitions set C partitioned into 5N partitions, each containing a single coupling of €, however
rule II generates no assertions in this example.) Appendix B contains selected proofs. The
final specification (Figure 11} contains all unless conjectures except m.u A —m.a unless m.d, all
leads-to conjectures except m.u A —m.a — m.d, and one assertion implied by ©. Note that the

until relation is used to combine unless and leads-to assertions when possible in Figure 11. O



Formally Reasoning About and Automatically Generating . .. (January 8, 1993) 25

?

From ci‘”,fn: m.a A —~m.u unless m.a A m.u

?

From ¢f°¢,: m.a A m.u unless m.l?
1

o
From cf-{ffn: m.d unless m@ l.a

7
From e{*&%: m.u A m.a unless m.u A —m.a

.
From ef'2¢: m.u A —~m.a unless m.dx

2
From ¢3'3%: m.d A —m.a unless m.d A m.a

b
From c§'&®: m.d A m.a unless m.i

?

From effat®: m.i unless m.u

Figure 9: unless conjectures resulting from rule 1. Starred conjecture does not hold.

.
From ¢!%,: m.a A m.u— m.d
?
From efe: mls>mala
7
From ef’7}®: m.u A ~m.a—s m.ds

e I3
From e37t: m.d A m.a— m.i

’
From ¢{*®%: m.irs m.u

Figure 10: leads-to conjectures resulting from CSTS. Starred conjecture cannot be proven in
UNITY’s proof system,
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MRP1: m.a A ~m.u unless m.q Am.y
MRP2: m.a A m.u until m.l

MRP3 : mJ until (m @ 1).a

MRP4 : m.u A m.a unless m.q A —m.a
MRP5 : m.d A —m.a unless m.dAm.a
MRP6 : m.d A rm.q untilm.;

MRP7 : m.i until m.u

MRPS8 : Initial condition = (VYm:0<m< N m.u) A 0.4

Figure 11: Final specification of MRP,

6 Superposing Time Flow Mechanisms

In this section we explore how different time flow mechanisms (TFMs) may be added to a
UNITY program equivalent to a CSTS representing a simulation model, also called the underlying
simulation program (e.g., Figure 6).

To specify a simulation model, the asswmption that simulation time (t) advances is sufficient.
To implement a simulation, however, one must prescribe a means by which t increases. We
consider two general categories of time flow mechanisms: fixed time increment {FTI) and time
of next event (‘INE). Variations of the two types of TFMs are discussed in [22]. We add time

flow to UNITY specifications via superposition,
6.1 Superposing Fixed Time Increment

Let A denote 2 constant floating point value of simulation time, representing a positive nonzero

time increment. The FTT algorithm consists of iterating two phases:

1. Execute all statements for the current value of  untii the underlying simulation program
reaches fixed point (i.e., execution of any underlying program statement does not nrodify

any variable declared in the underlying programj.

2.8t ttot 4 A,
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Program FTI_TF)M

constant A=,

declare A[L] : integer

initially (:1 < ¢ < L Afi) = 0)
transform

each statement “sifd” in the underlying program to
s; ifd || Al =21bAA[) =0~ Lif=b A A[{] = ¢
where ¢ is the lexical statement number of s.
add to always section

atFP = {Af: 1 Si<LuAl]= 1)
startNewPhase = (A7 : 1 SIS LAl # 0}

add to assign section

(linl<i<y Alf] ;=0 if atFP v startNewPhase)
lt:=t+A ifatFp

end { FTI_TF\f }

Figure 12: Specification of Fixed Time Increment Time Flow Mechanism

‘The underlying program is composed with program FTI_TFM in Figure 12 using superposi-
tion (defined in Section 2.4). FTITFM detects when the underlying simulation program reaches
fixed point as follows. Recall from Section 4 that I denotes the number of statements in the
underlying simulatjon program, because I is the number of couplings in the CSTY (L =5Nin
Figure 6). Number the underlying program statements by the integers 1,2, .. L. Add array
All..L]. Initially, ali elements of array A are gzero,

Array A partitions exXecution of underlying program statements into a set of phases such that
every statement is executed at least once in each phase. Array 4 is initialized to zeroes each time
a phase starts, The phase completes when all elements of 4 are honzero. At the completion of a
phase, each element of array A indicates what happengd during execution of the corresponding
program statement. A[] is 1 if the statement execution was the identity assignment, and 2
otherwise. If array A contains all one’s, then the underlying program is in fixed point; this is

the condition for 5 phase to end and for ¢ to advance.
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6.2 Superposing Time-of-Next-Event

As with FTI, TNE requires detecting when the underlying program reaches fixed point before
advancing t. The difference between the two TFM implementations is that in FTI ¢t is incre.
mented by a fixed value and in TNE t is incremented to the time value of the most imminent
model state change, that is the minimum elerent of array tna. The superposition for TNE is
obtained by changing the name “F TITFM” to “TNE_TFM” and the assignrnent “¢ = ¢ - A”

to U:=(min:1<i< L tnali])” in Figure 12.

7 Mapping UNITY Simulation Programs to Computer
Architectures

The problem of mapping programs to architectures in a way that minimizes the time and space
required for program execution is a difficult open problem. We propose one mapping of CSTS’s
to a particular target architecture, to illustrate the mapping process. The graph comprising
a CSTS provides a convenient form to analyze a simulation model in devising mappings. The
mapping problem can be viewed as a graph clustering problerm: partition the couplings in a CSTS
to minimize the number of state variables read or written by multiple partitions, and assign each
partition to a processor, The target architecture selected is a distributed memory architecture, in
which each processor has a private memory and processors communicate by sending messages.
UNITY sequences represent the communication channels over which inter-processor messages
are sent. Appending to and reading or removing from a sequence corresponds to sending and
receiving messages, respectively.

An allocation graph for CSTS G = (S,0,V, E,C) consists of a set of vertices, Vy, and a set
of directed arcs, As. Fach vertex in V4 represents one or more partitions C; € C. A vertex in Va
is said to represent a state variable § € S if the coupling partition represented by V4 contains
a coupling whose edge set includes an edge whose initial vertex is labeled by state variable S.
Each state variable § € S is represented by exactly one vertex in Va. For all vy,v, € Va, Aa

contains an arc directed from v1 to vy if and only if a state variable represented by »; appears
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in a condition of a, coupling represented by vs. The arc is said to be associated with the set all
state variables represented by v, that appear in a condition of a coupling represented by v,.
Recall from Section 2.5 that an architecture mapping specifies (1) a mapping of each assign-
ment statement to one or more processors, (2) a schedule for executing assignments (e.g., control
flow), and (3) a mapping of program variables to brocessors. CSTS G is mapped to a distributed

memory architecture as follows.

For (1): Assign each vertex in V4 to a processor. In particular, assigning vertex v € V4 to pro-
cessor means that the processor executes the UNITY assignment statements corresponding
to couplings represented by v. The issue of how many processors to use and which parti-
tions should be mapped to the same processor affect the program efficiency. Allocate the

statement that modifies ¢ in program FTLTFM or TNE_TFM to any processor.
For (2): Statements assigned to a processor are executed iteratively,

For (3): For each state variable § € &, assign S to the memory module private to the processor
representing the vertex in ¥, representing §. For each state variable S associated with
an arc in A4, add a sequence (e.g., a stream of Inessages) representing variable S, The
sequence is initialized with the initial value of the state variable. Each time the processor
assigned to the initial vertex of the arc modifies S, it appends the new value to the sequence.
Fach time the processor assigned to the final vertex tests a condition containing S, the
Processor removes all but the last value from the sequence, and replaces occurrences of §

in the condition by a read of the value of S at the head of the sequence,

Assign, for all tnald] to the processor which is assigned coupling ¢;. Assign t to the
processor that modifies ¢; let PR denote this processor. Add a pair of sequences, one in each
direction, between PR and cach processor besides PR; sequences from PR (respectively,
other processors) to other processors (respectively, PR) will be referred to as outbound
{inbound) sequences. Fach time t is modified, PR appends the new vahie to all outhound

sequences. Kach time a processor other than PR modifies tnalt], that processor appends
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the new value to the inbound sequence associated with inali]. Whenever PR modifies
t, it first removes all but the last value from each imbound sequence, and then replaces

occurrences of tnali] by the value at the head of the corresponding inbound sequence.

Example 5 One allocation graph for the MRP consists of N + 1 vertices as follows. Each of
the N 4 1 state variables in S are represented by a unique vertex in V. Formally, N vertices of
Vi each represent, for each value of m, {cstate state state}’ and the remaining vertex of ¥/,
represents {c{°c,, efc 1.

The mapping to a distributed memory architecture described above can use N 42 processors,
one for each state variable and one for t, During simulation, the processor assigned loc sends
changes to the technician’s location to N other processors. Each processor assigned to a machine

sends a message to the processor assigned to loc whenever the machine changes state. Finally,

the processor assigned to t broadcasts changes to t. 0

Other mappings are possible. For example, consider relaxing the constraint in the above
mapping that each state variable § € 8 is represented by exactly one vertex in V. An alternative
mapping assigns, for each value of m, couplings csmte to a unique vertex in V4, and assigns all
remaining couplings to a single additional vertex in Va, for a total of N + 1 vertices in Va. The
result is a solution in which each machine effectively informs the technician when it fails, and

then waits for the technician to respond when the machine has been repaired.

8 Mapping UNITY Simulation Programs to Simulation
Protocols

We exemplify mapping the simulation program resulting from Section 7 to the time warp opti-
mistic protocol [19]. Similar mappings can be devised for other parallel simulation protocols,
Time warp requires the time-of-next-event time flow mechanism (Section 6.2). Let pr denote
the number of processors, and let the processors be numbered PRy, PR, . .. y PR .. PRpy. The
single variable ¢ is replaced by ty, ts, .. ., bpr, where t; is assigned to processor PR;. Variable

t; represents the local virtual time of processor PR;, and is updated by a superposition similar
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to the one specified in Section 6.2, except that the superposition is done with respect to the
assignment statements mapped to a single processor rather than with respect to all statements
in the simulation model.

Each time a processor PR; appends a value u to a sequence, it instead appends an ordered
pair (&;, ). The first value in the pair is the message timestamp used by the time warp protocol
that triggers rollbacks.

Finally, it is necessary to superpose a program which will periodically save the value of all

state variables in 8. This is straightforward, and hence is not illustrated.
9 UNITY-Based Methodology

We next propose a simulation program development methodology using the mechanism of the
preceding sections. To state the methodology proposed precisely, we describe it in terms of Balci
and Nance’s simulation life cycle [2]. Assume that the “system and objectives definition” and
“conceptnal model” in the Balci and Nance life cycle have been completed [2]. We propose using
a CS'TS to represent the “communicative model” in the methodology. In principle it is possible
to use the methodology with other formal representations of a communicative model, such as a
single CSTS or a Petri net, by stating the formal semantics of the representation in UNITY (cf.
Section 5) and stating rules to generate a UNITY program (cf. Section 4). The methodology
itself also applies if FEnglish is used as the specification language, although one must generate
the UNITY assertions and program by hand.

We propose the following methodology:

Step 1: (Illustrated in Example 1) Define 2 state variable corresponding to each simulation
model attribute. Enumerate all possible values of each state variable, and describe the constraints
on transitions that the system can make between these values. State the initial value of each
state variable. We propose that the result of this step be a CSTS as discussed in Section 3.
Verify that the CSTS maiches the conceptual model. Verify that the list of constraints is

complete (i.e., each arc corresponds to a valid transition, and vice versa).
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Step 2:  (Mustrated in Example 4) Formalize the CSTS of Step 1 in UNITY, using the rules
stated in Section 5. The only verification required is to insure that the UNITY assertions have

been correctly generated.

Overall verification of Step 1 to Step 2: (Illustrated in Example 6, below.) Verify that the
CSTS and the UNITY specification agree in the following manner: State a set of properties that
the communicative model implies, and use UNITY s proof system to show that the specification

(i.e., the UNTTY assertions of Step 2) implies these properties.

Step 3:  (Ilustrated in Example 2.) Derive a UNITY simmlation program from the specification
it Step 2 using the rules in Section 4. The only verification required is to ensure that the rules

have been properly applied.

Step 4: Refine the simulation program by mapping the program to a particular time flow

mechanism as described in Section 6.

Step 5:  (Illustrated in Example 5} Refine the simulation program by mapping the program
resulting from Step 4 to a particular sequential or parallel computer architecture as described in

Section 7.

Step 6: Refine the simulation program by mapping the program resulting from Step 5 to a

particular sequential or parallel simulation protocol as deseribed in Section 8.

Example 6 The specification of Figure 11 is verified by stating additional properties and using
UNITY’s proof system to formally show that the specification implies these properties. Inability
to prove the properties implies that the specification is incomplete or incorrect, or that the
properties themselves do not hold for the system. Carrying out such a proof does not guarantee
the correctness of the specification, but does increase our confidence in the specification. In fact,
in writing this paper our original statement of the specification omitted several properties shown

in Figure 11 and motivated our development of the CSTS semantics in Section 5.
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Pl m.a — m.i
P2 m.d— m.u

Figure 13: Properties of MRP Used to Formally Verify Specification Correctness

We give two properties (Figure 13) which are proved in Appendix A. First, when the technij-
cian is at a particular machine, he eventually leaves that machine (P1). Second, when a machine
goes down, it eventually comes back up {P2). Note that it is not possible to prove that an up
machine eventually fails (m.u m.d) from our specification; this requires reasoning about time,

0

10 Conclusions

a communicative model, The model is specified as a CSTS, then mapped (mechanically) fo a
program. The program is then refined to a brogram snitable for a target sequential or parallel
computer architecture, The refinement can be done mechanically, but further optimization by
hand may be required to obtain a suitably efficient implementation, The methodology addresses
formal verification as follows. A CSTS is (mechanically) mapped to a set of conjectures written
as UNITY assertions. Proofs of conjectures (at present, done by hand) are carried out, and
the conjectures which can be proved form the formal specification of the communicative model.
The communicative model can be formally verified by stating additional properties that the
CSTS should possess as UNITY assertions, and then {by hand) proving the assertion from the
specification. The methodology applies to any simulation model that can be expressed using state
variables whose domain is a finite set and which allows simultaneous events to be simulated in
a non-deterministic order,

The proposed methodology may be incorporated into a sitnulation support environment which
uses a higher level specification, such as an object oriented spectfication, than the CSTS by

mapping that specification to a CSTS. The nature of these higher level specification forms is an
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given a specification describing only single step transitions, as Figure 11 does. Figuring
out how to it the induction theorem to this intuition did require some time on the part of

the authors.

(b) Constructing chain of deductions: In general the authors spent much of their time playing
with the more than thirty theorems in the UNITY book to construct the formal chain
of deductions required for each proof[7, Ch, 3]. This process is somewhat analogous to
what an undergraduate student does in a calculus class, as he browses through a table of
integrals and a list of trigonometric identitios in trying to symbolically integrate a function.

However a theorem proving system might alleviate this probler.

(¢) Devising invariants: Proofs of code generally require invariants to be formulated, which takes

some creativity. This is analogous to integrating a function by guessing the antiderivative,

As our experience with UNITY grows, we expect the time required for items (a) and (b)

listed above to decrease.

To resolve issyes in proofs versus graph-based anafysis.  Automated assistance in the verification
and validation of simulation models through graph-based analysis techniques has been demon-
strated in {25, 26]). Can these, or similar, techniques be applied to CSTS’s? Can we define the

relationship between what can be proved and what can be derived graphically?

To develop a variety of efficient mappings to parallel architectures and simulation protocols.
Sections 7 and 8 provided one possible mapping to a distributed memory architecture and time

warp. A general method of mapping the graph implied by a CSTS to a target architecture is
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open problem.

Other open problems which remain are the following:

To formally specify and verify properties about stmulation time. The CSTS used in this paper
can be mapped to the timed state transition system uged by Henzinger, Manna, and Pnueli [16]

for proofs of real time properties.

To formally specify and verify output measures. Output measures are often specified in terms
of the time in which a predicate holds for a simulation model. Therefore UNITY is insufficient

to specify output measures, and a specification language formalizing simulation tirne is required,

To formally specify and reason about ordering of simultancous events. In the proposed method-

ology, simultaneous events are executed in a non-deterministic order,

To automating proofs.  Proofs of conjectures to obtain the UNITY specification of a C8TS are
generally easy to mechanize, because the proofs just require application of the rule to verify
assignment statements. In contrast, proofs of properties about the specification (e.g., P1 and
P2) must, at present, be done by hand. Automation is difficult because proofs of properties
always requires identifying an order of application for UNITY theorems and sometimes requires
formulation of invariants as well as metrics for induction, as illustrated in Appendix A, However,
once generated, a proof can be checked automatically using Goldschlag’s system [13].

Our experience in proving the properties of Figure 13 is that UNITY proofs are fairly me-
chanical, but can be time consuming. Following are some specific examples of where the proofs

are time consuming.

{a) Applying induction: A key to the proof that down machines are eventually repaired (P2) is
establishing by an induction proof that after a machine goes down, the technician keeps
getting “closer” to the fajled machine, until eventually he is at the failed machine. Induction

is required whenever we want to draw a conclusion ahout g sequence of state transitions,
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simulation protocol; perhaps all three must be done jointly to obtain an optimal program in
terms of execution time,

Eificient parallel execution of a simulation model implies consideration of the constraints
imposed by each combination of computer architecture, time flow mechanism, and parallel sim-
ulation protocol, which leads to an enormous design space. An additional complication is that
many of these constraints are problem as well as input data dependent; thus a correct temporal
ordering of events cannot be predicted before execution. This exposes one reason why parallel

discrete-event simulation programming is a fundamentally hard problem,
Acknowledgments
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A Proof of Properties P1 and P2

The proofs of P1 to P2 require the following UNITY theorems. Each theorem is written in the

hypothesis
form of a:%ﬁiﬁ' In T4, W represents any set,

2
T1. PP eNg—g

Py
To. _PHG ¢ unless b
CPAT = {gAg)VE
T3 p unless q,p’ unless ¢’

(pAp) unless (p AGYV (7 Aq) V (g A )
{(Vm:me W : p(m) = ¢(m))

T4: (Bm:mew :p(m)) s (Bm:me W - g{m)})
T5. PR4=d

pq

Tg . Pensuresq
p—q

Theorems T1 to T6 are the transitivity property for leads-to, the progress safety progress
theorem, the general conjunction theorem for unless, the disjunction theorem, and an inference
rule for leads-to [7, pp. 52, 65, 58, 64-65, 52] Theorem T5 is consequence weakening for leads-to,

and is straightforward to derive from other theorems.
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We also require the following induction rule in our proofs [7, p. 72]. The rule refers to a

well-founded set, which is » set that is partially ordered and has a lower bound.

Let W be a set well-founded under the relation <. Let ME be a funciion, also
called a metric, from program states to W: we write simply ME, without its argument,
to denote the function value when the program state is understood from the context.

The hypothesis of the rule is that from any brogram state in which p holds, the
program executtion eventually reaches a state in which ¢ holds, or it reaches a state
in which p holds and the value of metric ME is lower. Since the metric value cannot
decrease indefinitely {from the well-foundedness of W), eventually a state is reached

in which ¢ holds.

7 - {Vm:meW::pA(ME:m)r——}(p/\ME%m)Vq)
' P g

We will also require UNITY’s substitution aziom: an invariant may always replace true]7, p.

49]
A.1 Proof of Property P1

Proofs are written as a sequence of “deduction, Justification” pairs.

We begin by proving two lemmas that will be used in the proofs of P] and P2, First, if
a machine is down and the technician is bresent, eventually the machine is in repair, and the
technician is {still) present. Second, if the technician is at a machine in repair, then eventually

the machine is up and the technician ig present,

Lemma 2 m.a Am.d > m.a A m.g

Proof:
m.a Am.dunlessm.a A m.i

» Apply general conjunction for unless (T2} to MRP8 and MRP1
m.ahm.de— maAmi

, Apply progress-safety—progress (T2} io last deduction and MRP§ O
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Lemma 3 m.a A m.s = m.aAmau

Proof: Apply progress—safety-progress (T2) to MRPT and MRP1, }

Proof of P1: m.qa s m.}
m.aAmi- ml
» Apply transitivity (T1) to Lemma 3 and MRP2.
m.a Am.dw m.]
» Apply transitivity (T1) to Lemma 2 and previous deduction
m.a = m.l

, Apply disjunction (T4) to previous three deductions ]
A.2 Proof of Property P2:

First, we prove a lemnma that will be used in the proof of P2: If a machine is down and the
technician is not present, eventually the technician is bresent. The quantity |m o loc| used in

the proof is a measure of the distance from the technician’s curreni location to machine m,

Lemma 4 m.g A . = mad A m.ag

Proof:
mi— (m@1).q
» MRP3
(Yn:n e {0.0, 0.5,1.0,15,... N ~ LON ~0.5} it loc = n e Joe = n® 0.5)
, Combine last deduction with P]
(Vn:n € {0.0, 0.5,1.0,1.5,... ¥ - LO,N—0.5} i md A—m.a A loe — s (mdA—m.an loc =
nd05)VIimda m.a)
» Apply progress-safety-progress (T2) to last deduction and MRP5
(Vrn:n € {0.0,05, LOL5,.. ,N-10,N— 0.5} :: m.d A~m.a A [m&loc] = n (m.dA—=m.an
[meloc] < ng0.5)v (m.d A m.a)

» Algebraic manipulation of last deduction
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m.dA —m.a ~ m.dA m.a

» Apply induction {(T7) to last deduction O

Proof of Property P2: m.d . m.u
m.dA-m.a— miAm.aq

, Apply transitivity (T1) to Lemmas 4 and 2
m.d = miAm.a

s Apply disjunction (T4) to last deduction and Lemma, 2
miAma— muy

» Apply consequence weakening {(T5) to Lemma 3
m.d— m.y

; Apply transitive (T1) to last two deductions O
B Proof of Conjectures

The proofs of the unless and leads-to conjectures for CSTS G requires the code that is equivalent

to G, but with all time formulas equal to zero (See Lernma, 1.). The code is shown in Figure 14.
B.1 Proof of unless Conjectures

We prove the second conjecture in Figure 9; the remaining unless conjecture proofs are similar.

?
Proof of m.a A m.u unless m.l: Using the definition of unless, the verification condition is:

(V statements s in MRP . {m.a A m.als{(m.a A m.u)Vml})
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program MRP

constants N=...; MaxRepairs=...
declare
loc : (1,1.5,...,N,N+0.5)
state[N] : {up, inrepair, down)
initially
I {1l m :: state[m]=up }
|| loe=0.5
assign

{Implernentation of ci°e.:}
O¢{ Om:: loc:=loc @ 0.5

{Implementation of ci,:}
O{Cm:loc:=loc® 0.5

{Implementation of eftate
O( O m :: state[m] := down

{Implementation of csime}
O( O m :: state{m] := inrepair

{Implementation of eftate;}
O( O m :: state[m] := up

end { MRP }

; T=...; A[N]=...; p[N]=...;

{ initially all machines are up }

{ technician leaving machine zero}

if loc=m A state[m]=up )

if loc=me0.5 )

if state[m]=up A loc # m }

if state[m]=down A loc=m )

if state[m]=inrepair )

42

Figure 14: UNITY Program for Machine Repairman Problem with time formulas equal to zero.
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B.2 Proof of leads-to Conjectures

We prove the first conjecture in Figure 10; the remaining unless conjecture proofs are similar.

{The one conjecture which cannot be proven, m.u A —m.q s m.d actually holds for the CS8TS8,
but not for the zero time code. The conjecture cannot be proven without a proof system that
can reason about simulation time, because the proof depends on the fact that a machine goes

down after a finite time elapses.)

Proof of m.a Am.urs m.: From Section B.1, m.a Am.u unlessm.i holds. For the statement s
in program MPR corresponding to ¢i°¢ | {m.a A m.u}ts{m.l}. Hence m.a A m.u ensures m.l. By

1.m:

T8, the conjecture holds, m]



