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1. Infroduction

Design analysis of high-performance analog integrated circuits requires detailed and accurale simulation of
the DC behavior of the chip. Such analyses, which becomes an even more integral part of the design for
advanced bipolar transistor technologies, include: computation of the DC operating point {or points) of the
circuit; sensitivity studies of one or more outputs to one or more circuit parameters; design simulations at
the extremes, dictated by variations in the fabrication process, and the clecirical and environmental
conditions in which the circuit will be operating, such as power supply and temperature variations; analyses
and optimization of yield or performance in the face of statistical variation of process parameters. Of
course, such analyses are only as good as the underlying device models!

In this paper we describe an experimental system called Sframe which is being incorporated into the
design for manufacturability initiative at the Reading Works of AT&T Bell Labaratories. Our system is
able to performn detailed and accurate DC analyses of integrated circuits containing several hundred
transistors to be fabricated in a relatively complex junction isolated complementary technology.

Highlights of our system include:

« Robust computation of the operating point of a circuit using an efficient continuation method;
moreover, the method is able to detect multiple operating points.

Generally speaking, continuation methods for operating point computation have a reputation in the
simulation community for being 100 slow to be practical for any but the smallest of circuits, One of the
conclusions of our work is that, when properly implementad, continuation techniques based on modern
homotopy algorithms for operating point computation exhibit unsurpassed robustness with reasonable
COSt,

» A state-of-the-art four-terminal bipolar transistor DC model which treats various second-order effects
not considered in simpler models. This model has been appropriately modified for use with
continuation methods,

» An "incremental” facility which allows the operating point of a circuit o be updated quickly afler a
relatively small change to one or more simulation parameters. This facility is especially useful for
exploration of a "design space” during statistical optimization,

« Parameter studies wsing continuation methods which can identify qualitatively different operating
modes of the circuit. The numerical codes used to perform these studies are able (o cope with wming
points and folds'in the solution manifold, which indicate more than one solution for parameter values in
a certain interval. Such analysis provide insight into both the quantitative and qualitative behavior of
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the design. A facility for continuation 10 a target point allows a designer 1o calculate the exact setting
for a circuit parameter which causes an output variable (0 equal a desired value. This is also useful in
statistical design,

« Analytically correct DC sensitivity analyses of a user-defined performance function to lemperature, any
device model parameter or any circuit parameter. Both direct and adjoint lechniques are supported.
These methods are superior to the perturbation technique, often used in simulators to estimate
sensitivities, which are too slow and inaccurate for any but the simplest kinds of sensitivity analyses.

* A novel software architecture in which the user’s circuit is described by defining appropriate classes in
C++. Sframe is designed in a highly modular fashion, and different numerical codes can be installed
quickly through narrow, well defined interfaces. Moreover, the design of Sframe takes advantage of
so-called "automatic differentiation” techniques which allow derivatives of model expressions to be
computed accurately in a fashion which is transparent to the user. Such derivatives are needed for
continuation and sensitivily studies.

Section 2 describes the use of numerical continuation methods in our program. A distinction between
“artificial parameter” and "natwral parameter” methods is drawn. The use of artificial parameter
continuation for computation of operating points has been described elsewhere[1-3] so is reviewed here
only briefly. Subsection 2.1 describes the various contnuation options provided. Subsection 2.2 discusses
incremental operating point computation, in which the operating point of a circuit is to be updated after a
relatively small change 10 one or more circuit parameters.

In Section 3, we motivate the need for a highly accurate and detailed transistor model, and show how a
continuation parameter is incorporated into the model for robust and efficient operating point computation.

Section 4 discusses automatic differentiation of device mode! equations, and shows how Sframe takes
advantage of this technique to provide almost any conceivable sensitivity information in a convenient
fashion.

In section 5, we describe our experience with writing a simulation program in the C++ language, also using
C++ as the input or "netlist” language,

Finally, in Section 6, performance data on several designs are presented. All of our examples are taken
from current industrial designs, and some of them are large by analog circuit standards (e.g., several
hundred transistors).

2, Continuation methods in simulation

Continuation (homotopy) methods[4-6] provide both a theoretical and implementation basis for DC
analysis of nonlinear networks.

Consider the formulation of the operating point equations using Kirchoff's laws. In the so-called modified
nodal formulation{7], one introduces a voltage unknown for each node in the circiit, and an additional
unknown for the current through each voltage source, then writes an equation which expresses Kirchoff's
current law at each node and Kirchoff’s voltage law across each voltage source. This gives n equations in »
unknown voltages and currents.

The standard form for such equations is
F(x,a) =0, )

where, for a fixed vector of parameters a, F(—,a) is a mapping from R” into R", the st of real n-veclors,
and x is a vector partitioned x = {i;v) for current and voltage unknowns. The m-vector a represents circuit
parameters,

These equations can be highly nonlinear and standard Newton-Raphson iteration{8) typically exhibits only
local convergence. Therefore, we are motivated to consider more robust and globally convergent
procedures for operating point computation,



Continuation theory considers an equation
H(z,u,a) = 0 2)

where x and a are as in (1) and the p-veclor | represents one of more continuation paramelers, so that
H{-,a) in (2) is a mapping from R**? into R™; ie., there are more unknowns than equations. In other
words, the system of equations is under-determined. Thus, a "solution” to (2} is no longer a single point,
but rather a curve or surface in R**7. In the remainder of the paper, we will restrict ourselves to the case
p =1, and assume that the parameter vector @ in R™ is fixed. In the sequel, unless necessary, a will not be
written explicity.

In the continuation paradigm, one designs a function A such that a solution xo to the equation
H{x,1tg) = 0is already known or easily obtained for some fixed value g i.e., H(xg,lko) = 0.

If, in addition,  is designed so that H(x,u0)=F(x) identically in x when w=y,, then a sclution to
H(x" .1t;) = 0 provides a solution to F(x") = 0. Examples of such a construction will be given later.

Assuming that such a solution exists, i.e., H(x".1t,) = 0, supporting theory ([10-11}) shows that in most
cases, under reasonable assumptions about the smoothness of A and the choice of a, the points (xg,1o) and
(x",}t;) are connected by a path in (n+1)-dimensional space. With a fixed, we can compute x* by
"tracking” this path in (n + 1)-dimensional (x,}t) space.

To take a simple example, suppose that [t represents the ambient temperature of a circuit. Forpg = 25°C,
a solution to H(x,jto) = O represents an operating point of the circuit at room temperature, where {t has
the dimension of degrees Centigrade. As | is varied from 25°C to an elevated temperature, say 50°C, the
solation to H(x,p) = O tracks the state of the circuit at each temperature.

Packaged numerical codes are available to accomplish this so-called "curve tracking”, i.e., to generate a set
of points (x,)t) which satisfy H(x,n) = 0fory in the interval [ito.11,} and a fixed a.

The user supplies an initial point {xg.t¢.a), then the curve tracking algorithm takes over. It predicts a
local direction vector "along the curve” by evaluating the Jacobian matrix of H with respect to x and u.
Iterative application of a predictor-corrector scheme allows the algorithm to track the curve until p = .
Sophisticated packages, such as HOMPACK[11-12] or PITCON[13], dynamically adjust their step length to
adapt to changes in the curvature of the path.

In order to use such packages, the user must supply a numerically accurate Jacobian matrix. This matrix is
of the form:

o dH

—— 3)

dx du
evaluated at a point (x,|t) along the solution path. Our computational experience with DC analyses of
bipolar networks indicates that finite-difference approximations 1o this Jacobian matrix are inefficient and
unreliable.

The notion of "sweeping” a parameter is intuitive, but can be misleading. Consider the symmetsic flip-flop
shown in Fig. 1.
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Figure 1. Symmetric Flip-Flop

Suppose we treat the supply voltage (Vec) as the continuation parameter, i, and "sweep” 1. from OV to 6V.
Fig. 2a shows the complete solution to H(x,11) = 0 for this example, in which x is the DC state vector of
the circuit. At a critical value of W (about 0,7V) the operating point equations exhibit a bifurcaiion[14].
The three branches to the right of the critical point represent the two stable states of the flip-flop along with
the meta-stzble state,
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Figure 2, Bifurcation Diagrams for Symmetric Flip-Flop

The bifurcation diagram of Fig. 2a is valid only if the circuit is exactly balanced; if there is any asymmetry
in the circuit, then the bifurcation diagram becomes the unfolded diagram of Fig. 2b; the bifurcation is
gone, and only one solution is accessible from the start state x,.

Such an unfolding can be accomplished by suitable choice of the parameter vector a mentioned above. For
example, suppose a encodes the values of the resistors and the scales of the fransistors in the circuit. Any
physical realization of the circuit will incur some imbalance in these values which can be modeled by
appropriate slight perturbations in the a vector.

Another possibility, quite common in analog circuits, is a turning point. Consider the circuit of Fig. 3 taken
from reference[15], in which the value of the independent source v1 is the continuation parameter, [, The
output is taken as the current through this source, and is shown plotted against the source voltage.
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Note that for | in a certain interval, the circuit exhibits more than one solution. At the end points of this
interval, the solution manifold turns back on itself. This discussion is meant to show that the notion of
"swecping" might be a bit more complicated than it first appears. Tuming points and (less often)
bifurcations which are not unfolded do come up in practical analog circuit designs!

2.1 Artificial Parameter Continuation for Operating Point Computation

In the above examples, the continuation parameter has a natural circuit interpretation—voltage,
temperature, etc. The vce-continuation of Fig. 2 can be interpreted as an operating point computation
starting from the trivial point of zero supply voltage and ending when the supply is "fully on”. Because of
the bifurcation, a numerical method used to track the solution manifold may falier at the point of the
bifurcation, or {more likely) continue on through this point to the meta-siable state of the flip-flop. Neither
of these situations is desirable. Insiead, Sframe uses the notion of artificial parameter continuation 1o
find an operating point. In this technique a parameter which need not have an obvious circuit interpretation
is introduced into one or more non-linear element models. Artificial parameter methods{10-11] generate
smooth, bifurcation free paths which can be traversed quickly to the desired operating point.

As in the vcc-continuation above, the computation of an operating point when the artificial parameter is set
1o zero is trivial; moreover, when the artificial parameter reaches a value of one, the circuit has been
returned to its original state.

Consider, for example, the standard Ebers-Motll transistor model[36) of Fig. 4.
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Figure 4. Ebers-Moll Model with Continuation Parameter

A continuation parameter A has been introduced which multiplies the current gains of the transistor, When
A equals zero, the model degenerates into a pair of back-t0-back diodes. The transistor model actually used
in Sframe is much more complicated than Fig. 4, however the continuation parameter is introduced into
the complex model in much the same way; the detailed construction is described in Section 3.

Suppose we wish {o find the operating point of a bipotar network containing transistors; dicdes, resistors
and independent sources. Imagine all the transistors with the continuation parameter introduced as in Fig.
4, Now, consider the circuit when A is set to zero. This so-called start sysiem has a unique operating point,
and it is easy to solve. In fact, it can be shown that the operating point equaticns are a diffeomorphism
when A is zerof2). Thus, norm reducing Newton methods(8),[16] work quite well, typically solving the
circnit in a reasonable number of iterations (less than 30 for all the examples presented in Section 6). After
solving the start system, use a continuation procedure to advance A 1o 1; at this point, the rransistor models
are back to their original state. Points along the continuation path, for values of A less than one, do not
have much meaning to a designer, since they represent states of a circuit with a modified transistor model.
Hence the term "artificial” parameter. As a notational convention, we use A for such an artificial parameter,
rather than Jt.

A problem with this construction arises if two transistors are connected in a so-calied "cascode"
configuration, with the collector of one transistor connected 1o the collector of another. When A is set to
zero, the transistors become simply a pair of diodes; in the cascode configuration, two diodes are connected
anode to anode, which results in a node which is effectively disconnected from the rest of the circuit. This
problem is fixed by adding a "leakage" circuit from each node 1o ground, which is removed during the
continuation process.

The leakage circuit consists of a conductance in series with a fixed voltage source. Let the conductance
have a value (1-A)Gscale, in which Gscale is a global constant. Thus, numerical singularities due to
unconnected nodes are eliminated.

Moreover, if the voltage source of each leakage connection is given a random value, then supporting
theory[10] shows that bifurcations (as in Fig. 2) are climinated with probability one. The presence of the
random sources introduces asymmetry into the system (o unfold any bifurcations,

Notice that we have designed a homotopy specific o operating point equations, rather than a general
construction which can be applied to any system of nonlinear equations. One such general construction is
the following homotopy[11]:

Hy(x,A) = (1-Ax—-b) + AF(x) 4)

where F is an arbitrary system of nonlinear equations, and & is an a-vector which fixes a starting state for
the construction.

This construction will work for operating point computations, but is slower by a factor of 10 than the "gain”
homotopy described above; perhaps the reputation of continuation methods for being "100 slow" is due to
the use of such general constructions. The "gain” homotopy takes advantage of the fast convergence of a



damped-Newton scheme on a reduced problem where convergence is assured, then employs homotopy to
get the final answer. Fortunately, HOMPACK allows a user to design such problem-specific homotopies, as
well as providing (4) as a default,

The exampies 10 be presented in the final section show that operating points can be oblained with an effort
between two to five times that required by other, less robust, methods. Users seem quite wiiling io pay this
extra compuler cost in exchange for the robustness and analysis capabilities of continuation methods.

2.2 Finding Multiple Operating Polnts

Artificial parameter continuation methods provide an elegant approach to identifying multiple DC operating
points. Consider a circuit, such as the flip-flop above, which has three distinct operating points when
A = 1. Because of the way in which the continuation parameter has been introduced into the circuit, there
is certainly a unique solution at A = 0. Moreover, the random voltage sources unfold any bifurcations, so
the picture looks like Fig. 2b (although the continuation parameter is no longer the supply voliage). The
continuation process is tracking one branch of the solution sei starting from the (unique) solution at A = 0,
and stops when it gets to A = 1. There is no reason to siop here—instead, continue to follow the path; in
some cases, it will exhibit a tuming point and connect up with the branch containing the other two solutions
as indicated in Fig. 5. In such case, we say that the multiple operating peoints have been "lambda threaded”.
Of course, this will require values of A greater than one,
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Figure 5. Threading Multiple Solutions with Continuation Path

The idea of letting the continuation path proceed past A = 1 has appeared in the literature in various
unrelated publication{17-19). In particular, Diener[19] gives sufficient conditions on the function being
studied 1o insure that all solutions will be traversed, however, Diener's condition is quite strong and there
seems little hope of establishing it for circuit equations even on a restricted class of circuits.

Some authors have presented zlgorithms guaranteed to find all solutions of a circuit[20], but these methods
are based on multidimensional analogs of bi-section, which can be rather slow in higher dimensions, or
restrict modeling equations to be polynomials[21], which is undesirable in our application.

Our program incorporates some specific features which "encourage” the continuation path 10 traverse
.multiple solutions and has successfully found multiple DC solutions of circuits containing hundreds of
unknowns.

First, the transistor gains are not actually multiplied by A, but by a function gain{A) which stays in the
range [0,1], even for A > 1. Second, note that the leakage circuit described above exhibits negative
conductance for A > 1. The presence of such negative conductance can generate unrealistically large
currents in the network. For A > 1, Sframe introduces a non-linear negative resistance in the leakage
circuitry, The [ -V characteristic of this negative conductance has a saturating characteristic which keeps
the voltages within reasonable bounds.

Both the gain function and the leakage conductance are designed 10 be periodic in A with périod 2. Thus, at
A = 2, the circuit again has a unique solution equal to the solution at A = 0. This provides a convenient



stopping criterion—il muitiple operating points have not been detected by the time A reaches 2, then the
procedure can be stopped, since the behavior of the contineation will repeat for A>2.

Fig. 6 shows the continuation path threading the three operating points of a Brokaw reference[22]. The
drawing plots the output voltage against %, and has an expanded horizontal scale to emphasize the behavior
of Anear 1.
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Figure 6. Threading Three Solutions of Brokaw Circuit
2.3 Incremental Computations

Suppose that an operating point has been computed for a circuit, but the designer would like the operating
point of a perturbed circuit—maybe at a different temperature, different supply voltage, etc. Call these two
circuits A and B, with known operating point x, for the A circuit.

~ Again, one may draw a distinction between a natural parameter approach to this problem, and an artificial
parameter approach. To be specific, suppose the operating point equations are parameterized in
temperature T and the value of a single independent voltage sources, V.

Let the (known) point x4 satisfy
F(xA !TO vVO) = 0'r (5)

and suppose an operating point x is desired which satisfies F(x5.T;,V;) = 0. An obvious continuation
method to find x5 would be to perform two separaie continuations on T and V separately. Say, first perform
a continuation on T to get a point x; such that F(x,,T,,V,) = 0, then compute a path from x; 0 xg such
that F(xg,T1,V,) = 0. This is rather slow. A better scheme is to use the single continuation

F(x, (1= T + uT,{(1-p)Vo + uVy) =0 (6)
and perform continuation on it in the interval [0,1).

Both schemes assume that F can be evaluated at arbitrary values of T and V, and has continuous derivatives
with respect to these parameters. This might not be convenient if, for example, a device model is
characterized at only a fixed set of temperatures. Morcover, like all natural parameter continuations, there
is the possibility of a numerical singularity somewhere along the path. The use of an artificial parameter
avoids both of these obstacles. Consider the following homotopy:

Hy(x,A) = (1-MF(xiTo, Vo) + AF(x;T V) + S(A)(x-b) o)

in which b is an n-vector as in {4) and o is a smooth function defined on the interval.[0,1] and equal to zero
at the endpoints of this interval (e.g., o(2) = K sin{({ m)/2) in which X is a scaling factor}. According to
the theory presented in [10], the introduction of the vector b practically insures smoothness of the solution

to (7).

Clearly, H, (x4,0) = 0 for the starting point because 6{0) = 0, and the endpoint x is an operating point
of the "A" circuit. This scheme does not require derivatives with respect to either circuit parameter Vor T,
and avoids numerical singularities with the random G{(X}(x —a) term.



There is, however, a disadvartage o the artificial parameter scheme. For values of A strictly between zero
and one, a solution to H,(x,A) = 0 is the operating point of some "mixture” of the A circuit, the B circuit,
and the randomization. Hence, such intermediate points are not the solutions of a real circuit In contrast, if
a natural parameler continuation is used to move from the A circuit to the B circuit, then intermediate
points along the continuation path are simply more sample values. These samples can be used to advantage
in a statistical design scenaric.

Continuation methods are implemented in Sframe with two public-domain packages: HOMPACK[11] and
pITCON[13]. In general, an artificial parameter homotopy, with HOMPACK to perform the continuation, is
much faster than a natural parameter continuation performed by PITCON. This is especially true for larger
differences between the A and B circuits.  HOMPACK is designed for speed rather than accuracy, except at
the endpoint of the continuation. Thus, it is able to move quickly along the path to the solution to the B
circuit. Timing results for some examples of incremental computation are presented in the last section.

In summary, there is no "best” method; the choice between an artificial parameter approach or a natural
parameter approach depends on the context in which the results will be used.

2.4 Combining Continuation Operations

The artificial and natural parameter continuation facilides of Sframe may be usefully combined. As an
example, we consider an all NPN voltage reference of novel design documented in [23]. The value of a
particular resistance, rl7, is crucial 10 the operation of the reference. For r17=20k, the circuit has a
unique operating point. For r17=32k, the circuit has three operating points, one of which is the desired
state of the circuit. The diagram of the corresponding unfolded bifurcation is shown in Fig. 7.

\

3.2k r17 20k
Figure 7. Bifurcation Diagram for Volage Reference

Appropriate start-up circuitry is included to insure that the circuit will settle into the desired state.
However, if r17 is made too large, then the circuit undergocs a qualitative change of behavior, and has
only one operating point, with or without the start-up mechanism. In this regime of operation, the
performance of the circuit is compromised. Thus, the designer is led to ask for the "critical” value of r17,
below which the circuit will have three states, one of which is the desired state. An exact answer to this
question can be provided by the continuation operations available in Sframe. First, fix r17 at 3.2k and
use the lambda-threading device to identify the three operating poinis for this value of the resistor, then
initialize the circuit to the meta-stable state. Note that the uming point of Fig. 7 is accessible from the
meta-stable state. Now, perform a (natural) parameter continuation study on the value of 17, trying o
drive the value of the resistor back up o 20k. This will not be possible—rather, the continuation process
will encounter a trning point at the critical value of r17— exactly the value requested by the designer.
The PITCON code provides a facility Lo compute the exact location of such turning points.

2.5 Continuation to a Target Point

Suppose that a particular circuit parameter, say the value of an independent voltage source, is treated as a
continuation parameter L with initial value po. In general, all other node voliages and branch currents in
the circuit will depend on u, although the relationship between such a designated output and p is not
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necessarily a functional one!

As illustrated by Fig. 3, for certain values of {1, there may be mare than one value of the ocutput quantity
corresponding to a particular value of p. A uwseful extension of the conlinuaven method is w "work
backwards" for such a value. As a classic example, consider the design of a Widlar current source[24].
This circuit uses an emitter degeneration resistor Re 10 source or sink a very low load current with
reasonable resistor values (thus saving chip area). However, the relationship between load current and the
value of Re is nonlinear and some trial-and-error may be necessary 1o set Re. The initial value of Re is
chosen so that the resulting load current is less than the desired value. Then, target continuation is
performed on the resistor value until the load current equals the desired value.

3. Blpolar Transistor Model

The bipolar transistor model implemented in Sframe is an advanced DC version of the extended
Gummel-Poon bipolar model [25-26]. It models the electrical characteristics of bipolar transistors
fabricated using AT&T’s CBIC (Complementary Bipolar Integrated Circuits) junction isolated technology
[27]. There are different versions of CBIC technologies supporting both vertical NPN and PNP transistors,
with characteristics that range from medium speed (fr=800MHz) and high junction breakdown voltages, o
high speed {(fr=12GHz) small geometry devices. Thus, a variety of effects, including those arising from
junction isolation parasitics, must be included in the model. For example, for the high voltage devices, due
to higher intrinsic resistances for base and collector, both the base widih modulation under different bias
conditions and the collector resistance modulation and quasi-saturation have w be accounted for. Of
course, for small geometry devices, all lateral charge injections become important, due to the fact that
charge injection from the emitter is not localized to the vertical base-emitter junction.

The circuit level model presented in this section characterizes both the primary transistor action and the
most important parasitic phenomena in the CBIC transistor structures used in analog bipolar circuit designs.
It should be mentioned that the model, in some simpler form, can be applied to other bipolar technologies
as well. The complexities of such a highly non-linear model are a major source of convergence difficulty
for circuit simulators which offer only conventional Newton-type procedures for the calculation of a DC
operating point. Therfore, the model has been augmented to allow the use of robust numerical continuation
methods.

This augmentation has been accomplished in such a way that the number of iterations during the artificial
homotopy parameter study can be optimized. This is partially due 10 the fact that, for the initial value of the
continuation parameter, the model results in operating point equations which are diffeomorphism{2] and
therefore the more efficient norm reducing Newton methed can be used with assured success to solve the
start system.

3.1 Model description Summary

Fig. 8 represents a cross-sectional view of a typical NPN transistor in a complementary bipolar technology.
Superimposed on that figure are most of the possible transistor actions that can take place snder different
bias conditions in such a structure. QV is the primary transistor, the performance of which has to be
optimized relative to the other transistors which act as parasitics. In a typical CBIC iechnology transistor
Q82 would have both higher emitter and collector efficiency than QS1. Moreover, transistor QL which
represents a lateral NPN action from the emitter side-wall laterally to the collector contact, has a much
smaller emitter/collector efficiency than QV. It is true that, for high frequency applications, QL becomes
important due 10 its base width, which is much longer than that of QV, thus introducing an excess phase
shift in the overall transistor AC response [28]. However, for DC applications QL can be left out with
minimal loss in performance prediction accuracy. For similar reasons QS1 can also be feft out. Therefore,
the transistor model can be reduced to that shown in Fig. 9. In the reduced model, RC is the accumulated
Ohmic resistance of the collector contact, deep collector, and buried layer. RBX represents the sum of the
contact and series external base Ohmic resistances under the base contact diffusion, while RB and RBP
signify modulated active base region resistances for QV and QS2 respectively.
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Figure 8. Cross-section of CBIC Transistor:

Transistors QV and Q82 are modeled in a similar fashion, each having a full Gummel-Poon circait-leve?
topology. It is very important for QS2 to have a full Gummel-Poon structure. This is due to the fact that in
CBIC technology, QS2 is a lateral isolation transistor with a relatively narrow base, hence, effects such as
base width modulation (Early Effect [29]) have to be modeled properly. This transistor will operate in cut-
off mode when the structure is biased 1 activate QV in its normal active mode. Bowever, at higher charge
injections, the voltage drop across RC can become high enough to forward bias Q52 and thus to turn it on,
This usually happens when QV is in its quasi-saturation or saturation modes.
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3.2 Model Conslderations for Transistors QV and QS2

In order to be used in conjunction with artificial parameter continuation methods, the model incorporates an
artificial parameter A. As described in Section 2.1, the role of the continuation parameter A is 10 modify the
transistor model in a way that leads to an "easy" to solve circuit when A = 0 while restoring the full model
by the time A=1. In order t include the continuation parameter in the core Gummel-Poon model, its
topology is modified as depicted in Fig. 10 for partial implementation of the NPN transistor QV. The PNP
transistor will have similar topology with opposite polarities for the currents and voltages.
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Figure 10. Core of Gummel-Poon Transistor with Continuation Parameter

In this figure f(A), g(A), and h(X) are suitable functions of the continuation parameter A which best describe
model behavior during parameter variation. We want A to modulate the current gains of the transistor.
Since, in general the short circuit current gain imposes a linear relationship between base and collector
currents, we choose f(A) = A Moreover, we chose g(A) = Br(1-A)and 2(}) = Br{1-A) where Bp,
B ¢ are the current gains corresponding to the Gummel-Poon paramelers BF and BR.

The following equations describe: IBEI, the intrinsic base-emitter junction current; IBEN, the non-ideal
base-emitter current due to recombination in space charge region; IBCI, the intrinsic base-collector junction
current; and TBCN, the non-ideal current due to base-collector space charge recombination.

IS _VBE
JIBE[ = — (e ¥Vr — 1) &)
BF VBE
JBEN = ISE (e MEV: -~ 1)
FAY _VBC_
IBCI = — (e MV: - 1)
BR VBC

IBCN = ISC (e ¥Vr - 1)

where parameters 1S, BF, BR, ISE, ISC, NF, NR, NE, and NC are the Gummel-Poon model
parameters[25].
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Note that as the continuation parameter A varics from O to 1, the functions g{) and h{}) move {rom BF and
BR to 0 respectively and f{A) from 0 10 1. Thus, for A = 1, the mode] returns to the rraditional Gummel-
Poon topology. Consequently, the effective forward and reverse transistor short circuit current gains BF and
BR change from 0 to their final valves BF and BR, as defined by the model parameier values. This results
clearly from the ICC current source expression:

1S VBE VBC
IcC = — e NF Vs *e-""RVrJ’ 9

OB
where QB is the normalized base charge as defined in the Gummel-Poon model. When the transistor is

biased in active mode (VBE>0, VBC<0),
]S VBE

ICC = — e™Vr (10)
Assuming

IC = ICC — f(A) IBCI — h(}\) IBCI — IBCN
and

IB = f(A) IBEI + g(A) IBE] + IBEN + f(AY IBCI + R(X) IBCI + IBCN,

then,
IS VBE VBE VBE
= —— e NFVYs (IS (e MV — 1) + ISE (e MV - 1)].

a=0 QB

ic

IB

8 =

In normal active mode 0B = 1 and hence B < 1. Thus for A =0 such a transistor will have no current
amplification capability and hence it will act as two back-to-back diodes.

3.3 Resistor REPI

To model the quasi-saturation effects in the epitaxial collector region in both NPN and PNP transistors of
the CBIC technology, the modified version of the model proposed by Kull et al. [26] has been utilized. This
model, which accounts for collector resistance modulation due 1o injected mingrity carrier charge from a
forward biased metalurgical junction into the collector, is highly nonlinear. In addition, due to the series
connection to the collector of QV, which consists of a number of current generators, convergence problems
may arise when the transistor is operating in quasi-saturation or high injection modes. For this reason a
continuation parameter should be included to control the nonlinearity of the expression:

VEPI {RCO] [1 , veco - VBCWil

VT VO
REP[ = (11

K1(VBCO) — K1(VBCW) In [M} + {VBCO — VBCW}

where: 1+ K1(VBCW) vT
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RCO = zero-hias active epitaxial collector resistance
= thermal voltage
VBCO = external base-collector voltage
VBCT = internal base-collector vollage
K1(V) = V1 + yexp(VIVT)

2

2 ni
‘Y =
NEFPI
WEPI vsp
VO = ——
Hpept
WEPI = width of epitaxial collector
vsp = carrier saturation velocity
W ,zp; = minority carrier hole mobility

To reduce the nonlinearity of the expression, the exponential terms of type K1(V) modulated by ¥ is
muliplied by a function of the continuation parameter:

v (A1)
yAYy=2re VT, (12)
which dampens the exponential in KI(V)} for small values of A but has no effect when A=1. Thus,
K1V} = \/1 + yhepv 22Uy o vivy - (13)

VT

3.4 Resistors RB and RBP

The two resistors RB and RBP which are associated with transistors QV and QS2 respectively {Fig. 10) are
modulated base resistances and follow a relationship with respect (o junction voltages of the core Gummel-
Poon model as defined in {25]. Although, some form of continuation parameter can be defined for such base
width modulations, since the currents through these resistors are not direct functions of exponentials, we
have not found it necessary in this case.

4. Automatic Differentiation and Sensitivity Computations

We have shown in Section 2 that the use of homotopy methods for the solution of the nonlinear system of
equations (1) requires the computation of the Jaccbian mamix
9H, H
e _ | 9H, 0, (14)
a(x:fi) Bx al.f.
Remember H (x,u) = 0 is a system of nonlinear equations [4, (), A ()] T'=0 and the
individval equations k; (x,uy = 0, i = 1,...,n are of the following formt:

21 (V.u) =0, (15)
jeN, _

where N; is the set of nodes adjacent to node i, / i denote currents of circuit branches ij and V is the n-
vector of node voltages.

t  For simplicity, we ignore the equations corresponding 1o independent voitage sources.
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The currents Z;; belong typically 1 nonlinear semiconductor devices such as transistors, diodes, ¢te. The

aH
a(x ) o
expressions, with respect to the voltages applied to their nodes and with respect o the continuation
parameters [ As discussed above, the continuation parameter |t can be either a physical model parameter,
such as the temperature, or an artificial parameter with no physical meaning such as A described in the
previous section. We already mentioned that according 1o our experience finite difference approximations
to these derivatives are both inefficient and unreliable. Consequently, the use of homotopy based methods
for the solution of nonlinear circuit equations poses an additional burden on the device model routines. In

computation of the Jacobian matrix therefore requires the differentiation of the device currents

addition to the values of device current derivatives with respect to the voltages applied 16 them 5V
required by most traditional circuit simulators, the routines must also calculate derivatives with respect to

. . al e . .
the continuation parameter —. In order to support both natural and artificial parameler continuation,

oy
device model routines must therefore be able 1o compute derivatives with respect to practically any of the
model parameters,

DC operating point computation is not the only application that needs the evaluation of device model
expression derivatives. Once the operating point has been reached, partial derivatives of model EXpressions
with respect to various mode! parameters are also necessary for sensitivity computation.

4.1 DC Sensitivity Computation

Efficient methods to compute DC circuit sensitivities are well known in theory[30]. Consider the original
circuit equations F(x; @} = 0 which contain dependencies on some circuit parameters @ = [a;, ..., a,}’.
Using a continvation method, circuit responses are obtained as the solution of the systerm H{x,a,l1,) = 0,
at the final value of the continuation parameters |t = w,. Obviously the circuit responses x are dependent

on the circuit parameters g, therefore, the sensitivities 3 (assuming they exist) can be obtained by

differentiating the circuit equations with respect to a

d dH dx oH

——H = — —_= =

55 1(x(a).a.m) 3 32 T 34 0 (16)
Assuming that %—f in invertible, the sensitivities g—; are obtained as the soluticn of the resulting linear
systern of equations,

dH dax 0H

—_—— o 2R 1

dx da da 17

Moreover, the Jacobian matrix %{ is already calculated and factored as a result of the preceding operating

point calculation. Therefore it is possible to obtain sensitivities of all circuit responses x with respect 1o the
circuit parameters at a cost of only one additional forward/backward substitution per parameter. This
method is known as the direct method for sensitivity computation,

However, in many applications we are interested in the sensitivity of one or more functions of the circuit

responses f (x} with respect to a large number of parameters. Using Lhe direct method described above we

would have 1o perform a forward/backward substitution for each parameter a; i=1,.,s By using the

adjoint sensitivity computation method[30] all sensitivity values are produced simultaneously as the result

of only one forward/backward substitution. The sensitivities we are interested in are expressed by:
Eziiﬁﬂﬂif (18)
da T ox; da da

where we use d to denote the n-vector V, £, Using (17),
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-1
of L _ri8H| 9H _ xgﬂ (19)
da dx a a
Here x, is the solution of the adjoint system:
T
[a—H-} x, =d. 20)
ox .

The factorization of the iransposed Jacobian can be obuained from the available factorization of the
Jacobian matrix. Therefore the solution of the adjoint system can be obtained at the cost of only one
forward/backward substitution. Subsequently, each sensitivily value can be obtained at a cost of one vector
inner product

of _,r o4
da % da’

Despite the numerous applications of circuit sensitivities and the existence of efficient methods for their
computation, sensitivities are rarely used outside a few embedded applications [31). An IMPOrtant reason

. of . . - . . .
may be the fact that the matrix s required for sensitivity computation. As shown in the previous

section, this matrix results from the derivatives of device currents with respect to the model parameters a.

In sframe the computation of the derivatives of device currents with respect o arbitrary model paramelters
is facilitated through automatic differentiation[32].

4.2 Overview of automatic differentiation fechniques

By computing derivatives of model expressions with respect to various parameters threugh automatic
differentiation, the implementation of arbitrary parameter continuation and sensitivity computation can be
done without adding a considerable burden on the device modeler, In addition, automatic differentiation
permits the specification and computation of sensitivities of any function of circuit responses 10 any set of
parameters in a particularly elegant and efficient way.

Automatic differentiation is a collection of software techniques which allow the computation of the
derivatives of an expression, based on the computer code which implements the evaluation of that
expression.

Assume that, given an n-vector of independent parameters x, we want to evaluate on a computer an
expression f(x), and its gradient V£ (x) = [%(x),....%xn(xn.

1
One could generate a program to compute f(x) and then compute derivatives using the finite difference
method. This procedure however is inexact, potentially numerically dangerous, and often inefficient.

Alternatively, one can differentiate symbolically the expression f(x) with respect o all components

x;,i=1,...,n and code the routines 10 evaluate the expressions f(x) and g;(x) = —ax—f(x), i=1,..,n

Even if a computer algebra system is used to aid in the generation of symbolic derivative expressions, some
hand editng is often needed 10 deal with conditional ("if") statements and to eliminate common sub-
expressions,

In contrast, automatic differentiation techniques allow the computation of the derivative values g, (x) based
on the computer code which evaluates f(x). These techniques are efficient and provide numerical accuracy
at least as good as that available from evaluating the symbolic derivalive expressions {sometimes better),
Moreover, because derivative values are calculated in a mechanical way from the given functional
expressions, there is no danger of getting "out of synch” between a function and its derivative,
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We provide here a brief summary of automatic differentiation techniques. In order (0 explain automatic
differentiation, we assume the following simple model for the evaluation of expression f(x) by a computer.
Lety; i=1,..,mbeall intermediate resulls necessary {or the computation of f{x),

yi=x, i=1,..,n

Yi = &i(YinyesYemy)s F=on+loom k1<, j= 1,000

Ym = f(2)
where ¢; (Yap1},...»Y&a,)) are operations typically supported on a computer on the previeus partial results,
such as addition, multiplication, sine, cosine, exponentiation etc. Assume that we want 10 compute V, f
through automatic differentiation. There are two flavors of avtomatc differentiation techniques: the
Sforward method[33] and the reverse methodi34]. The forward method is as follows:

1. Initialize:
Vyyi=e;, i=1..n
where e; is the i ® standard basis vector.

2. Foreach intermediate result y;, i = 1,...,N we coimpute:

v ): 9% ¢
¥i = ST YY)
j=1 9Yup !
For example:
c=a+b —» Vyie=V,a+ Vb
d=ab — V,d=bV,a+aV.,b
t = sin(a) -  V,i=cos{a) V,a

3. Finelly,V.f = V., y..

Observe that the number of arithmetic operations for the computation of the gradient through forward
automatic differentiation, increases proportionally to the number of parameters in x.

Using the reverse method we can compute the derivatives of f(x) with respect 10 all the components of x at
a maximum cost theoretically limited[34] to at most 5 times the number of operations necessary for the
evaluation of f(x} but significantly smaller in practice. The reverse method, however, requires the
sequence of operations for the evaluation of f{x} to be stored and replayed in reverse order for derivative
computation. The algorithm is as follows:

1. Initialize:
&N =1, dy; =0, i=1, ., m-1
"~ 2. Thenforeach y;, i=m m-1,.,n+1;

for each Yiiio _] = 1, ey
Yi

dyijy = dyigy + s——dy;

| ‘{1 A1 a}’i[j] i
3. When finished dy; i=1,..,n represent the desired partial derivatives
_ 9of

dyL - ax‘_ (-x)
Note the interesting analogy between forward and backward automatic differentiation on one side and the
direct and adjoint sensitivity computation methods on the other side.

4.3 Implementation of automatic differentiation in Sframe

Automatic differentiations fits very well in Sframe’s C++ based environment. Both the forward and the
reverse lechnique can be implemented using the overloading feature of C++. The forward automatic
differentiation method is implemented in the following way. A new class gdouble consisting in a value



-19.

and a gradient vector is defined, the usual operators, +,~,*,.. and the transcendental functions sin,
cos, log, ... are redefined for this class to handle gradient compulations as described in the
example above. All parameiers, intermediale variables, and final resclis of the model code are declared as
gdoubles, therefors, the evaluation of the model will produce the derivalives as well. The forward
automatic differentiation method is more efficient when we are interested in derivatives with respect to a
few number of parameters, and therefore particularly suiiable in incremental simulation with natural
parameter continuation.

The reverse method is implemented in a similar way. A new class node is defined to represent a node in
an expression directed acyctic graph. The operators and the transcendental functions are redefined to insert
the nodes in the expression graph. The evaluation of the model code results in the expression graph of the
model outputs. Following, this graph can be interpreted as above to produce the results for the desired
function and its gradient. This approach permits the efficient computation of derivatives with respect o
multiple parameters simultaneously, and therefore is particularly suitable for sensitivity computation or
continuation studies where many parameters are changed simultaneously.

5. The Architecture of Sframe

The name Sframe stands for "simulation framework”, because the code is really a driver framework (in
C++[35)) for different numerical codes, typically written in FORTRAN., Sframe itself containg very
little numerical code.

For any DC analysis, S£rame considers a function G(x;A,pL), where G is a mapping from R"*? into R".
The n-vector x combines the current and voltage unknowns, A is an artificial parameter used only for
operaling point computation, and  is a nalural continuation parameter. A procedure is provided to
evaluate G given numerical values for these quantities, and return the result as an n-vector. In addition to
evaluation of G itself, the various numerical solvers employed by Sframe need the Jacobian matrix of G at
the point of evaluation. This is an ax(n +2) matrix which is quite sparse. A procedure is provided to
compute this matrix, and deposit it into 2 storage area allocated during circuit setup. The matrix is not
passed into the various selvers, rather the solvers request manipulation of this matrix through calls to the
matrix package.

A procedure solve is provided 10 solve J x = b, where J is the most recently computed Jacobian matrix,
and b is an arbitrary n-vector (of course, J above must be square; typically, a sub-matrix of the rectangular
Jacobian matrix computed by Sframe is selected, which might be augmented with a single row or column
border provided by a non-linear numerical solver.)

After a call o solve, a call to re_solve will solve / x = b for a different value of 5. The matrix
algebra operations like solve are C++ routines which call 8 FORTRAN sparse matrix package. This
arrangement allows for easy experimentation with different sparse solvers,

Three nenlinear solvers are supported in the present version of the program: a norm-reducing Newton code,
HOMPACK and PITCON. The norm-reducing Newton code is used to solve the start system of the artificial
parameter method used 1o get a DC operating point. In fact, for easier circuits, it is possible to start with
A = 1, and get the operating point using the norm-reducing code alone.

The present program uses a direct method for sparse maltrix factorization, which works nicely for medium
sized problems (say, up to 3000 unknowns). In the present implementation, a symbolic factorization is
computed only once at the beginning of a continuation study. A fresh numeric factorization may be
computed at several points in the study depending on the conditioning of the Jacobian matrices
encountered.
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5.1 Example Circuit Description

Here is an annotated description of the Sframe input for a Wilson current source[24]. This example
shows an "application” circuit derived from the base-class Cireuit which defines an operation dcop ()
using facilities provided in the base class.

#include "mcd.h®
#include "dev.h"
class Wilson : public Circuis

{

public:
// declare models, nodes, devices . 99
GpMed npn; Gpd gl , <2 , g3
Node N2 , NI , N1 , N&9; VCC RP RL

Res rp , rl; Vsrc vec;

Wilson(} // constructor 2

¢ Circuit{ "Wilson" ) F’J

, npnlthis, “"npn", 1.0) ?— Q3

. N2(this, 0, "Node-24) th

, N3{this, 0, “Node-3%) 1

, Nl{this, 0, "Node-1")

, N99{this, 0, “Node-93%)

. vec(this, 0, "vec", N899, GND, 1.0

. ql{this, 0, "gl®, N1, W3, GND, GND, ngn)

. Q2(this, 0, "g2", N3, N3, GND, GND, npn) Ql 3

. g3(this, 0, “g3v, N2, N1, N3, GND, npn)
o
0

Q2

N/

. rpithis, 0, "rp", K99, N1, kilo(10.0))
» rl{this, 0, "rl", N99, N2, kilo(5.0})

// assemble circuit in memery
assemble () ; v
}
void decopl)
{

// calculate cperating point

set_lambda{ 0.0 );
dnm_solvel();
hom_track();
resid{};

br

6. Timings and practical results

Our first set of benchmark data concerns operating point computation. Data for five circuits are
presented—all of these examples are actual in-house designs based on the AT&T CBIC bipolar technology.
Note that lambda-threading was used to identify all the operating points of the "vref" and "hybr" examples.
The "#iterations” column reports the number of times a complete Jacobian mawrix was computed and
factored. This is broken down into two pieces—the iteration count for the damped-Newton solve of the
start system, plus the iteration count of the homotopy curve tracking. Times are for a SPARCstation 2
running Sun UNIX. Some adjustment with numerical parameters is necessary for the various FORTRAN
packages which are employed by Sframe. The results reported below were oblained using relatively
“conservative" values which worked for every circuit in the suite.
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Circuit Comment Auansistors  #unknowns  #ilerations #lime{min,sec)
si7 mass storage chip 241 1853 25+375 10m56s
bgatt band gap 12 124 19+64 14 4s
upsOla  thermal shutdown 7 58 T+34 1.7s
vref Brokaw reference g 66 15+141 8.1s
(three solutions)
reg regulator 49 432 274523 2m54s
hybr npn reference 9 14 10+143 I.1s
(three solutions)

Figure 11. Table 1: Timing Results for Operating Point Computation

The next set of timings concemn incremental exploration of the behavior of a circuit as temperature and
supply voltages are varied. The "reg” example from the previcus benchmark suite is a good candidate for
such a study. The circuit has two fixed voliage sources, which were exercised at the nominal setting, then
plus and mirus twenty percent of nomiral, Temperature was varied over the standard commercial range of
0°C 10 70°C. Thus, there are three quantities to be exercised through "nominal(N)", "high(H)" and
"low(L)" for a total of twenty-seven combinations. Each peint in this space was reached from the nominal
operating point using the construction of equation (7). The "arc-length” column reports an estimate of the
lengih of the continuation path connecling the two operating points, which gives some measure of how
“different” the two operating points are. This can be a useful diagnostic, since a large value of arc-length
may indicate that the circuit is not operating correctly at one of the extremes of the design space.
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Temperature  Supply 1 Supply 2 #iterations Arc-length
N N N 3 1.00
N N L 13 1.10
N N H 11 1.10
N L N 102 17.67
N L L 102 17.67
N L H 102 17.67
N H N 24 7.24
N H L 24 7.26
N H H 24 7.26
L N N 167 48.49
L N L 178 51.84
L N H 158 45.20
L L N 295 57.40
L L L 304 60.74
L L H 291 54.07
L H N 181 5192
L H L 174 5523
L H H 162 48.64
H N N 34 3.64
H N L 34 3168
H N H 34 3.68
H L N 87 16.52
H L L 83 16.52
H L H 83 16.52
H H N 36 8.63
H H L 34 8.64
H H H 34 8.64

Figure 12. Table 2: Incremental Exploration of a Desi gn Space

The sensitivity computation capability of sframe is illustrated through an analysis of a CBIC
implementation of the "band gap" reference shown in Fig. 13 [24]. The output reference voliage is required
to be stable under variations in the process and operating conditions. The following table summarizes the
valves of reference voltage absoluie sensitivity with respect 1o temperature T, bandgap resistor R4, a bias
tesistor R3, and the normalized sensitivity with respect to the reverse saturation current IS of the bandgap
transisiors.

dVref/dT -1.06 mV/degk
d Vref/d R3 4.86e-5 mV/Chm
d Vref/d R4 -0.325 mV/Ohm
(Is/Vref)d Vref/dIs -~ -0.214

The sensitivity with respect 1o temperature is large, indicating the need for additional compensation
circuitry. The analysis also reveals that the performance of the circuit is extremely sensitive to the value of
R4, justifying the use of special techniques for its layout. At first glance the sensitivity to the saturation
current is acceptable in view of the known process variations. However, the analysis assumed identical
transistors in the bandgap generator section and did not take device mismaich into consideration.
Sensitivities to saturation curmrent mismaiches among the various transistors can be computed without
repeating the operating point computation, This is done by performing the sensitivity analysis using the
individual saturation currents of the differenily sized bandgap section transistors (BWS, BQ6 1, and
BQ6_2) as independent parameters. The following table shows the results of this analysis:
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i Us/VreDd Viefid & 5(BQS) -1.52
dIs/Vrefid Vrefid A Is(BQ6 1) 0.88
(Is/Vrefd Vref/d A Is(BQ6_2) 0.88

These data indicate that sensitivities 10 device mismatches are one order of magnitude larger than the
sensitivity with respect o the global saturation current. Again, special layout lechniques need to be used 1o
ensure excellent transistor matching,

The CPU time required for the sensitivity analysis is negligible in comparison 10 the operating point
computation. Through the use of automatic differentiation, the computation of sensitivities with respect 10
any circuit or device parameter can be done without additicnal device modeling effort. Specifying
complicated performance measures is also facilitated by automatic differentiation,

3 b ?4:'.
] f‘l;mam XLab

Figure 13. Band gap reference

7. Conclusions

First, we observe that a wide variety of behaviors is evident in analog circuits. Phenomena such as turning
points in solution curves or multiple operating points are not Just academic considerations. Accurate
quantitative results require a detailed model, but the use of such models increases the likelyhood of
convergence difficulties in a2 simulator. The continuation methods we have described solve the
convergence problem with reasenable computing cost, as well as providing a handle on the issue of
multiple solutions.

On the other hand, careful design and implementation of the rumerical methods is necessary to achieve the
desired level of robustness, In particular, derivatives must be smooth and numerically accurate. Almost all
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instances of convergence failure during the development of Sframe were traced to incorect derivative
computation; the adoption of automatic differcntiation completely eliminated such problems.

The interface to device models which we have implemented allows the use of highly optimized code which
circumvents the automatic differentiation mechanism for situations in which the highest possible speed is
necessary—for example, if the simulator is in the inner loop of an optimization process.

Implementation of the project in C++, with C++ as the circuit description languages provided us with
several advantages: we were freed from the task of designing an input language and associated parser;
automatic differentiation and specification of performance measures for sensitivity calculation is facilitated
by the operator overloading feature of C++; finally, the designer has the full power of a modern
programming language available for the description of complex circuits, simulation tasks, and post-
processing of simulation results,
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