DOMINO: A Multifaceted
Conceptual Framework for
Visual Simulation Modeling*

E. Joseph Derrick and Osman Balci

TR 92-43

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
August 17,1992

*Cross-listed as Systems Research Center report SRC-92-007,

ABSTRACT

sent a system as it is naturally perceived; (6) adheres to the principles of the Conical Methodology;
(7) coutains a rich and expressive terminology applicable for any discrete-event simulation problem
domain; (8) differentiates a model component having a representation in the system from the one
that does not have a representation in the system; (9) enables the extraction of sufficient information
from the modeler so that the model specification can be automatically translated into executable
code following the automation-based software paradigm; and (10) enables the creation of a model
specification which lends itself for formal diagnostic testing.

CR Categories and Subject Descriptors: 1.6.7 [Simulation and Modeling]: Simulation Support
Systems-—Environments; 1.6.8 [Simulation and Modeling]: Types of Simulation—Discrete event,
Visual; D2.2 {[Software Engineering]: Tools and Techniques—Computer-aided software
engineering

Additional Key Words and Phrases: Animation, conceptual frameworks for visual simulation
modeling, visual simulation, visual simulation mode] development.

—ii-

TABLE OF CONTENTS

Page

A TRACT ii
b INTRODUCTION oo 1
2. THE DOMINO DESIGN OBJECTIVES oot 2
3. MODEL COMPOSITION AND GENERAL STRUCTURE .o 4
SR SUIUCIC 4

2 DY SUUCE 7

3.3 Movement Among MOdel SUMCIIES.... v 10

4. FEATURES FOR VISUAL SIMULATION MODELING.....ooooocovteoroeeo 11
1 Graphical OHen@ton..o. 11
4.1.1 Layouts, o215, AN CONMCCOLS oo 13

4.1.2 Creation of Layout and Component IDAZES ..ot 13

4.1.3 Class Layout Creation AN LAYOUE DOFIMION. v 14

4.1.4 Requirements for Layout Configurations................. T 20

4.1.5 Top-Down Definition and Hierarchica] Traversal ..o 20

2 OBt OO 21
4.3 Multi-view Specification of Model Component LOgic..........covvrrr 22
4.3.1 Types of N OBIC SPOCHICALON o 22

4.3.2 Implementation VIOWS ot 23

4.3.3 Implications of Compositional BQUIVALENCe ...y 24

2 EVALUATION. oo 24
 CONCLUSIONS oot 30
ACKNOWLEDGEMENTS oo 31
FETERENCES ot 32

i —

L. INTRODUCTION

The fundamental human limitation, the Hrair Limit, indicates that a human being cannot handle
more than 7 + 2 entities simultaneously [Miller 1956]. Consequently, the need for computer-aided
conceptual assistance for modeling and simulating a complex stochastic system containing hundreds
or thousands of simultaneous and random entities is undeniable. Although the Hrair Limit has been
known since 1956, its implications for model development have not been fully recognized.

The commercial simulation programming languages (SPLs) widely available today focus on
providing assistance in the programming process which is only one of the 10 processes of the life
cycle of a simulation study [Balci 1990]. The conceptual frameworks (CFs) underlying these SPLs
(e.g., event scheduling, process interaction, transaction processing) [Balci 1988; Derrick et al. 1989;
Nance 1981a) were developed in the 1960s for simulation programming purposes too. The commer-
cial object-oriented SPLs also support only the Programming process and do not provide the much
needed high-level conceptual guidance for designing a visual simulation model.

Under the current practice, an SPL is chosen and the simulation model is designed under the CF
of that SPL. Regrettably, such an approach does nor recognize model design as a distinct phase.

Thus, the modeler is forced to work under an implementation-level CF during the design phase.

This practice contributes to an cIror-prone model design, unstructured and difficult to understand

later ?hases, resulting in a higher cost of correction, or do never become visible resulting in the type
I error—the error of accepting invalid model resuits [Balci and Sargent 1981].

In the 1990s, simulation programining should not be a major concern for the modeler, i.e., the
executable model should be automatically generated from a mode] specification. The modeler should
specify a simulation mode] using high-level concepts under a CF. The much needed shift in empha-
sis from simulation programming to simulation modeling is long overdue [Nance 1984].

We have conducted a detailed study, a survey, and a comparison of the CFs for simulation
modeling [Balci 1988; Derrick 1988, 1992; Derrick et al. 1989). We have developed a Visual Simu-
lation Support Environment (VSSE) [Derrick 1992; Derrick and Baici 1992a) under the mulii-
faceteD cOnceptual fraMework for vIsual simulatioN mQOdeling (DOMINO). We have also created
a Visual Simulation Model Specification Language (VSMSL) [Derrick 1992; Derrick and Balci
1992b] under the DOMINO. This related work is not described herein In order not to prolong the

orientation, and multi-view model component logic specification features of the DOMINO are all
presented in Section 4. Section 5 contains the evaluation of the DOMINO. Conclusions are given in

Section 6.
2. THE DOMINO DESIGN OBJECTIVES

This section delineates the design objectives of the new CF in no particular order.

Objective 1: Provide both design and implementation guidance to furnish a broad range of support
during the model development life cycle.

Converting a model representation created under one CF (e.g., object oriented) into another
under a different CF (e.g., event scheduling) results in an error-prone model development process.
Therefore, the same CF should support all phases of the model development life cycle so that the

conceptual mapping from one model representation into another is straightforward.

Objective 2: Enable the modeler to work under the object-oriented paradigm.

The object-oriented paradigm with concepts such as encapsulation, classes, inheritence, poly-
morphism, and dynamic binding supports model development, from high-level design specification
to detailed implementation, throughout the entire life cycle. It assists the modeler to achieve the

following software quality characteristics: modularity, information hiding, weak coupling, strong

cohesion, extensibility, maintainability, reusability, and modifiability. e

ObjCCtIV63 W.'Guide the modeler in graphically structuring a visual simulation model at multiple
levels of abstraction.

The modeler should use graphical specification as much as possible since it is a natural and easy
way of describing a system. The graphical model specification should be done: (2) at multiple levels
of abstraction, (b) following a hierarchical and functional decomposition, and () using the stepwise

refinement principle. The graphical model specification prepares the model for visualization.

Objective 4: Enable the extraction of sufficient information from the modeler so that the model
execution can be visualized.

Since the CF is intended for visual simulation, extra information needs to be extracted from the
modeler for visualization. The information should be extracted in an efficient manner with a well

human engineered interface.

Objective 5: Embody a WYSIWYR (What You See Is What You Represent) philosophy and
enable the modeler to represent a system as it is naturally perceived.

The modeler should not be coerced to contort his/her own modeling view. For example, consid-
er a machine repairman problem where a repairman services dozens of randomly failing machines
that are attached to the production floor and are unmovable. In modeling this problem under the

GPSS CF, the repairman would be defined as a facility and the machines would be represented as

2

transactions that would queue up in front of the “SEIZE RMAN” GPSS block where repairman
(RMAN) would be captured whenever available, Although this produces a working and efficient
model, the model representation is not conceptually true to the real system. The machines are made
to dynamically move throughout the model as transactions when, in actuality, they are very attached
to the production floor. Hence, the modeler is coerced to twist what s/he sees in the system and
specify a model that is conceptually very different than the actual system operation. This significant-
ly increases the model complexity and contributes to an error-prone model design, unstructured and
difficult to understand especially for large and complex systems.
Objective 6: Adhere to the principles of the Conical Methodology [Nance 1987].

The Conical Methodology advocates the following principles: abstraction, concurrent docu-
mentation, functional decomposition, hierarchical decomposition, information hiding, iterative
refinement, life-cycle verification, progressive elaboration, separation of concerns, and stepwise

refinement.

Objective 7: Contain a rich and expressive terminology applicable for any discrete-event simula-
tion problem domain.

Applicable only for a particular problem domain (e.g., manufacturing systems, local area
networks, factory planning), commercial software products exist (e.g., Simfactory, Lannet, Comnet,
Network), based on an SPL (e.g., Simscript, ModSim), with a graphical front-end for model spec-
ification. However, such a product employs a different CF which is specially created for the prob-
lem domain the product is applicable. The utility of these products is domain dependent and the
modelers are required to learn a new software product for each problem domain. Therefore, our
objective is to develop a CF that is general-purpose, applicable for any problem domain within the

discrete event simulation discipline.

Objective 8: Differentiate a model component having a representation in the system from the one
that does not have a representation in the system.

A model is defined as “a representation of an object, system, or idea” [Shannon 1975, p. 4].
However, some essential components of a model such as a random number generator, random vari-
ate generators, statistical data collection routines, experimental design routines, visualization
routines, and an event scheduling routine do not possess any representation in the system. Thus, a
contradiction occurs with respect to the definition of a model. The CF should resolve this contra-
diction by employing an appropriate terminology.

Objective 9: Enable the extraction of sufficient information from the modeler so that the model
specification can be automatically translated into executable code following the auto-
mation-based software paradigm [Balci and Nance 19871.

In the 1990s, simulation programming should not be a major concern for the modeler, i.e., the

executable model should be automatically generated from a model specification. The modeler should
specify a simulation model using high-level concepts under a CF. The much needed shift in empha-

sis from simulation programming to simulation modeling is long overdue [Nance 1984].

Objective 10: Enable the creation of a model specification which lends itself for formal diagnostic
testing [Nance and Overstreet 1987].

Errors induced within the model design specification either surface in later phases, resulting in a
higher cost of correction, or do never become visible resulting in the type II error—the error of

accepting invalid model results [Balci and Sargent 1981].
3. MODEL COMPOSITION AND GENERAL STRUCTURE

A DOMINO model of a system is comprised of model components (submodels, static objects,
dynamic objects, subdynamic objects, and base dynamic objects) and the interactions among these
components. In keeping with the WYSIWYR philosophy, model components are “naturally” clas-

sified as real or virtual, and static or dynamic.

A real model component has a direct correspondence to or a representation of a component
in the system being modeled. Real model components are visualized.

A virtual model component does not represent anything in the system being modeled.
Virtual model components are not visualized. Examples: statistics collection component,
random variate generation component, and model startup component.

Static model components are physically at rest (if real) and immovable (whether real or
virtual). Furthermore, these components are permanently within the model, staying within
the model boundaries for the duration of model execution. Submodels and static objects
(Section 3.1) are static model components.

Dynamic model components are movable. The movement can be spatial, temporal, or logi-
cal as explained in Section 3.3, Dynamic objects, subdynamic objects, and base dynamic
objects (Section 3.2) are dynamic model components.

Model components (much like model “building blocks™) are defined, specified, and joined or

related in various configurations to form the model static structure or a model dynamic structure.
Model stafic structure is the architecture of the model constructed by its static components.

Model dynamic structure is the architecture of the model constructed by its dynamic
components.

A model can have only one static structure while it can have many dynamic structures depend-

‘ing on the number of dynamic compenents.
3.1 Static Structure

We carefully distinguish between the model static structure and a simple static structure. As

mentioned above, only one model static structure exists with the model itself as the root. Submodels

and static objects are the primary components of the model static structure. The model can be
decomposed into zero or more submodels each of which containing zero or more static objects. The
decomposed submodels can be further decomposed into other submodels each of which may or may
not contain static objects. Through the hierarchical decomposition of submodels, multiple levels of
abstraction can be achieved. A static object cannot be decomposed since it represents the smallest
element of interest. The model static structure is, therefore, a hierarchy of potentially many simple

static structures.

A simple static structure is a component hierarchy of submodels and static objects having a
submodel as its root. The hierarchy is extended at points where interior submodels are
decomposed.

More formally, modifying the definition of a tree {Knuth 1973]:

- A simple static structure is a finite decomposition set SS of one or more model component
nodes such that: (1) there is one specially designated submodel node which is the root of
the simple static structure; and (2) the remaining component nodes in the decomposition set

(excluding the root) are partitioned into m = 0 disjoint sets SS,....8S , (each of these sets in

turn is a simple static structure) and n 2 0 static object nodes, 50y,....50,. (Figure 1)

The difference between the model static structure and a simple static structure is that the model
is the root in the first case. A submodel is the root of a simple static structure.

The decomposable/non-decomposable characteristic of submodels and static objects gives a hint

to their respective definitions:

A submodel is the root of a simple static structure with children of zero or more submodels
and zero or more static objects.

A static object is the most basic model component of interest in a simple static structure
and, as such, cannot be decomposed.

The choice to represent a system component as a submodel or static object is based primarily on
the expected need for a decomposition point in the model’s static hierarchy. The greatest flexibility
in development is retained by modeling the static syétem components as submodels. However, other
considerations (see Section 4.1) related to visualization/animation requirements could dictate other-
wise. The hierarchical decomposition, such as that associated with submodels, enables a modeler to
break a large modeling problem into smaller, more manageable parts at multiple levels of abstrac-
tion. This enriches the framework and produces important implications for visualization.

The following are examples of real and virtual static model components:

Real submodels: air traffic control tower, combat zone, computing center, database query
facility, electrical circuit, hospital, local area network, maintenance center, Navy base, park-
ing lot, preduction control department, traffic intersection, warehouse, etc.

Submodel

Submodel 1 Statlc Object 1
Submode! m Stanc Object n

Submode! 1 Statlc Object 1
Submodel s Stanc Object t

Figure 1. Simple Static Structure

Virtual submodels: database interface module, event scheduling module, experimental
design module, graphical display module, model start-up module, output module, random
number generator, random variate generator, statistical data collection module, etc.

Real static objects: central processing unit, desk, input/output unit, machine, printer, traffic
light, etc.

Virtual static objects: compound logical condition, data file, data structure, logical record,
memory buffer, etc.

‘The definition and specification of model tomponents assume an object orientation and follows
the object oriented paradigm. However, submodels may be regions or spaces within the model (e.g.,
an operating area at sea for a Naval task force, where each quadrant in the operating arca is a

submodel). In this case, a submodel is an “abstract object” taking Booch's [1986] viewpoint.
3.2 Dynamic Structure

Again, we distinguish between a model dynamic structure and a simple dynamic structure.
Dynamic objects, subdynamic objects, and base dynamic objects are the dynamic model components
which constitute the model's dynamic structure(s). At the root of every model dynamic structure is a
dynamic object. Dynamic objects can be decomposed into zero or more subdynamic objects and
zero or more base dynamic objects. Like submodels, the subdynamic objects can be further decom-
posed into zero or more subdynamic objects and zero or more base dynamic objects. Through hier-
archical decomposition of dynamic objects, multiple levels of abstraction can be achieved for the
model’s dynamic structure as well. Like static objects, a base dynamic object cannot be decomposed
since it represents the smallest element of interest in the dynamic structure. A model dynamic struc-

ture is, therefore, a component hierarchy of possibly many simple dynamic structures.

A simple dynamic structure is a component hierarchy of subdynamic objects and base
dynamic objects having a dynamic object as its root. The hierarchy is extended at points
where interior subdynamic objects are decomposed.

More formally, modifying the definition of a tree [Knuth 1973]:

A simple dynamic structure is a finite decomposition set DS of one or more model compo-
nent nodes such that: (1) there is one specially designated subdynamic object node which is
the root of the simple dynamic structure; and (2) the remaining component nodes in the

decomposition set (excluding the root) are partitioned into ; > () disjoint sets DS,,...,DS;,

(each of these sets in turn is a simple dynamic structure) and J 2 0 base dynamic object
nodes, bdol,...,bdoj. (Figure 2)

The distinguishing characteristic between a model dynamic structure and a simple dynamic
structure is that a dynamic object stands at the root of a model dynamic structure. In contrast, a
simple dynamic structure has a subdynamic object at its root.

The dynamic model components are defined below:

Subdynamic Object

Subdynamlc Object 1 Base Dynamic Object 1
Subdynamic Object i Base Dynamlc Ob}ect i

Subdynam:c Object 1 Basa Dynamrc Object 1
Subdynamlc Object p Base Dynamfc Object q

Figure 2, Simple Dynamic Structure

A dynamic object is the dynamic model component which is the root of a model dynamic
structure and is decomposable.

A subdynamic object is the root of a simple dynamic structure and can be decomposed into
zero or more subdynamic objects and zero or more base dynamic objects.

A base dynamic object is the most basic model component of interest in a simple dynamic
structure and cannot be decomposed.

Dynamic objects (or model dynamic structures) reside in the model, most often temporarily but
possibly permanently. Tf temporarily within the model, they are created during model execution. At
some instant during rhode] execution, they can exit the model boundaries and be subsequently
destroyed. Permanent dynarmic objects exist in the model throughout execution, from simulated time
zero and onward.

Noteworthy relationships exist: (1) between the model static structure and the model dynamic
structures, and (2) between the components of the model static structure (submodels, static objects)
and those of a model dynamic structure (dynamic objects, subdynamic objects, base dynamic
objects). Relative to the model itself, subdynamic objects and base dynamic objects are dynamic
since they are component members of a model dynamic structure. However, to their parent (the root
dynamic object), they are relatively static. In a sense, each model dynamic structure has a structural
kinship to the model static structure. The component hierarchies of a model's static structure and its
dynamic structures are separate and distinct from the class inheritance hierarchies originating from
the object-orientation of the DOMINO (Section 4.2).

The subdynamic object serves the same functions and has the same form in a model dynamic
structure as the submodel in the mode! static structure. Submodels own (as the root) a simple static
structure and are, therefore, decomposition points. Each subdynamic object owns a simple dynamic
structure and is decomposable. Subdynamic objects, like submodels, can represent objects within
the system being modeled or they can represent regions or spaces. Similarly, base dynamic objects
are non-decomposable cousins to their static object counterparts. The decision to represent a system
component as a subdynamic object or a base dynamic object is based primarily on the expected need
for a decomposition point in the model’s dynamic hierarchy. The greatest flexibility in development
is retained by modeling the dynamic System components as subdynamic objects. However, other
considerations (see Section 4.1) related to visualization/animation requirements could dictate other-
wise. The hierarchical decomwposition, such as that associated with dynamic objects, enables a
modeler to break a large dynamic object (e.g.. a Navy aircraft carrier) into smaller, more manageable
parts at multiple levels of abstraction. This enriches the framework and produces important implica-
tions for visualization.

The following are examples of real and virtual dynamic model components:

3.3

Real dynamic objects: aircraft carrier, automobile, bus, bicycle, message, missile, satellite,
travelling repairman, transaction, war ship, etc.

Virtual dynamic objects: a virtual dynamic object having two attributes, one containing the
current time and another holding the arriving unit's name, sent to the statistics collection
virtual submodel for recording the arrival time; a virtual dynamic object sent to an output
module to activate printing; a virtual dynamic object used by the system to create the initial
model components which are present at simulation time zero, etc.

Real subdynamic objects: baggage compartment aboard an airplane, bus seat, car engine,
flight deck of an aircraft carrier, wagon of a cargo train, etc.

Virtual subdynamic objects: submessages of a decomposed message (virtual dynamic
object), which handle statistics collection based on various conditions; each submessage
corresponds to a particular condition which can be further decomposed, perhaps in accor-
dance with a range of values which the activating condition could assume.

Real base dynamic objects: engine of an aircraft, loading crane aboard a ship, nuclear head
of a missile, radio of a car, etc.

Virtual base dynamic objects: submessages of a decomposed (virtual dynamic object)

message, which handle statistics collection based on various conditions; each submessage
corresponds to a particular condition which cannot be further decomposed, etc.

Movement Among Model Structures

Only dynamic model components undergo “movement”” which can be spatial, temporal, or logi-

cal, depending on the situation.

moving into a grocery store; the execution control point of a computer program moving through the

- various modules of the program logic; a transaction moving into a processing center; and a vehicle

Spatial movement implies change of physical or logical location. Both virtual and real
dynamic components can undergo spatial movement. Only real dynamic component spatial
movement may be visualized during animation.

Examples: an aircraft moving into a war zone; a bus driver moving into a bus; a customer

moving through a traffic intersection.

aircraft moving from one combat zone into another; a bus travelling from one city to another; and a

Temporal movement implies movement in time. Both virfual and real dynamic compo-
nents can undergo temporal movement. Only real dynamic component temporal movement
may be visualized during animation.

Examples: an automobile part moving from a warehouse into an assembly line; a bomber

mail message moving from one computer system into another.

simulation time. The spatial movement examples above may or may not advance the simulation

All of the temporal movement examples above are assumed to cause the advancement of the

time depending on the purpose of modeling.

10

Logical movement implies movement in the logical decision path of a dynamic model
component. Both real and virtual dynamic components can undergo logical movements.
Only real dynamic component logical movement may be visualized during animation.

Examples: a car moving into & car-wash facility if the capacity is not full; a customer moving
into service area if one of six servers is idle; and a job moving into processor 1 with a probability of
0.3, into processor 2 with a probability of 0.2, and into processor 3 with a probability of 0.5.

For real dynamic objects, spatial moves are often associated with logical and temporal moves.
Change of location of a dynamic object often occurs based on the satisfaction of a logical compound
condition and causes the advancement of time. For virtual dynamic objects, spatial moves are often
associated with logical moves (e.g., a virtual dynamic object moving into a virtual random variate
generator submodel to retrieve a random variate) and sometimes with temporal moves (e.g., a virtnal
dynamic object, representing a message, consuming time to reach its destination).

Dynamic objects can move spatially, temporally, or logically. Base dynamic and subdynamic
objects can only move spatially as part of a decomposed dynamic object. The terms “movement” or
“move”, although possibly referring to a temporal move, generally indicate a logical or spatial move.

Dynamic objects move throughout the model's static and dynamic structures. They can move
among the submodels and static objects of the model static structure. Movement up and down the
model static hierarchy is via decomposed submodels. Within a submodel, a dynamic object can
utilize the resource of a static object. Besides moving among submodels and static objects in the
static structure, dynamic objects can also move into decomposed dynamic objects (model dynamic
structure) and among its member subdynamic objects and base dynamic objects. Movement up and
down the model dynamic structure is via the decomposed subdynamic objects. Thus, dynamic
object decomposition not only provides a means of managing model complexity, but it also simpli-
fies the modeling of such things as a bus carrying passengers or an aircraft carrier which carries
planes. This is in faithful keeping of the WYSIWYR philosophy.

A summary of the mode} composition and general structure terminology is presented in Table 1.
4. FEATURES FOR VISUAL SIMULATION MODELING

The graphical orientation, object orientation, and multi-view model component logic specifica-

tion features of the DOMINO are described in this section.
4.1 Graphical Orientation

In this section, we cover the términology of the DOMINO as it relates to the graphical definition
and specification. The creation of images for model components and model layouts is presented.

The importance of the class layout concept is given. The various configurations of layouts are

11

Table 1. Model Composition and General Structure Terminology

e

- Term Definition T

Real Model Component Has a direct correspondence (0 or a representation of a component in the
system being modeled. Visualized.

Virtual Model Component Does not represent anything in the sysiem being modeled. Not visualized.

Static Model Component Model component which is not movable. Permanent.

Dynamic Model Component Model component which is movable. Temporary or permanent.

Model Static Structare Architecture of the model constructed by its static components, Only one
model static structure exists with the model itself as the root.

Model Dynamic Structure Architecture of the model constructed by its dynamic components.

Simple Static Structure A component hierarchy of submodels and static objects having a submodel

as its root in which the hierarchy is extended at points where interior
submodels are decomposed.

Submodel The root of a simple static structure with children of zero or moge
submodels and zero or more static objects. Decomposable.
Static Object The most basic model component of interest in a simple static steucture.
Not decomposable.
. e]
Simple Dynamic Structm'e' A component hierarchy of subdynamic objects and base dynamic objects

having a dynamic object as its root in which the hierarchy is extended at
points where interior subdynamic objects are decomposed.

Dynamic Object Basis (root) of a model dynamic structure. Decomposable.

Subdynamic Object The root of a simple dynamic siracture with children of zero or more
subdynamic objects and zero Of more base dynamic objects.
Decomposable.

Base Dynamic Object The most basic model component of interest in a simple dynamic structure.
Not decomposable.

N

r Spatial Movement Tmplies change of physical or logical location. Both virtual and real
dynamic components can undergo spatial movement. Only real dynamic

component spatial movement may e visnalized during animation.

“Temporal Movement Implies movement in time. Both virtual and real dynamic components can
undergo temporal movement. Only real dynamic component temporal
movement may be visualized during animation.

Logical Movement Implies movement in the logical decision path of a dynamic model
component. Both real and virtual dynamic components can undergo logical
movements. Only real dynamic component logical movement may be
visualized during animation.

12

e i

discussed. Finally, the top-down definition of model component hierarchies and real object instantia-

tion throughout the hierarchy is explained.
4.1.1 Layouts, Paths, and Connectors

The model decomposition points at each level require the existence 'and association of a back-
ground image over which the dynamic objects travel. These backgro_ui{d images are called layouts.

- As described earlier, the root of the model static structure is the model itself; therefore, a single
top level layout must be in place for the model. The root of any model dynamic structure is a
dynamic object; if decomposed, the dynamic object must also have a single top level layout in asso-
ciation. The decomposition points down either of these hierarchies (i.e., at decomposed submodels
in the model static structure or at decomposed subdynamic objects in a model dynamic structure)
must also “own” and have an associated layout. The layout is required only when the components
(submodels or subdynamic objects) are decomposed. If not decomposed, then the layout in which
the submodel or subdynamic object resides suffices for dynamic object movement at that level.

Dynarnic object movement between or among model components is specified for each layout by
the creation of roadways or paths. These paths connect the model components that cxiSt within each
layout. These components, before setting up paths, must first be created and instantiated as later
described.

Connectors are also created within the layouts to facilitate the qufé.mcnt of dynamic objects
into the layout (as the dynamic objects descend into the hierarchy, _i.e:"",:ﬂ'entry connectors) and out of
the layout (as the dynamic objects ascend up the hierarchy, i.e., exit connectors). Top level layouts

(for the model and decomposed dynarmic objects) do not have connectors.
4.12 Creation of Layout and Component Images

Before objects are instantiated on the layouts and before paths or connectors are created, thé
layout images must be drawn or created as shown in Figure 3. Once drawn, these images (full
screen) are associated with the model’s top level object (root of the model static structure), a dynam-
ic (most likely decomposed) object (root of a model dynamic structure), or other decomposable
component objects (submodels, subdynamic objects). The layout images can be constructed by
using digitized video or photo images, scanned images, paintings, and 2 or 3 dimensional drawings
in color or black and white. The model object is allowed only one top level layout (Figure 3).
However, other layout images can be members of a set of images, associated with a decomposable
component class. At this point the layout images have no meaning to the model other than as simple

(raster) images. No identifiable model components exist within them.

13

{Tap Lever)

bethaada

Figure 3, Top Level Layout Image

Components are connected with paths indicating the pathways for dynamic object movement,
Entry and exit connectors are indicated as well. Dynamic objects move directly into decomposable
components (submodels, subdynamic objects); therefore, a path may lead into or out of any of these.
However, static objects and base dynamic objects are not decomposable and do not have incoming
or outgoing paths.

Interaction points, interactors, are created which permit dynamic object interaction with static
and base dynamic objects. Thus, dynamic objects move into decomposable components (submodels,
subdynamic objects), but to the interactors associated with non-decomposable components (static
objects, base dynamic objects). The use of submodels and subdynamic objects promotes design
flexibility. That is, the model static structure or dynamic structure can be extended through these
component types if further decompesition becomes warranted in the course of the design. During
animation, dynamic objects move into these decomposable components but to the non-decomposable
ones. Hence, the visualization of an interaction (e.g., customer dynamic object and server static
object, bus passenger dynamic object and bus driver base dynamic object) is more meaningful with a
movement to (the interaction point of the non-decomposable component) than movement into.

The spatial description of a layout's image which is derived from the aforementioned process
(designating model component, connector, and interactor locations, as well as paths for dynamic
object movement) is called a layout definition. Each layout image must have a layout definition.
Figure 4 is the completed class layout definition of the top level for the Branch Operations Model
shown in Figure 3. Note that the submodels are bounded by rectangles and are connected by paths.
Any portion of the layout image can be defined as a submodel. Five submodels are identified in
Figure 4, i.e., the model is decomposed into five submodels at the top level. Bach of these submod-
els has a layout definition as shown in Figures 5-10. The Lexington submodel (Figure 10) is farther
decomposed into another submodel shown in Figure 11.

All definitions of a class layout image set must be compositionally equivalent. That is, there
must be an equal number of each component type, connectors, and interaction points (if applicable).
And there must be a one-to-one correspondence between the variable names among the layout defi-
nitions of a class set. These conditions being satisfied, the spatial configuration of the components,
paths, etc. may be different among definitions. Using the power of the OOP, compositional equiv-
alence among layout definitions of a class set enables several class layouts and definitions to be
created for a single class. For example, Figures 5 through 8 depict the set of class layouts and defini-
tions for the submodel class branch for the Branch Operations Model. Each of the four is composi-
tionally equivalent to the others. The important implications of compositional equivalence among

class layouts is given in Section 4.3.

15

16

BRANCH OPERATIONS MODEL
(Top Levef)

i

branchd

Figure 4. Top Level Layout Definition

arsact TNETAUCE = b anc] LA

A = 2
SCREEN OPERATIONS

T0_INAGE EDITOR

ans' :
Branch Office Ope

Figure 5. Layout Definition of Branch One

HMULEL ELITUR a MODEL =

Aranact

Branch 0ffice Two

lanSvr =

HUOFRING MULDEL = tranzact

[RETURN)

Branch Office Three

3

Figure 7. Layout Definition of Branch Three

17

Branch Office Four

s

Figure 8. Layout Definition of Branch Four

RULEL ELITGR

FURKILG MGty = HITAUE =7 e i
—--m (_EREEN TPERATIONS) (TTO WWAGE EDI7ER) (_AerlpW.)
e B - TR N SR
IE]

EXIT.

datadisk

hostQueus

Bethesda Central Computing Facility

Figure 9. Layout Definition of Bethesda Central Computing Facility

Im
B

lex

Lexington Computing Facility

INLELF =

ENTRY EXT

TexDatabisk

1ox Host

HostQuoue
R

Lexington Compiex Computer Room

Figure 11. Layout Definition of Lexington Computer Room

19

4.1.4 Requirements for Layout Configurations

Considerable flexibility is provided for establishing the component configurations of class
layouts. However, certain restrictions do apply to the association of components with connectors
(entry and exit) and interaction points. The following five rules govern the restrictions of linkages in
the layout configurations which are made using paths between the components:

@® A submodel or a subdynamic object can have only one entry point and only one exit point.

@ Submodels and interaction points can share the entry or exit points of other model components
(e.g., two submodels can have the same entry point in a layout; two interaction points can have
the same exit point in a layout; a submodel and an interaction point can have the same entry or
exit point in a layout.)

@ A static object or a base dynamic object can have only one interaction point.

®

A static object or a base dynamic object can have entry and exit points via its interaction point.
® In a single direction of movement, only one linkage can exist between two components (e.g.,
only one path must exist to move from submodel A to submodel B).

4.1.5 Top-Down Definition and Hierarchical Traversal

Once the class layouts and their definitions have been created with a general instantiation, a
further specific instantiation of components can be performed. This is done in a top-down manner.
Each class layout is used to create an instance layout. We start with the model top level class layout
and its definition to instantiatc the model static structure. Similarly, to instantiate a model dynamic
structure of more than one level, we begin with the class layout and definition associated with a
decomposed dynamic object.

The instantiation process converts the variable names of class layout components to their literal
names which uniquely identify them from among all other components in the model. For each
component in the class layout (and definition), beginning from the top level, three actions for instan-
tiation are possible: create, decompose, and descend. The create action is available for all modeler-
defined components. The decompose and descend actions are available only for submodels and
subdynamic objects. A class layout component must first be created and instantiated before any
decomposition or descending of the hierarchy can occur.

Create performs the object instantiation of a class layout component; the modeler uses create to
assign the unique literal name to the component. Note that this instantiation is not required for
connectors and interactors. Once created, a submodel or subdynamic object can now be decomposed
(if desired). The decompose action allows the modeler to associate a new class layout image and
definition with the submodel or subdynamic object component decomposition. The instantiation

process can be continued in the newly chosen class layout. During instantiation, the modeler can

20

choose to ascend the hierarchy, a level at a time, or jump to the root layout if deep into the hierarchy.
Similarly, once a decomposable component has been created and decomposed in a particular level of
the hierarchy, the descend action becomes available.

The modeler can now graphically traverse down the hierarchy during the instantiation and defi-
nition of model components or upward as deemed necessary. The modeler essentially “stacks™ the
instantiated class layouts during the traversal, effectively building the model static structure or a
dynamic structure. Top-down definition is enforced but the modeler has extreme flexibility in his
decomposition choices. Complete definition at each level (before proceeding deeper decomposition)
is not mandated. The same hierarchical traversal facility is available under the VSSE during model

execution and animation [Derrick and Balci 1992a].
4.2 Object Orientation

The benefits of the Object-Oriented Paradigm (OOP) for model design and implementation have
been long recognized [Nance 1981b, 1987; Ulgen and Thomasma 1986]. The attendant benefits of
the OOP which promote good model design are available when building models under the DOMINO
(modularity, information hiding, weak coupling, strong cohesion, abstraction, extensibility, and reus-
ability). In concert with these benefits, perhaps the most significant advantage is that it provides a
vehicle for a direct and natural correspondence between the system (reality) and the model [Booch
- 1986]. The following QOP facilities are currently available under the DOMINO via the VSSE
Mode! Generator software tool [Derrick and Balci 1992a]: class and object creation; the use of meth-
ods; message passing among object instances; a full, single inheritance mechanism; name conflict
resolution for methods and attributes in the class hierarchy; and a limited capability for dynamic
binding of references to an object and its attributes. Multiple inheritance and polymorphic refer-
encing among objects will be implemented in the future.

Under the DOMINO, modelers specify class information (for real and virtual objects) such as
attributes (name, type, initial values) for model objects of the class. They also specify class inher-
itance hierarchies (class-subclass data). Model component logic specifications in the form of class
methods, supervisory logic, self logic, and hybrid logic (See Section 4.3) are developed using the
VSMSL specification language [Derrick and Balci 1992b]. Modelers associate a set of images to the
class. That is, object instances of the class can assume a single image at a time from the set. The
image can be shifted during run-time.

If class objects are decomposable in the model hierarchy, a layout image set is also associated
with the class. Component object and layout image sets are created and linked to their appropriate

classes. Using sets of images for the components and their layouts holds important implications.

21

Objects of the same class can take on different images from the identified class set of images. This
is helpful, for example, in the case of a traffic intersection light which can be red, green, or yellow
during its life. A set of images for the light accomplishes this. Also consider a server object which
is sometimes busy, sometimes idle. Thus, a set of images for the server object's class can be created
which contains two images: ong¢ representing the busy state, and the other the idle state.

Generally speaking, anytime an object needs additional attributes or needs a different behavior
via a new logic specification, a new class for the object must be created. Yet, because of the use of
sets of images for a class, model object instances do not need to be created from different classes in
order to look differently. However, should it be necessary to create a new class for an object, the
new class can inherit and use the image set of a parent class.

Object instances in the model, which are present at the initiation of model execution, are created
and identified. These instances are instantiated by a modeler during a graphical traversal of the
model static and dynamic hierarchies as described in the next section. Object instances which are
generated during model execution are accommodated by the run-time creation facilities of the spec-
ification language. Graphical instantiation is required only for real objects. Virtual objects are creat-

ed and instantiated by textual input rather than graphical manipulations.
4.3 Multi-view Specification of Model Component Logic

The DOMINO provides three different types of logic specification: supervisory logic, self logic,
and hybrid logic. In addition to object-oriented model design, these specifications provide multiple
views or modeler perspectives and the rules for model component interaction and model dynamics.
Each type of specification can be created using the VSMSL within the VSSE Model Generator. The
details of the VSMSL is presented elsewhere [Derrick and Balci 1992b]. This section gives an over-

view of the model component logic specification.
| 4.3.1 Types of Logic Specification

Models built exclusively with supervisory logic are machine-oriented [Tocher 1965; Kreutzer
1986]. The supervisors (machines) are the principal influences for model execution. The dynamic
objects (material, transactions) are manipulated and moved from component to component. Logic
attached to the class of the supervising component is called supervisory logic. Supervisors can be
any of the component types: submodels, static objects, subdynamic objects, base dynamic objects,
or dynamic objects (decomposed only). The dynamic objects, as they are passed aleng from compo-
nent to component, execute the various supervisory logics. The logic specification is composed as
directions to each dynamic object that moves into or to the supervising component.

Self logic is the logic attached to a dynamic object (material, transaction). The dynamic object

22

now executes its own logic and determines its own destiny. Models built entirely around self-logic
are called material-oriented models [Tocher 1965; Kreutzer 1986], In this case, the supervisors
(machines) are now passive, and they are acquired, held, and released by the dynamic objects. The
- self logic reads as a “process.” Self logic is available only to dynamic objects. Any existing super-
visory logic which is tied to component class is either bypassed (turned off) or is completely miss-
ing. The ability to turn on and turn off the logic suggests some interesting possibilities which have
been investigated in part and are later described relative to the hybrid view. The self logic of the
executing dynamic object remains its sole source of execution direction. The dynamic object directs
itself from one component to another; the logic specification is a set of directions to itself.

Hybrid logic is the logic that combines both supervisory and self logic.

4.3.2 Implementation Views

Various combinations of the logic specification types are described below using several versions
of a Bus Route model.

All Supervisory Logic: The logic is spread among the supervising components and is executed
by the various moving dynamic objects. Example: In the Bus Route model, there are person and city
bus (decomposed) dynamic objects which execute supervisory logic of a bus terminal, bus stop, and
house submodels. Once on the bus, the person dynamic object executes the supervisory logic of the
bué driver base dynamic object and the seat subdynamic objects.

All Self Logic (except for the virtual initializing logic): All dynamic objects take on self logic.
No supervisory logic of the static components is utilized. Although supervisory logic may be present
(that is, specified), it is turned off. Example: In the Bus Route model, the person and city bus
dynamic objects execute their own self logic. The self logic code, in this case, gets to be quite volu-
minous since queueing and servicing logic must be included in the self logic. The logic is complicat-
ed and hard to follow.

Hybrid Logic. There are two types of hybrid logic. First, there may be all self logic except that
the executing move statements within the existing self logic allow some supervisory logic to be
executed. This removes the complexity mentioned just above. The self logic now reads more like a
process, and the queueing and servicing logic can be encapsulated in the supervisory logic of the
queue and service components. Example 1: In the Bus Route model, the city bus executes only its
self logic, however, person dynamic objects execute self logic and the supervisory logic of the bus
driver and the seats.

In the second type, which is much more the hybrid, all temporary dynamic objects execute the

supervisory logic of their visited components, but any decomposed dynamic object executes its own

23

self logic. Example 2: In the Bus Route model, the city bus executes its self logic, while the person
dynamic objects execute supervisory logic as in the earlier “all supervisory logic” versions. Model
components can retain their self and supervisory logic and the model can be compiled and run under
any of the above hybrid versions. The version is determined by the setting of a boolean variable

which will turn on or off the various self and supervisory logics into the desired combination.

4.3.3 Implications of Compositional Equivalence

Figures 5 through 8 show a set for the submodel class branch for which compositional equiv-
alence is implied. Using the variable names for the branch layout components (which are the same
among all layout definitions of the set) within the specification language, a single supervisory logic
specification is all that is necessary for the class branch to direct dynamic object movement (the vari-
able names of components are used, not the literal names). Visually during animation, the move-
ments will be different among the four branches due to the different images and definitions. But
since compositional equivalence holds among them, there is no need to produce multiple specifica-
tions for supervisory logic. Due to the ability to use a single supervisory logic specification with
variable component referencing in tandem with muliiple layout configurations, the specification
effort is considerably shortened and the coding requirements are substantially reduced.

A summary of graphical and model component logic specification terminology is presented in
Table 2.

5. EVALUATION

The DOMINO’s evolutionary development has spanned between 1984 and 1992. Using the
rapid prototyping approach, many DOMINO prototypes have been developed, implemented, experi-
mented with, and documented. Some prototypes have been discarded; however, the experience and
knowledge gained through experimentation with those prototypes have been kept.

An experimental testbed was required for the prototyping and evaluation of the DOMINO.
Therefore, the DOMINO and some of the VSSE software tools (Model Generator, Model Translator,
and Visual Simulator) have been developed jointly for eight years. The proposed concepts, ideas,
and approaches for the DOMINO have been implemented within the Model Generator. Accord-
ingly, the Model Translator and Visual Simulator tools have been modified. Then, using the three
VSSE tools, the DOMINO’s proposed concepts have been experimented with for a variety of model-
ing problems. Based on the experience gained, the proposed concepts have been revised and experi-
mented with again. This iterative process has continued until all design objectives of Section 2 are
satisfied.

The DOMINO, reported in this paper, has been applied to the modeling and visual simulation of

24

Table 2. Graphical and Model Component Logic Specification Terminology

Term Definition
Layouts Background images associated with the decomposition points of each level
of the model static structure or any model dynamic structure.
Paths Roadways for dynamic object movement between model components.
Connectors Entry and exit points which facilitate the movement of dynamic objects

between layouts.

Interactors Inieraction points for dynamic objects with non-decomposable components
(static objects and base dynamic objects).

Layout Definitions Spatial descriptions of class layouts which include applicable component,
connector, interactor, and path locations superimposed on the layout image.
Definition lines are not visible during animation.

Compositional Equivalence Exists between a set of layout definitions which have: (1) an egual number
(by type) of components, connectors, and interactors; and {2} a one-to-one
correspondence between the variable names among the definitions of the
set.

Supervisory Logic Logic attached to the ciass of the supervising component. The supervisors
are the primary influences for model execution, manipulating and moving
dynamic objects from component to component,

Self Logic Logic attached to a dynamic object class. The dynamic object executes its
own logic and determines its own destiny when its self logic is activated.

Hybrid Logic Logic that combines both supervisory and self logic specification,

an order processing system of a large computer vendor, a complex traffic intersection in Blacksburg
(Virginia), a Navy combat system, a bus transportation system, and many others, Based on these
applications, the DOMINO has been evaluated with respect to the ten design objectives of Section 2
and has been found to effectively satisfy its design objectives. The evaluation is given below for

each design objective.

Objective 1: Provide both design and implementation guidance to furnish a broad range of support
during the model development life cycle.

A DOMINO model: (a) is structured graphically; (b) is defined and specified under the OOP in
terms of submaodels, static objects, dynamic objects, subdynamic objects, and base dynamic objects;
and (¢) component logic is specitied using the VSMSL. (Note that the VSMSL is used only for
model component logic specification; not for the whole model.) These concepts are applicable
throughout the entire visual simulation model development life cycle, from requirements specifica—

tion to low level implementation. However, the modeler is not concerned with the implementation

25

details since the graphical, OOP, and VSMSL model specification is automatically translated into a
low level, ready-to-run implementation using the VSSE Model Translator tool.

Under the DOMINO, the conceptual mapping from one model representation into another is
straightforward. A model component (submodel, static object, dynamic object, subdynamic object,
and base dynamic object) representing a system component can easily be traced through all model
representations: depicted graphically, specified as a class with methods and attributes under the
OOP, and implemented as a data structure in C programming language.

The ease of mapping from one representation form to another has enabled us to map model
execution errors all the way back to the graphical specification. Thus, when an execution error
occurs during the simulation run, the modeler is notified about the locations of the errors in the
model specification. The modeler maintains the specification and never deals with the imple-

mentation as enunciated by the automation-based software paradigm [Balci and Nance 1987].

Objective 2: Enable the modeler to work under the object-oriented paradigm.

As presented in Section 4.2, the DOMINO provides full OOP support for the model design and
enables the modeler to achieve the following software quality characteristics: modularity, informa-
tion hiding, weak coupling, strong cohesion, extensibility, maintainability, reusability, and modifi-
ability.

Objective 3: Guide the modeler in graphically structuring a visual simulation model at multiple
levels of abstraction,

The DOMINO’s graphical model construction concepts, as described in Section 4.1, are imple-
mented by the VSSE Model Generator [Derrick and Balci 1992a]. Using the Image Editor of the
Model Generator, the modeler creates a graphical representation of the model at the highest level of
abstraction. This representation is then broken down into submodels at the nexf level of abstraction
using a hierarchical and functional decomposition. Using the stepwise refinement principle, the
modeler creates a graphical representation of each submodel and each submodel can further be
decomposed into other submodels at the next level of abstraction. This decomposition continues
until the desired level of abstraction is achieved. The dynamic model structure is similarly construct-

ed. The dynamic objects are graphically represented.

Objective 4: Enable the extraction of sufficient information from the modeler so that the model
execution can be visualized.

The Image and Model Editors, the OOP specification, and the VSMSL of the VSSE Model
Generator software tool employ the DOMINO concepts to enable the extraction of sufficient infor-
mation needed for visualization from the modeler in an efficient manner with a well desi gned human

interface [Derrick and Balci 1992a].

26

Objective 5: Embody a WYSIWYR (What You See Is What You Represent) philosophy and
enable the modeler to represent a system as it is naturally perceived.

The DOMINO advocates building the model static and dynamic architectures graphically in a
“what you see is what you represent” manner. The modeler can create images of model static and
dynamic components as digitized video or photo images, scanned images, paintings, and 2 or 3
dimensional drawings in color or black and white. Therefore, the model can be built to pictorially
correspond to the system at multiple levels of abstraction.

Objective 6: Adhere to the principles of the Conical Methodology [Nance 1987].

The DOMINO fully supports the principles of the Conical Methodolo gy (CM):

Abstraction: The DOMINO, through its graphical model construction capabilities and by
employing the OOP concepts, enables the modeler to achieve multiple levels of abstraction.

Concurrent documentation: The DOMINO advocates the CM principle that the documentation
and specification are inseparable. The modelers are prompted for insertion of documentation infor-
mation while the modeler is involved in the specification task. The various text subwindows in the
VSSE interface are convenient for including textual documentation, Using the underlying INGRES
relational database, the Query facility of the Model Generator creates documentation from the spec-
ification information that is stored in the database. Reports generated are informative about many
aspects of the specification. The Model Analyzer includes capabilities for analyzing the complete-
ness of class and attribute documentation which strengthens the tie of documentation to specifica-
tion. These diagnostic checks can be done during specification.

Functional decomposition: The DOMINO advocates the model decomposition into submaodels,
static objects, dynamic objects, subdynamic objects, and base dynamic objects. Each model compo-
nent represents a different functionality of the system being modeled. The use of methods (attached
to model component classes) provides additional capabilities for functional decomposition. The
containment of model component logic in supervisory, self, or hybrid logic is another form of modu-
larization.

Hierarchical decomposition: The CM advocates top-down definition with bottom-up specifica-
tion. The hierarchical traversal and definition features of the DOMINO enforce a top-down hier-
archical definition of the model structures while retaining flexibility for depth-first or breadth-first
traversal. Once model component classes are identified, the specification (of attributes and model
component logic) proceeds bottom-up. As intended under the CM, the modeler can freely alternate
between the definition and specification tasks.

Information hiding: The object orientation of the DOMING facilitates information hiding by

encapsulating an object's data (attributes and component logic). Access to object attribute data is

27

controlled via both system and modeler-defined methods.

Iterative refinement, stepwise refinement, and progressive elaboration: Under the DOMINO,
development of a model specification can incrementally proceed as desired by the modeler. Tncom-
blete specifications can be saved for work at a later time. Iterative refinement, stepwise refinement,
and progressive elaboration apply to all aspects of specifying class information (attributes and model
component logic), structure definition, and image construction. The modeler controls the degree of
detail for inclusion in a model component. For example, detail in model structure can be limited by
choosing not to decompose certain submodels (or subdynamic objects). Should greater detail be
desired at a later date, then these components can be subsequently decomposed for additional refine-
ment.

Life-cycle verification: Verification begins with model specification and continues throughout
the development life cycle. Using the INGRES relational database representation of the model spec-
ification (complete or not), diagnostic analysis can be performed, by using the Model Analyzer (both
automated and semi-automated), on the representation form from the very early stages of develop-
ment to the executable model representation. The level of diagnostic capabilities are further evalu-
ated under Objective 10. The Model Verifier provides continued verification capabilities (assertion
checking, trace data, execution profiles) on executable forms at the later stages of the development
life cycle.

Separation of concerns: The DOMINO advocates this principle by separating real model
components from the virtual ones, model static structure from the dynamic one, and by employing

the OOP concepts of classes, attributes, methods, etc.

Objective 7@ Contain a rich and expressive terminology applicable for any discrete-event simula-
tion problem domain.

Based on the DOMINO’s application to a variety of problems, it has been found that the DOMI-
NO’s terminology is rich and applicable for any discrete-event simulation problem domain. The use
of DOMINO’s terms is quite general purpose: submodels, static objects, dynamic objects, subdy-
namic objects, and base dynamic objects. The meaning of a model compounent is by analogy. It may

represent whatever the modeler wishes to represent within the WYSIWYR philosophy.

Objective 8: Differentiate a model component having a representation in the system from the one
that does not have a representation in the system.

This is achieved by classifying model components as real versus virtnal. The separation is
important not only to remave the contradiction in the definition of a meodel (Section 2, Objective 8),
but also for model verification and validation. Real versus virtual separation guides the modeler in

identifying the model components for which validation or verification needs to be emphasized.

28

Objective 9: Enable the extraction of sufficient information from the modeler so that the model
specification can be automatically translated into executable code following the auto-
mation-based software paradigm [Balci and Nance 1987].

The automation-based software paradigm has been achieved to a large extent. Using the VSSE
Model Generator, a modeler can structure a model graphically, specify it under the OOP, and
provide the model component logic specification using the VSMSL English-like language. There-
after, the Model Translator, reading in the whole model specification from the INGRES database,
converts the model into an executable code which provides visual simulation upon execution. The
modeler is not concerned about the translation process, the implementation language, or the fact that
INGRES is being used in the background. If execution errors occur, the modeler is informed about
the locations of the errors within the model specification. Hence, the modeler maintains the spec-
ification at all times and the model specification is automatically translated.

However, the Model Translator does not currently use artificial intelligence techniques for
producing an optimized executable code that would provide an efficient execution of the model.

Except this part, the automation-based software paradigm has been achieved.

Objective 10: Enable the creation of a model specification which lends itself for formal diagnostic
testing [Nance and Overstreet 1987].

Nance and Overstreet [1987] present a wide variety of diagnostic capabilitics (analytical,
comparative, and informative) under the Condition Specification. The DOMINO, as implemented
within the VSSE, retains several of these capabilities, but only a few are demonstrated. Current
diagnostic capabilities, although limited, are provided via the VSSE Model Analyzer, Model Gener-
ator, and Model Translator [Derrick and Balci 1992a].

The Model Generator and Analyzer demonstrate attribute initialization and attribute consistency
from among the analytical measures. Attributes are required to be initialized during class specifica-
tion; the Model Generator automatically performs these initializations at model startup. The Model
Translator accomplishes attribute consistency (ensures that attribute typing during definition is
consistent with attribute usage in the model component specification). Other analytical measures
(attribute utilization and revision consistency) and an informative measure (attribute classification)
are readily achievable with modifications to the Model Translator and the INGRES database rela-
tions. Attribute function (control, output, input function) and usage information can be identified
during the translation (for classification), compared with symbol table information (for utilization),
or stored for later comparisons (consistency). Another informative diagnostic measure, decomposi-
tion, is demonstrated with the hierarchical query capabilities of the VSSE.

The remaining diagnostic measures, which include all comparative measures, deal with action

cluster diagnosis under the Condition Specification representation. In order to employ these

29

techniques, a conversion from the DOMINO representation to a Condition Specification repre-
sentation would be necessary. This would require additional research, applying Artificial Intel-
ligence or other techniques to recognize and define condition action pairs (and action clusters)
during translation of the model component logic specification. Once the action clusters are defined,
all diagnostic techniques currently available with the action cluster incidence graphs or attribute
graphs are accessible within the DOMINO., Alternatively, rather than converting the DOMINQ
specification to a Condition Specification, new research could possibly be initiated to develop diag-
nostic techniques of the same power using the DOMINO representation as the basis for diagnosis.
The Model Analyzer diagnostics form a fairly unique set of capabilities (including analysis of
.documentation completeness) that are not directly addressed by Nance and Overstreet's [1987]
analytical, comparative, and informative measures. Consistency and completeness checks are possi-
ble on various aspects of the model specification. In a one-to-one correspondence, the DOMINO (as
implemented) either demonstrates or could casily be modified to perform six of the fourteen diag-
nostic measures cutrently available under the Condition Specification. However, new and additional

techniques are available under the DOMINO,

6. CONCLUSIONS
A multifaceteD cOnceptnal fraMework for vIsual simulatioN mOdeling (DOMINO) is present-

ed. The DOMINO possesses many talents and has many aspects or phases, and therefore it is called
multifaceted. Providing both design and implementation guidance, the DOMINO guides a modeler
over a broad range of tasks in the simulation model life cycle. The DOMINO contains many desired
characteristics (e.g., object-oriented, graphical-oriented, and activity-based) and new approaches
which generate a fruitful and nuituring environment within which a modeler is assisted in the crea-
tive processes.

Incorporating the OOP, the DOMINO contains excellent support for good software-engineered
model designs. The graphical orientation facilitates and simplifies the modeling task by bringing
visual and tactile senses into the highly conceptual definition and specification tasks. The activity
basis and modularization of object processes within the model component logic creates new flex-
ibility (supervisory, self, and hybrid logic views) for modeler perceptions surrounding the specifica-
tion of model component interactions. The DOMINO fully supports the guiding principles of the
Conical Methodology.

The WYSIWYR philosophy allows modelers to Iepresent a system and its components as they
are conceptually or naturally perceived. The modeler is freed from conceptual artificialities in build-

ing the model specification via the strong emphasis on graphics and visualization, flexibility in

30

specifying model component logic, and the simple, natural terminelogy (e.g., dynamic versus static,
real versus virtual, etc.) of the DOMINO.

The incorporation of visualization as a prominent element of the DOMINO enhances the verifi-
cation and validation tasks. The DOMINO effectively embeds visualization and garners the benefits
through the graphical approaches of the definition and specification tasks, the unique display state-
ments of the VSMSL., and the addition of dynamic analysis with the animation of the executing
model. The lessons learned regarding visualization should have a strong influence in futare direc-
tions of SMDE research |Balci and Nance 1992].

The DOMINO is domain-independent in all aspects of terminology and representation supply-
ing significant advantages to project teams with diverse modeling needs. The DOMINO termi-
nology is generic. The modeler uses modeler-defined graphical representations to suit and is not
forced to use “canned” images from a domain-specific library. Project teams can perform model
development under a single framework and do not have to acquire knowledge or capability in sever-
al model development methodologies.

The DOMINO has achieved marked progress toward achieving the automation-based software
paradigm, with potential gains in efficiency and productivity in the model development effort, and
reductions to development time. Modelers work only with the model specification which is auto-
matically translated into an executable visual simulation model. This is true during design and
implementation and while performing subsequent maintenance and/or modifications. While not
having to get involved at the target code programming level (and in light of the DOMINO's domain-
independence), the modeler is not required to learn any simulation programming language. This

burden has previously been a severe stumbling block to the development process.
ACKNOWLEDGEMENTS

This research was sponsored in part by the U.S. Navy and IBM through the Systems Research
Center at VPI&SU. The authors acknowledge stimulating discussions with Richard E. Nance,
Lynne F. Barger, Jay D. Beams, John L. Bishop, Valerie L. Frankel, Robert L. Moose, Jr., C.
Michael Overstreet, Ernest H. Page, Jr., and Fred A. Puthoff which contributed to the research

described herein.

31

REFERENCES

Balci, O. (1988), “The Implementation of Four Conceptual Frameworks for Simulation Modeling in
High-Level Languages,” In Proceedings of the 1988 Winter Simulation Conference, M.A.
Abrams, P.1.. Haigh, and J.C. Comfort, Eds. {EEE, Piscataway, NJ, pp. 287-295.

Balci, O. (1990), “Guidelines for Successful Simulation Studies,” In Proceedings of the 1990 Winter
Simulation Conference, O, Balci, R.P Sadowski, and R.E. Nance, Eds. IEEE, Piscataway, N7,
pp. 25-32.

Balci, O. and R.E. Nance (1987), “Simulation Support: Prototyping the Automation-Based Para-
digm,” In Proceedings of the 1987 Winter Simulation Conference, A. Thesen, H. Grant, and
W.D. Kelton, Eds. IEEE, Piscataway, NJ, pp. 495-502.

Balci, O. and R.E. Nance (1992), “The Simulation Model Development Environment: An QOver-
view,” In Proceedings of the 1992 Winter Simulation Conference (Arlington, VA, Dec. 13-
16). IEEE, Piscataway, NJ, to appear.

Balci O. and R.G. Sargent (1981), “A Methodology for Cost-Risk Analysis in the Statistical Valida-
tion of Simulation Models,” Communications of the ACM 24, 4 (Apr.), 190-197.

Booch, G. (1986), “Object-Oriented Development,” IEEE Transaction on Software Engineering SE-
12,2 (Feb.), 211-221.

Derrick, E.J. (1988), “Conceptual Frameworks for Discrete Event Simulation Modeling,” M.S.
Thesis, Department of Computer Science, VPI&SU, Blacksbur » VA, Aug.

Derrick, E.J. (1992), “A Visual Simulation Support Environment Based on a Multifaceted Concep-
tual Framework,” Ph.D. Dissertation, Department of Computer Science, VPI&SU, Black-
sburg, VA, Apr.

Science, VPI&SU, Blacksburg, VA, Aug,
Derrick, EJ. and O. Balci (1 992b), “A Visual Simulation Model Specification Language,” (in prep-

Derrick, E.J., O. Balci, and R.E. Nance (1989), “A Comparison of Selected Conceptual Frameworks
for Simulation Modeling,” In Proceedings of the 1989 Winter Simulation Conference, E.A.
MacNair, K.J. Musselman, and P. Heidelberger, Eds. IEEE, Piscataway, NJ, pp. 711-718.

Knuth, D.E. (1 973), The Art of Computer Programming, Volume 1- Fundamental Algorithms, Addi-
son-Wesley, Reading, MA.

Kreutzer, W. (1 986), System Simulation: Programming Styles and Languages, Addison-Wesley,

A.

Nance, R.E. (1981a), “The Time and State Relationships in Simulation Modeling,” Communications
of the ACM 24, 4 (Apr.), 173-179,

Nance, R.E. (1981b), “Model Representation in Discrete-Event Simulation: The Conical Meth-
odology,” Technical Report CS81003-R, Department of Computer Science, VPI&SU, Black-
sburg, VA,

Nance, R.E. (1987), “The Conical Methodology: A Framework for Simulation Model Develop-
ment,” In Proceedings of the Conference on Methodology and Validation, O. Balci, Ed.
Published as Simulation Series 19,1 (Jan, 1988), 38-43. SCS, San Diego, CA.

Nance, REE. and CM. Overstreet (1987), “Diagnostic Assistance Using Digraph Representations of
Discrete Event Simulation Model Specifications,” Transactions of the Society for Computer
Simulation 4, 1 (Jan.), 33-57.

Shannon, R.E. (1975), Systems Simulation: The Art and Science, Prentice-Hall, Englewood Cliffs,
NJ

Tocher, KD (1965), “Review of Simulation Languages,” Operational Research Quarterly 16, 2,
189-217.

Henriksen, and S. Roberts, Eds. IEEE, Piscataway, N7, pp. 474-484,

