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Abstract

This paper describes partial state matching for approximate time-parallel simulation. The no-
tion of degree of freedom in time-parallel simulation is introduced. Two partial state matching
algorithms are proposed to simulate acyclic networks of FCFS G/G/1/K queues in which ar-
riving customers that find the quese full are lost. The algorithms are suitable for SIMD as
well as MIMD architectures. The performance of the algorithms is studied. Experiment re-
sults with M/M/1/K and M/D/1/K queucing networks show that the potential speedup and
simulation accuracy of the algorithms are good. The worst performance of both algorithms
occurs when traffic intensity is one. Arguments are made to explain this phenomenon.

Categories and Subject Descriptions: D.1.3 [Programming Techniques]: Concurrent Pro-
gramming; D.4.1 [Operating Systems]: Process Management—synchronization; F.1.2. [Com-
putation by Abstract Devices]: Modes of Computation—parallelism; 1.6.8. {Simulation
and Modeling]: Type of Simulation-discrete event

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: discrete event simulation, space-parallel, time-paralle},
trajectory

1 Introduction

Computer simulation is a process of computing a sample path, or trajectory, of a target
simulation model, consisting of the time evolution of the state of the model over a pe-
riod of simulation time. The state space and time domain of a simulation model form



a space-time tegion [4]. The state s pace is typically defined as the set of components,
processes (in the process-oriented world view), or state variables comprising a simula-
tion model. For parallel distributed simulations, parallelism can be obtained through
decompesing the state space (space-parallel) or the time domain (time-parallel). In
this paper, the term simulation refers to discrete event simulation.

1.1 Space-Parallel Simulation

Many space-parallel algorithms have been proposed [5]. These algorithms decompose
a simulation model into components based on the model’s state space. Fach compo-
nent is modeled by a logical process. Logical processes communicate with each other
through messages [3, 8]. In this approach, speedup is bounded by the number of
logical processes. For example, in a queueing network model, each queue is usually
modeled by a logical process. When the network consists of fewer queunes than avajl-
able processors, speedup is limited to the number of quenes. In addition, speedup
may be further limited by the overhead involved in coordinating multiple processors
to enforce execution of events in chronological order [5], by structural dependencies
[15], and by time scale differences [1] that exist within some models.

1.2 Time-Parallel Simulation

Time-parallel simulations [1,2,3,4,6, 09,12, 14] exploit parallelism through tempo-
ral decomposition of a simulation model. Some of these simulations combine spatial
and temporal decomposition [1,2,3,4,9, 14]. In this paper, a time-parallel simu-
lation refers to one that obtajns parallelism solely through temporal decomposition.
A time-parallel simulation partitions the trajectory into a number of segments, or
batches, along the time domain. Fach batch is assigned to one processor. Fach pro-
cessor computes the batch assigned to it by simulating the entire system independently
(and possibly asynchronously) for the time interval of the batch. Therefore, multiple
processors can simultaneously simulate the system at different points in simulation
time.

The instial state and the final state of a batch are the initial and final values of
all the state variables, respectively. The simulation proceeds in an iterative manner.
Initially, each batch is assigned a guessed initial state. The batch is computed using
the guessed initial state. After computation of one or more batches has completed, the
guessed initial states may be modified. Then the batches are corrected using a state
correction technique with the updated initial states. The process is repeated until no
changes occur in any initial state, at which point the simulation converges or reaches a,
fized point. We use estimated trajectory and true trajectory to refer to an intermediate
trajectory before convergence and the final trajectory after convergence, respectively.

The efficiency of time-parallel simulations rests on the ability to select the initial
states of each batch to minimize the number of iterations required for convergence



and the availability of eflicient state correction mechanisms. In the worst case, a
time-parallel simulation can take longer to execute than a sequential simulation.

In this paper we study time-parallel simulation using partial state matching with
approximation. This approach sacrifices simulation accuracy in exchange for shorter
convergence time. Two partial state matching algorithms are introduced for simulating
FCFS G/G/1/K queues and FCFS G/D/1/K queues, respectively. In both cases,
arriving customers that find the queue full are lost rather than block. These queues are
of great importance to modeling packet switched communication networks, which drop
packets when switching node buffers are full. The proposed algorithms are suitable
for SIMD as well as MIMD architectures.

The rtest of this paper is organized as follows. In section 2, we review two related
time-parallel simulation algorithms. Section 3 introduces the proposed partial state
matching simulation. Two partial state matching algorithms and experiment results
for acyclic FCFS G/G/1/K networks and G/D/1/K queues with losses are presented
in sections 4 and 5. Conclusions are given in section 6.

2 Related Work in Time-Parallel Simulation

In this section, we review two related time-parallel simulation algorithms: {1) Green-
berg, Lubachevsky, and Mitrani’s (GLM) recurrence algorithm [6] and (2) Lin and
Lazowska’s time-division algorithm {121, The GLM algorithm is discussed with more
detail because it forms the basis of one of our approximation algorithms.

2.1 The GLM Algorithm

The GLM algorithm provides an efficient way to simulate a class of queueing network
models which can be expressed as recurrence relations and transformed into a paralle]
prefix problem. Let D be a domain and ¢ be any associative operator on that domain.
Let N be any positive integer. A prefix problem is to compute each of the products
agoay0...0ay for 1 < &k < N [7,11]. We first review how the GLM algorithm is
applied to a FCFS G/G/1/c0 model.

For a FCFS G/G/1/oo model, let 4; and D; denote the arrival time and the
departure time, respectively, of job i for i=1,2,.. .,N. Let «; denote the interarrival time
between job ¢ and job i + 1, and &; denote the service time of job ¢. If 4;, the arrival
time of the first job, is given, the arrival and departure time sequences 44, A, ..., Ax
and Di, Ds, ..., Dy are the solution of the following recurrence relations [13]:

Ai= A+ o 1<1<N, (1)
) A+ b 1=1,
Di= { mam(D@-,l, Az') +46; 1<i<AN. (2)



It is assumed that job interarrival and service times are continuous random variableg
whose values can be pre-sampled. From equation LAi=Ai+or+... 4+ a;—1. Thus,
solving (Ay, An) is a prefix problem. For the departure time sequence, equation 2 can
be rewritten by a matrix recurrence relation {6] to which a prefix algorithm can be
applied directly. Tn the rest of this paper, a sequence X,, X,q,.. .,XM_(FG)_],X&
will be represented by (Xop).

In a G/G/1/oo model, an event is 2 Job arrival or a departure. An event time
sequence (£;, Eyn) is the result of merging seqience (A1, Ay) and (Dq, ..., Dy) in
time order. Because there are N Jjobs, a total of 2V events will be simulated. The quene
length sequence (Lo, Lan), where Lg is the initial queue length and £;, 1 < i < 2N ,
is the queue length immediately after event i, is obtained by solving the following
recurrence relation:

L= Li1+1 Eventiisan arrival,
"7 1 Lici~1 Eventiisa departure,

Therefore, the computation of the queune length sequence is again a prefix problem.
Assume that the number of processors, denoted P, divides N evenly. To compute
@oaro...og; for 1 <i< Nin parallel, the GLM algorithm performs the following
steps:

1. Partition the sequence (@o, an) into P batches evenly. Then batch [, 1 < [ < P,
will contain (a((f—l)*N/P)+1= a’i*N/P)‘

2. Compute f; = A-1jeNyPy1 0o appyp for all 1 <1 < P

3. Assume there exists an ¢ ¢ D, such that o g, = a, for 1 <i< N. Compute:

8 = L l=1,
- fioollofiny l<i<p

4. Let s; denote the product of %00 a1 0...0a; and ¢ and r be the quotient and

K

the remainder of ~/p> Tespectively. For 1 < i< N , compute:

Bys1 r=0,g <P,
8 = ﬁqofq TIO,Q’:P,
ﬁq+10ag*(fv/p)+1 O...0a;, r # 0,q< P

Using the GLM algorithm to compute the job arrival time sequences, the job
departure time sequence, the queue length sequence, and the event time sequence for
a FCFS G/G/1/00 queue requires O(N/P +logP + logN') [6].



2.2 Lin and Lazowska’s Time-Division Algorithm

Lin and Lazowska’s algorithm partitions the time-domain through state matching. The
state of a system is defined by the values of the system’s state variables. A simulation
is partial regenerative if there exists a subset of the systern state variables such that
the subsystem represented by the subset can repeat its state for an unlimited number
of times as the simulation proceeds indefinitely. Such subset is called a regenerative
substate. Lin and Lazowska’s algorithm partitions the trajectory at the points where
the regenerative substate repeats its state.

For each batch, the simulation initializes the regenerative substate with a pre-
defined matching state and gives the rest of the state variables arbitrary values. The
batch is then computed based on this initial state until the regenerative substate
matches the matching state of the following batch. Later, when the full information
of the initial state is known, the batch is fized up by applying a state correction
mechanism. To exemplify the algorithm, consider computation of a G /G/1 model
whose system state includes the queue length, the remaining service times of the johs
in the queue, and the current simulation time. The regenerative substate contains the
queue length and the remaining service times. Assume that two processors, p; and ps,
are available. Each processor simulates a batch with the initial simulation time and
queune length set to zero (i.e., an idle server). Computation of a batch stops when the
server becomes idle again. If p; finishes first and the final simulation time of jts batch
is ¢, then ¢ is added to the time of each event in the batch computed by ps, and py
can initiate another batch whose correct initial time can be decided when p2 finishes,

3 Partial State Matching Simulation with Approxima-
tion

Io apply the GLM algorithm, recurrence relations solvable as a prefix problem must
be identified. For Lin and Lazowska’s algorithm, a regenerative substate must be
identified such that there exists a state correction mechanism which can fix up the
batches efficiently. In addition, Lin and Lazowska’s algorithm requires the matching
states to occur at least (P-1) times to obtain P batches. Moreover, for balancing
the load among processors, the occurrences of matching states have to be evenly
distributed in the time interval of the simulation. Simulation models are not likely to
fit these conditions. This paper proposes partial state matching with approximation
to extend the class of models to which time-parallel simulation can be applied.
Before discussing the partial state matching simulation, some definitions are re-
quired. Let M denote the number of state variables in a simulation model, which are
denoted v1,v2,...,vy, and let § = el =1,...,M}. Let v},;(1) denote the value
of state variable v at simulation time ¢ after J iterations (for j = 0,1,...), where
0 < ¢ < 7 for some 7 > 0. The system state at time ¢ after iteration j and before
iteration j + 1 is represented by an M-tuple: Si(t) = (v1,5(1), v2,5(), ...var ;(1)). For



discrete event simulations, the simulation models change states only at certain dis-
crete simulation times. Let N be the number of such times, and denote the times as
t1,t2,...,tny. The trajectory of a simulation after j iterations is represented by the
sequence S;{to), S;(t1), ..., 5;(tw).

Let [0,7] be the interval of the simulation. The simulation is partitioned into P
intervals: [bg, by], (b1,b2],. .., {bp_1,bp], where by = 0 and bp = 7. The segment of the
trajectory in the interval (b;_1,8/] for 1 < [ < P, and [b;_1, ;) for [ = 1 is referred
to as batch {. Each batch is assigned to a processor and all batches are computed
asynchronously in parallel. For batch {, 1 <1 < P, §;_1(bj_1) and S;(b;) are called
the initial and the final state, respectively, of the batch at iteration j. That is, the
initial state of a batch is obtained from the final state of the previous batch resulting
from the previous iteration. The simulation is said to have converged on v € § if
v, (07) = v (b)) for all ¥ > jand 0 <[ < P. If the simulation has converged on
all v, € 5 C 5, then the simulation is said to have partially converged on subset S’.
Otherwise §' = 5, and we say the simulation has exactly converged. We call § — 5
the unmatched set of the simulation, where -’ is the set difference operator. The
number of state variables in the unmatched set is called the degree of freedom of the
simulation. Therefore, the degree of freedom defines the number of states that must
converge for the simulation to exactly converge. Note that the degree of freedom of a
simulation may decrease as j increases because more state variables may converge as
the simulation proceeds.

Let jeon be the smallest j such that the simulation exactly converges after j it-
erations. Then 5;(t), 9;(#1),...,9;(tn) is a true trajectory for 7 > joon and is an
estimated trajectory for 0 < j < jeon. At worst, a simulation requires P iterations
to complete because the correct initial state propagates at least one batch for every
iteration.

We propose a partial state matching simulation which artificially fizes some state
variables in the unmatched set with approximate values so that these state variables
can be removed from the unmatched set. As aresult, the simulation which converges on
fewer variables will generally require fewer iterations for convergence. In the following
sections we will discuss two partial state matching algorithms for simulating G/G/1/K
queues and show some experiment results of both algorithms.

4 FCFS G/G/1/K Queueing Networks with Losses

In this section we apply partial state matching to acyclic networks of FCFS G/G/1/K
quetes with losses in which the arriving jobs that find the queue full are lost. In
the model], we assume that job interarrival times and service times are modeled by
independent, identically distributed random variables. Unless mentioned otherwise, in
the rest of this paper a G/G/1/K queue refers to one with a FCFS queueing discipline.

The GLM method described in section 2 can not be applied directly to a G/G/1/K
model with losses. Let (); denote the queue length immediately before job i arrives. If



we define the departure time of a lost job to be 0, then the departure sequence satisfies
the following relation:

[ max(Dr,.  Dig, A) + 6 Q; < K,

Proposed below is an partial state matching algorithm to simulate acyclic queueing
networks of FCFS G/G/1/K queues with losses using multiple processors. It is an
open question whether there exists a linear recurrence equivalent to equation 3 that
is solvable by a parallel prefix algorithm.

4.1 The G/G/1/K Partial State Matching Algorithm

We first consider a model of a single FCFS G/G/1/K queue. For the model, the system
state(s) contains the next arrival time, the queue length, and the remaining service
times (RST) of each job in the queue. The next departure time can be determined
by the RST of the first job in the queue. Except for the first job in the queue, the
RST of each job is equal to the service time of the Jjob. Because the quete has room
for K jobs, there are K RST’s and |51l = K + 2. By equation 1, job arrival times
are constants and thus .57 always contains the next arrival time. Therefore, the initial
degree of freedom of the simulation is the initia) value of |5 — S| which is (K +1). In
this section, we discuss an partial state matching algorithm (PSM-D) which reduces
the initial degree of freedom to one.

The algorithm consists of two phases. The first phase simulates a G/G/1/00 model
using the GLM algorithm and generates an estimated tra Jectory. If the queue length in
the first phase never exceeds K, phase two is skipped because the trajectory generated
by phase one is a true tra Jjectory. Otherwise, the second phase which takes the finite
buffer storage into account,transforms the estimated trajectory into a more accurately
estimated trajectory. The phase-two trajectory is still estimated and not in general
the true trajectory because the transformation process involves approximation of job
departure times. However, sections 4.2 and 4.3 show that the output trajectory of
phase 2 is close to the true trajectory.

For simplicity, we assume that the number of processors divides the number of
events to be simulated evenly. For the G/G/1/K model, there are four types of
events: arrive, arrive-lost, depart, and depart-ignored. Event types arrive and arrive-
lost correspond to job arrivals of non-lost and lost Jobs, respectively. Event type
depart corresponds to those job departures that occur in both the G/G/1/c0 and
the G/G/1/K models, while event type depart-ignored corresponds to departures that
occur in the G/G/1 /oo model but are ignored in the G/G/1/K model. Let I, ; denote
the queue length immediately after event i at iteration J in phase two. The PSM-D
algorithin is shown as follows:



PSM-D Algorithm
Phase 1:

input: {a,n_1) (interarrival time sequence);
{61,n) (service time sequence);
K (the buffer size); N (the number of jobs).

output: {A; n) (job arrival time sequence);
(D1 n) (phase-one job departure time sequence);
{Lo,2v) (phase-one queune length sequence);
{F1,2n} (event time sequence).

begin

1. Apply the GLM algorithm of section 2.1 to compute (A1 x), {D1.n), {Loan),
and (Eq on) of the G/G/1/0c queue.

end.

Phase 2:
input: (Loan); (Fy2n).

output: (M;»n) (event type sequence);
(D1 ,m) (phase-two job departure time sequence);
{Lg,9n) (phase-two queue length sequence).

begin

1. j=0. For each {,1 <1< P, compute steps 2 to 4 in parallel.

9. if j=0, then
N{l— 2N1
br:2_§~_ﬂ.1.2+l; h[:"““_‘.
P
3.

man({ Ly, _ J[( .:0,
Lbz—l :{ zn( bt ) J

Lp_15-1 otherwise.

4. For by <i < by,
. L. = min(Li_lJ + 1,1{) Li=L; 4 +1,
i maa:(Li_l,j - 1, U) Lz = Lg'.._.l — 1.

arrive Lij > Liqy,
M. = depart L,,;Nr; < Li—i,:f:
b arrive — lost Lij =Li1; =K,

depart — ignored  L;; = L;q ; = 0.



5. j = j+ 1. If there exists some | for 1 < [ < P such that Ly, # Ly, j_1 then go to step
3.

6. L;:Li}j for 1 <7 <2N.

7. Create an empty sequence {I'), For 1 < i < 2N, if M;; = depart, append F; to {D');
else If M; ; = depart — ignored, append 0 to (D)

end.

In phase two, step 2 computes batch boundaries at the first iteration. Step 3 assigns
each batch an initial queue length which is obtained from the final queue length of the
preceding batch resulting from the previous iteration except for the first iteration at
which a guessed initial queue length is given. The guessed initial quene length of each
batch is obtained by computing the minimum of the corresponding phase-one queune
length and the buffer size since the queue length can not exceed the buffer size. Step 4
computes the queue length sequence and decides each event’s type. A departure event
is ignored in phase two if the queue is empty when the event occurs. The computation
of the queune length sequence in step 4 assumes that at any simulation time t, when
a departure event occurs in the G/G/1/co queue, a departure event will also occur
in the corresponding G/G/1/K queue at t. Obviously, this assumption is not true
when losses occur. Therefore, the departure times used in phase two to compute
a queue length trajectory are approximate. In the next section, we will show that
this approximation in departure times will not cause significant errors in general, An
important property follows the assumption in step 4:

Property 4.1: Forall 1 <7 <2N and 1 < § < joon, L; > Lis 2 Lijoon-

Property 4.1 states that the queue length as a function of time of any iteration
is a lower bound on the queue length of the previous iterations. Step 5 checks the
convergence of the simulation on queue lengths and advances the simulation to the next
iteration if the simulation is not converged. Step 6 creates a. gueue length sequence.
Step 7 creates a departure time sequence (D] ), in which m < N is the number of
jobs that enter the queue and are not lost. Thus, D! is the (estimated) i, departure
time rather than the (estimated) departure time of job ¢. Given {Mqan), it is easy to
associate elements in (D7 .} with correct job indexes.

Phase two requires time O(jo,n(N/P+1 0g.P)) to execute with P processors because
step 1 to 3 take a constant of time; step 4, 6, and 7 take time O(N/P); step 5 requires
time O(logP). Therefore, the total execution time of this algorithm is O(N/P +
logP + logN) + jeon(N/P + logP)), in which the first term is the time required by
the GLM algorithm in phase one. Experiments which will be discussed in section 4.3
show that j.., is often a small constant, in which case the PSM-D algorithm has the
same complexity as the GLM algorithm.
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Figure 1: At simulation time ¢, both the G /G /1] quene and the G/G/1/K queue
are not empty. No approximation error is introduced in this case,
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Figure 2: At simulation time ¢, both the G/G/1/oo quene and the G/G/1/K queue
are empty. No approximation error is introduced in this case.

4.2 Service Time Transformation of the PSM-D Algorithm

In this section, we discuss the transformation technique used in phase-two of the
PSM-D algorithm to compute the departure time sequence. Recall that the PSM.D
algorithm synchronizes the departure times of the G/G/1/c0 and G/G/1/K models
such that departures of the two models occur at the same times. To explain this algo-
rithm, let job m and job m’ of the G/G/1/00 and the G/G/1/K models, respectively,
depart at some simulation time ¢ and let job m”, where m” > m/ + 1, be the next job
to enter the G/G/1/K queue that is not lost. To compute the next departure time
(i.e. the departure time of job m” denoted D w) in the G/G/1/K model, there are
four cases which are illustrated in Figures 1 to 3.

Case 1: At simulation time ¢, both the G/G/1/oo queue and the
G/G/1/K queue are not empty.

The next departure in the G/G/1 /K model should occur at time (t+ b)) However,
the PSM-D algorithm will assign (¢ + bmt1) to DI, I m” £ m + 1, the algorithm
effectively reassigns the service time of Job m+1 (ie., 6,,11) to job m”. Because job
service times are modeled by identically distributed random variables, for sufficiently
large V such re-association of service times will not change the probability distribution
of service times. Thus, no approximation error is introduced in this case.

10
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Figure 3: At simulation time £, the G/G/1/K queue is empty and the G/G/1/cc queue
is not empty. An approximation error occurs,
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Case 2: At simulation time t, both the G/G/1/cc queue and the
G/G/1/K queue are empty.

At simulation time ¢, the quetes of both models become empty. Based on property
4.1, we know that m” = m 4 1. The algorithm will assign (A1 dm+1) to D, In
this case, Dy is correctly computed. No approximation error is introduced.

Case 3: At simulation time t, the G/G/1/K queue is empty and the
G/G/1/00 queue is not empty.

At simulation time t, jobs Dty Dpn_y,m” > m + 1, which are lost in the
G/G/1/K queue, are in the G/G/1/c0 quene. When job m” arrives, if the G/G/1/oc
queue is not empty and job m + &, for m + 1 Sm+k<m' -1, isin service,
the algorithm will ignore Diisoo oy Doy and assign D, .1 to D! while the
correct departure time of job m” is AY - 6. Thus, an approximation error of
(A7 + b)) (Dppp1 + brmtr) will occur. If the Jjob service times are modeled
by an identically distributed random variable, the expected approximation error is
thus equal to (A4,,+ — Dyyr—1). The algorithm effectively reassigns a service time
(Dm+k - Amn) to JOb m”.

Case 4: At simulation time ¢, the G/G/1/K queue is not empty and
the G//G/1/c0 queue is empty.
From property 4.1, this case is impossible.

Therefore, only case 3 causes approximation errors in the departure time distri-
bution. Thus the frequency with which case 3 occurs governs the accuracy of the
proposed approximation. The next section presents experiments using the PSM-D
algorithm for M/M/1/K and M/D/1/K models.

4.3 Experiment Results and Analysis for G/G/1/K queues

This section reports experiment results with the PSM.D algorithm on an M/M/1/K
and M/D/1/K models. Table 1 shows some results of the experiment. Tn general, it

11



Table 1: Numbers of iterations for an M/M/1/K model using the PSM-D algorithm.
Each data point is an average of 10 runs. Each run simulates 10° jobs which are
divided into 2'° batches. For each table entry a,b, a is the average iteration number
and [a — b,a + b] is the 90-percent confidence interval for «.

K TX/u [ P=4 P=16 P=64 DP=956 P=i01
1202 17,03 2.0,00 2.0,00 2.000

19,02 2000 20,00 2000 20,00

20,00 20,00 20,00 2000 2.0,0.0

20,00 20,00 20,00 2000 20,00

20,00 2000 20,00 2000 2000

5 12000 2000 2000 2000 2.00.0

1.0 12000 2000 2000 2000 20,00

1.05 [ 20,00 2.0,0.0 20,006 2000 20,00

11 12000 20,00 20,00 2000 20,00

13 12000 2000 2000 2000 2000

1 100,00 0000 00,00 00,00 0000

310000 00,00 00,00 00,00 0.00.0

510000 00,00 00,00 0000 0000

711,02 1603 2000 2000 20,00
9

9

WO A3 Tt b0

. 1902 2000 2000 2000 2202
95 | 1902 20,00 20,006 2000 2303
1.0 12000 20,00 2000 2000 2703
£.05 20,00 20,00 2000 2000 26,03
11 12000 2000 2000 2000 2603
1.3 120,00 2000 2000 2000 21,02
U 100,00 00,00 00,00 00,00 00,00
3 10000 0000 0000 0000 0.00.0
510000 0000 0000 00,00 0.00.0
710000 00,00 00,00 0000 0.0,00
9

9

10

. 10,00 1403 2000 2603 7.7,1.1
95 116,03 2000 21,02 47,05 15821
50 |10 | 2000 20,00 2503 6304 20115
1.05 | 2000 20,00 21,02 51,05 18212
L1 2000 2000 2000 41,04 13316
1.3 20,00 2000 20,00 2000 3804
1 100,00 00,00 00,00 00,00 0000
3 10000 0000 0000 0000 0.00.0
5 100,00 0000 0000 0000 0.0,00
7 100,00 0.000 0000 00,00 0.0,0.0
9

9

. 01,02 0102 0204 03,05 10,18
95 | 11,03 1.304 21,05 4816 17.06.1
100 1 L0 | 2.0,00 2202 4906 17317 66.6,6.6
1.05 | 2.000 2.0,0.0 32065 9911 36549
1.1 12000 20,00 2000 4905 16515
13 20,00 20,00 20,00 2000 3804
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Figure 4: The first loss occurs at . An EF occurs at tg and #; and an Eg occurs at
to. Sub-trajectories from fy to ¢; and from ¢; to iy are two propagation segments.

takes only a few iterations to converge. Many iterations are required only when both
the traffic intensity (ratio of the mean arrival rate, denoted A, to the mean service
rate, denoted p) is close to 1 and the buffer size is large. We discuss this phenomenon
next.

Recall that phase two of the PSM-D algorithm is a process of transforming an
initial estimated trajectory into a more accurate trajectory. When no job is lost,
phase-two is unnecessary. Otherwise, the phase-one trajectory after the first loss has
to be modified. This is Jlustrated in Figure 4. Let to be a time at which the G/G/1/K
queue is full and a job is lost. A change in queue length at ¢ has to be made and the
change needs to be propagated along the queue length trajectory. If at some time ¢; the
queue becomes full again, by property 4.1, the queue length at time ¢; will be changed
to K in the first iteration in phase two regardless of the initial queune length of batch ¢
which contains #;. Therefore, no matter how many iterations it takes for a change to
propagate from tg to ty, it is guaranteed that the propagation segment between #; to iz
would start with a correct initial queue length, namely I, at any iteration. Similarly,
at t5, where the G/G/1/00 queues become idle the estimated queue length at any
iteration in phase two will always be zero as well. Thus, the propagation starting
from ¢; will not pass beyond ;. We call time points such as #; and 1, synchronization
points. Formally, ¢ is a synchronization point of a trajectory if for all state variable
vy, in the trajectory, vg ;(t) = vk, (1) for all 1 < j < jeon- A propagation segment is
a trajectory fragment enclosed by two neighboring synchronization points. An event
which leads to a synchronization point is called a synchronization event. Let FEr denote
a (job arrival) event immediately after whose occurrence the G /G/1/K queue becomes
full, and let Eg denote a (job departure) event immediately alter whose occurrence
the G/G/1/o0 queue becomes empty. Then Ef and £ are synchronization events.

The number of iterations required for convergence is bounded by the number of
batches spanned by the longest propagation segment. Therefore:
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where (£, Eg) and (Ep, E%) are any pair of neighboring synchronization events, {p
is the batch length, and d(E,, £y) is the number of events between the occurrence of
FEy and B,.

Therefore, when some logses occur, if the trafiic intensity is low or is very high, Fp
and Fg tend to occur more frequently, respectively, and hence the maximum propa-
gation length is shorter. As a result, the number of iterations required for convergence
becomes small. When the traffic intensity is neither high or low, both synchronization
events occur more sparsely and the longest propagation length increases. Thus, the
number of iterations increases. Once the propagation length becomes longer than the
batch length, adding more processors becomes useless because the number of itera-
tions will grow linearly with the number of processors used. This situation can be seen
when K is 50 and 100, and A/p is close to 1 in Table 1.

In Table 1, the worst M /M /1/K simulation performance always occurs when A /u =
1, regardless of the number of processors and the buffer capacity. Actually, when
A/p = 1, it is least likely that the queue will become empty or full. This can be
derived as follows.

Let p = Afp. If Py is the probability that the M/M/1/cc queue is idle (when an
Eg occurs) then Py is given by:

Po=(1-p) 0<p<l.

If P is the probability that the M/M/1/K queue is full (when an Ep occurs), then
Pr is given by [10]:

K _ K+l K

Pl =p P
Plt-':*————z*,——. p#U
L l“,OK+1 {i:gp%

Because when the M/M/1/co quene is empty, the corresponding M/M/1/K must also
be empty, the joint probability of Eg and Ep occurring Is:

. FB+Prk 0<p<i,
PS(P’K):{P;, p>r;

Assume that P,(1, K)~ Pyp, K),_y. A proof that Pyp, K) has a minimum at p=1
for any K > 1is given in Appendix A.

The results of the PSM-D simulation in average queue length are compared with
a sequential simulation {Table 2). For a fair comparison, both simulations use the
same sequence of random numbers. The approximation errors are very insignificant
except when the buffer size is smaller than 5 for the M/D/1/K model. Because
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Table 2: Normalized approximation errors of the M/M/1/K and the M/D/1/K model
using the PSM-D algorithm. Each table entry is the value of 100+ (E(LY-A(L))/ E(1),
where E(L) and A(L) are the average queue lengths of 10 runs obtained from a
sequential simulation and the partial state matching simulation, respectively.

MpR=1 K=5 K=20 K=60 K=100
1 [-003 00 00 00 00
3 029 007 00 00 00
5 o1l 001 00 00 00
M/M/1/K |7 |-024 006 007 00 0.0
9 |007 08 -035 01 00
10 1020 039 135 095  0.49
L1 | 046 056 -020 050  0.14
1.3 [ 043 038 0.08 026  0.16
1 [088 0.0 00 00 00
3 411 00 00 00 00
5 |94 080 00 00 0.0
M/D/1/K {7 [15.92 094 00 00 0.0
9 |2315 486 017 00 0.0
1.0 [ 2664 80 222 085 036
Il | 2516 497 018 001  0.005
13 12235 173 0.02 001  0.003

15




10 1]
o o

T1O—~0O—110)

Figure 5: Three basic components of feed-forward queteing networks,

the approximation is biesed, whenever case 3 occurs, the approximate service time
is decreased by some amount. If the service time distribution has a small variance,
when case 3 occurs it is likely that the approximate service time is smaller than the
expected service time (i.e. 1/u). When the buffer size is small, case 3 will occur
more frequently and thus the resultant error will be more significant. Therefore, the
algorithm causes more approximation errors when X is small for an M/D/1/K model,
of which the service time distribution has a zero variance. In section 5, we study an
alternative partial state matching algorithm for a G /D/1/K model whose buffer size
is small.

4.4 Feed-Forward Networks of G/G/1/K Queues

The PSM-D algorithm can be applied to simulate acyclic feed-forward, finite buffer
queueing networks. In an acyclic feed-forward queueing network, jobs enter the system
from source queues and depart the system from destination queues. Because the
network contains no cycles, each job visits each queune at most once. There are three
basic components for feed-forward networks: fork, merge, and tandem (Figure 5). All
feed-forward queueing networks are compositions of these three basic structures.

We present results of simulating three networks {a merge, fork, and tandem net-
work) with the PSM-D algorithm. Each of these three models contains 7 homogeneous
M/M/1/K queues (Figure 6). We assume that a job departing from a fork queue has
equal probability of joining any of the queues connected to the server output. Also, the
service times of a job at each server are independent. For any of these three models,
because there are no cycles, the PSM-D algorithm can be applied queue by queue in
an breadth-first order starting from any of the the source queues.

In section 4, it is shown that when no losses occur, the second phase of the PSM-D
algorithm is not required. Recall from Theorem A.1 in Appendix A that the worst
performance in convergence speed occurs when A /it = 1. To study the worst case per-
formance for the models in Figure 6, in our experiments A = i = 100(jobs/timeunit)
for all source queues. For other parameters, we let K = 10 and P = 64.
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Figare 6: Teed-forward queueing models. Each model contains 7 queues.

Each model is executed 10 times. Fach run simulates 10 external arrivals. In the
merge network model, queues 1 to 4 are independent source queunes each of which thus
admits 10°/4 arrivals for each simulation run. Tables 3 to 5 tompare the simulation
results to a sequential simulation. They show that the PSM-D simulations produce
very close results for all three models. Note that, differences in simulation results
are inevitable because the sequential simulation uses an event-driven approach and
different sequences of random variate and hence Job service times and interarrival
times are nsed in the sequencial and the time-parallel simulations.

and merge network models, in which 2 iterations are required for each queue, the
execution time is O7 « (N/P logP + logNy + 2 % (N/P + logP))] = O(33  10%).
A sequential simulation takes O(7 % 10°) to execute. Therefore, an order of 21-fold of
speedup can be achieved. Similarly, for the tandem queue model in which only 4.1
iterations in average are required for 7 quetes, an order of 40-fold of speedup can be
achieved.

4.5 Circuit-Switched Communication Networks

In this section, we illustrate a pratical application of the PSM-D algorithm: a circuit-
switched data communication network which uses time-division multiplexing (TDM)
routing to select one of two paths for arriving messages. The network is shown in
Figure 7. In the model, messages are transmitted from the source node (node 0) to
the destination node (node 7) through two time-multiplexed circuits. The Inessage
buffer of each node except the source has only a finite capacity. A message loss wil]
ocenur if the message that arrives finds the buffer full.

All nodes are assumed to have the same message service rate of 100 messages per
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Table 3: A comparison of the queue lengths for the fork network model in which
K=10 for all queues. Fach data is an average of 10 runs. The processor number for
the PSM-D simulation is 64.

Queue | Lost | Iteration | PSM-D | Sequential
i Y 2.0 5.00 5.01
2 Y 1.1 0.82 0.82
3 Y 1.0 0.82 0.81
4 N 0 0.29 0.29
5 N 4] 0.29 0.29
6 N 0 0.29 0.29
7 N 0 0.29 0.29

Table 4: A comparison of the queue lengths for the merge network model in which
K=10 for all queues. FEach data is an average of 10 runs. The processor number for
the PSM-D simulation is 64.

Queue | Lost | Iteration | PSM-D | Sequential
1 Y 2.0 h.02 5.01
2 Y 2.0 5.01 5.02
3 Y 2.0 4.95 5.04
4 Y 2.0 5.0b 5.00
) Y 2.0 8.79 8.79
4 Y 2.0 8.79 8.78
T Y 20 8.96 8.97

Table 5: A comparison of the queue lengths for the tandem network model in which
K=10 for all queues. Fach data is an average of 10 runs. The processor number for
the PSM-D simulation is 64.

Queue | Lost | Iteration | PSM-D | Sequential
I Y 2.0 4.97 4.99
2 Y 2.0 4.05 4.09
3 Y 2.0 3.59 3.58
4 Y 2.0 3.30 3.30
5 Y 2.0 3.08 3.09
6 Y 2.0 2.93 2.92
7 Y 2.0 2.79 2.77
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Circuit 1

Table 6: A comparison of the results for the TDM network model using the PSM.
S simulation and a sequential event-driven simulation. FEach data is an average of
10 runs. Here, F s L, and v denote fraction lost, length, and throughput of a queue,
respectively. The number of brocessors for the PSM- simulation is 64.

at the servers are dependent. _
' Each time unit is partitioned into 3 equal-length time slots. The access to the
circuits are time-multiplexed such that @ message departing from the source node is
routed to circuit 1 if it arrives at time slot 1, and circuit 2, otherwise
The model is executed 10 times using the PSM-D and a sequential event-driven
approach, respectively, Eacl simulation run admits 108 messages. The results are
shown in Table ¢,
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5 THE G/D/1/K Partial State Matching Algorithm

In section 4.3 we show that for the G/D/1/K model, the PSM-D algorithm produces
more significant approximation errors when K is small. In this section, we discuss
an alternative algorithm for this case. For a FCFS G/D/1/K queue, in which each
job has a fixed service time, the system state contains the queue length, the next job
arrival time, and the first job remaining service time (FRST). The remaining service
times of all other jobs other than the first one in the queue are the same as the fixed
service time. Let N be the number of arrivals and P be the number of processors.
Let 3;, Frst,, and f; denote the initial queue length, the FRST, and the final queue
length of batch I, respectively. A G/D/1/K partial state matching algorithm (PSM-S)
is described by the following steps:

PSM-S Algorithm

input: {o; y_1) (interarrival time sequence);
K (the bauffer size); N (the number of jobs); D (the service time).

output: (D ) (job departure time sequence);
{Lo2n) (queue length sequence).

begin
1. Apply the GLM algorithm of section 2.1 to compute (A; 7).
2. Foreach L1 <[ < P, .

CN(I=1) Nl

b Dhp = —.
! T L My 2

3. Forall ,1 <I < P, g = 0.
4. For each [,1 < 1 < P, compute steps b to 6 in parallel.
5. FRST; = .

6. Compute departure time sequence (D, 5,) and queue length sequence (Lj, ;)
via a sequential simulation.

7. B = fi,forall 1 <1 < P, exit; otherwise 14y = fiforall 1 <1 < P and go
to step 3.

end.

The degree of freedom of the simulation is one because job arrival times can be
pre-computed using the GLM algorithm and the initial FRST’s of all batches are
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Table 7: Numbers of iterations of the M/D/1/K model using the PSM-S algorithm
and the FSM algorithm. Bach data point is an average of 10 runs. Each run simulates
10% jobs, which are divided into 64 batches (i.e. P=64). For each table entry a,b,
is the average iteration number and e —b,a+ b is the 90-percent confidence interval
for a.

[ AMup | K=1 [K=5 K=20 K=60 K=100 |

11200002000 2000 20,00 20,00
31200002000 20,00 2000 2000
5200002000 2000 2000 2000
71200072000 2000 2000 20,00
91200012000 20,00 2000 2000
Lo 120002000 2102 3504 7911
L1 120002000 3000 3000 3000
15 120002000 3000 3000 3000
20 20603000 3000 3000 30,00

11200072600 2000 2000 2.000
3200072000 2000 2000 2000
5 1200002000 2000 2000 2000
1120002000 2000 2000 2000

FSM 1.9 120002000 2000 2000 2000
1.0
1.1

PSM

20,00 2000 2403 6405 16.0,3.1
20,00 120,00 7.0,09 61251 64.0,0.0
15 1200012200  64.0,00 640,00 64.00.0
2.0 192,09 ] 64.00.0 640,00 64.0,0.0 64.0,0.0 |

fixed (i.e. 0). Thus, the initial unmatched set contains only the state variable for the
queue length. Table 7 compares the number of iterations required for convergence of
the proposed G/D/1 /K partial state matching simulation with a full state maiching
(F'SM) simulation. The only difference between the two matching algorithms is that
the full state matching does not use approximate FRST’s and checks on both FRST
and queue length for convergence. That is, for the full state matching simulation,
except the first iteration, the initial FRST of each iteration is obtained from the final
FRST of the preceding batch resulting from the previous iteration and the simulation
completes only if both quene length and FRST converge.

Table 7 shows that full state matching requires many iterations to converge when
AMp > 1and K > 5 and as A/p increases, the number of iterations converges to
64, or the number of processors. In such case, no speed-up can be gained through
using multiple processors. The partial state matching simulation, on the other kand,
requires no more than 3 iterations to converge except when A/y = 1. In fact, the
number will converge to 2 as A /1 increases and a linear speed-up can be obtained. In
the worst case when A /i =1and K = 100, the simulation takes an average of 7.9
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Figure 8: Without approximation, the full state matching simulation converges on
both FRST and queue length. The longest propagation distance is (¢4 — t1). With
approximation on FRST sequence, the partial state matching simulation converges
only on queue length. The longest propagation distance is (tz — t2).

Table 8: The normalized approximation errois for the M/D/1/K model using the
PSM-§ algorithm. Each table entry is the value of 100 (E(L) - A(L))/E(L), where
E(L)and A(L) are the average queue lengths of 10 runs obtained from the fu]] state
matchirg simulation and the partial state matching simulation, respectively.

B Mp | K=1 RK=5 K=20 K=60 K=100 |
P00 002 002 002 002
401001 011 011 011 011
50002 024 026 026 0.96
7
9

004 038 058 058 058
9 1007 053 185 248 948
Lo | 006 0.65 238 488  10.98
13 1008 056 083 054 027
L3 1010 029 006 003 .01
20 1013 043 009 003 g0z |

M/D/1/K

iterations to converge.

The reason that the partial state matching outperforms the full state matching is
lustrated in Figure 8. In the FRST trajectory, a synchronization point oceurs only
when the G/D/1/c0 quene becomes empty. Therefore, as A /p Increases, the possibility
of the queue being empty decreases. When there exists no synchronization point in
the FRST trajectory, linear convergence (i.e. ju, = P) will occur. For the partial
state matching, the longest convergence times occur at A/u = 1. The reason can be
argued similarly as the M/M/1/K simulation discussed in section 4.3. The trade-off of
execution time is simulation accuracy. Table 8 shows that the partial state matching
simulation produces close results. The approximation errors of the PSM-S algorithm
with respect to the FSM algorithm is less than 1% unless Afwis near 1 and K > 20.
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6 Concluding Remarks

Partial state matching simulation artificially fixes some state variables in the un-
matched set by using approximate variable values so that these state variables can be
removed from the unmatched sef. As g result, the simulation needs to converge on
fewer state variables and thus js likely to converge more quickly.

Two partial state matching algorithms, PSM-D and PSM-S, are proposed in this
paper to simulate FCFS G/G/1/K queueing models. The PSM-D algorithm uses
approximate job departure times through service time transformation; the PSM-§
algorithm uses approximate first Jjob remaining service times. Algorithm PSM-D in-
troduces more significant errors when the model has a small buffer and has a small job
service time variance, Algorithm PSM-S is introduced to alleviate this shortcoming of
algorithm PSM-D,

Algorithms PSM-1 and PSM-S both produce small approximation errors in general
cases. The worst performance in tonvergence speed for both algorithms occurs when
Afp = 1. Arguments are made to explain this phenomenon. The PSM-D algorithm
is applied to feed-forward queueing networks. The results suggest that the algorithm
produces small approximation errors and can achieve significant speedup,.

Algorithm PSM-D and PSM-S can be optimized to further reduce the time required
for simulation. In particular, when a prefix of the tra jectory being computed converges,
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Appendix A
Lemma A.1 Yor 0 < p <1, Ps(p, K) is strictly decreasing.

Proof: We show that for 0 <p<l

ap. . KpK‘I—(K'{-l)pK + [A’+1)pK(pK—pK+1)
dp T 1-pf+1 {I_p}(-i-l 2

EpK*I—(Ii—-l-l)pr](l—pI{*' )+(K‘—|—l)px(p}(~—pﬁ}+l)—(1¥pK'DE O
(15412 <0

Because (1 — pK+1)2 2 0, the above inequality holds if the numerator of the expression
is less than zero. This is derived as follows:

[K'plx"—lf_ (ff i l)pK}(% _ pK-i-I) + (E' + 1)’0[{(pr _ p:r(-f-l) - (1 _ pK+1)2 ]

— (ﬁ-p{’?fl _ E—‘QA _ ,ij)(l _pfu:l) ~l~'(pK-f—fkijA‘)(,0K _pI\-J-l) — (1 . QpI\_-i-l +p2K+2)
— _p?1\+2 +p2k +2PA+1 _ ﬁ'pﬁ _pI\ _‘_K'plx—l -1 .

= (1—p)(1+p) + Ep 1= p) = p%(1 - p) - (1 p)(TE, p)

= (L= Po™ (L4 p) + Kpi=1 = pK 5K o o

= (L= )PP — pP) 4 (2K Ky ¢ (fpR—1 _ R < 0.0

Lemma A.2 For p > 1, Py(p, K) is strictly increasing,

Proof: When p > 1, Pi(p, K)= Py. Again, we take the first partial derivative of Py
with respect to p:

aPK B (ﬁ”p]\"—l ﬁ I(p[{) + ([)21{ _ ,OA)
5 = (1= o)’ |

Because (1 — pf+1)2 5 ¢ for p > 1, to prove the lemma it suffices to show that:
(I(pl(—l _ .K,OK) T (pZI( _ p[() >0 p> 1.

Dividing both sides of the above inequality by p**~1 and letting g(p, K') be the resulting
left-hand-side expression, we have:

Q(P,-ﬁ') = (I{ — ffp —_ p+PK+1)-

Because g(1, K} = 0 and 9g/0p= (Kp" — k) + (P~ 1) >0, clearly, g(p, K') > 0 for
all p>1land K > 1. O

Theorem A.1 The minimum of FPy(p, K) occurs at p = 1 for p > 0.

Combining Lemma A.1 and A2 completes the proof of theorem A.1. O
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