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Abstract

Optimizing the design of complex ground and flight vehicles involves multiple disciplines and
multi-layered computer codes stitched together from mostly incompatible pieces. The application
of established, large scale, optimization algorithms to the complete model is nearly impossible.
Hierarchical decompositions are inappropriate for these types of problems and do not parallelize
well. Sobieszczanski-Sobieski has proposed a nonhierarchical decomposition strategy for nonlinear
constrained optimization that is naturally parallel. Despite some successes on engineering problems,
the algorithm as originally proposed fails on simple two dimensional quadratic programs. This
paper demonstrates the failure of the algorithm for quadratic programs, and suggests a number of
possible modifications. '

1. Introduction.

Many engineering problems involve large scale optimization over many different disciplines.
For example, optimizing the design of complex terrestrial and aerospace vehicles involves multi-
ple disciplines (structural mechanics, aerodynamics, thermodynamics, control theory, etc.) and
disciplinary computer codes with thousands or millions of variables. Computer codes for the com-
plete model are multi-layered and stitched together from various barely compatible pieces, making
the application of established, large scale, optimization paradigms to the total model practically
impossible. As is the case with many large scale problems, a decomposition of the problem into
subproblems helps rednce the time and complexity of solution. The strategy governing the decom-
position of a large scale problem can directly affect the ease and accuracy of the solution. The
concept of a lipear decomposition strategy [30] has been used with good results in a number of cases.
This method works very well in the case of a system that is amenable to such a decomposition,
i.e., when subsystems can be laid out clearly in a hierarchical fashion.

For a system with many interdependencies between the probable subproblems, using a linear
decomposition‘ strategy implies choosing one subsystem before another, thereby establishing an
artificial hierarchy. The order chosen will affect the solution iterates, making this strategy ill
suited or even nonconvergent for such nonhierarchic problems.

These considerations led Sobieski [29] to propose a new nonhierarchic decomposition strategy.
Since nonlinear optimization can be reduced to a series of quadratic programs, it is appropriate to

1




study this new algorithm first on quadratic programs, Thus, this paper first studies the various
tuning parameters occurring in this algorithm, using a model quadratic programming problem. A
series of experiments shows that modifications to the algorithm as originally proposed by Sobieski
[29] are necessary for convergence in general. This modified algorithm is then used to solve problems
involving a number of subsystems, each with a varying number of design variables.

The tests are carried out on guadratic programming (QP) problems of different dimensions.
The decomposition then yields subproblems which are also QP problems. The method employed
to solve these smaller QP problems is elimination of variables [11]. Also optimization packages
such as MINOS [22] and QPSOL [15] were used to verify the correct answers.

A detailed description of the original algorithm, modifications to it, tabulations of the results
obtained for the test problems of different dimensions, and analysis of the results are presented.

2. Problem Statement.
Consider the following nonlinear programming problem {NLP),

min O(z)
subject to  g(w,y) <0,
Mz,y) =0,

where € B, y € E?, g is an m-dimensional vector function and % is a p-dimensional vector
function. z is the set of design variables and y is the set of behavior variables which are the
unknowns in each subsystem.

The approach (known as subspace optimization) is to solve this problem by solving a set of
subproblems. To outline the differences between the current scheme and simple decomposition, we
introduce the following terminology:

z=(XLX%..,XY), X'€eE™, nmi+ni+...+ny=n,
y=LY%.. YY),  Y€E™, pitpt...tpy=p,
s Al
g= » h= : 3
N AN
hi(z,y) € EP, g'(x,y) € E™, my+...+my =m,
hi(z,y) = Y* — bz, YY,..., YimL VLY N),

The sub vector X* is the set of design variables corresponding to the ith subsystem. Similarly
the sub vector Y* is the set of behavior variables of the ith subsystem. For any vector function
flz,9), let f(X%,Y") denote f with all the components X7, ..., X1, X&1 XNyl o,
YimlL Y Y'Y fixed. Note the assumption that each Y can be explicitly determined in terms
of z and the other subvectors Y.

3. Simple Sequential Decomposition.

The approach is to first divide the given large problem into a set of independent subproblems,
corresponding naturally to the subsystems comprising the larger system. The ith subsystem would
bo o

inO(X?

min O(X")
subject to (X%, ¥*) <0,
h(Xi YY) =0,
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where the system of equalities ¢ = 0 is used to eliminate ¥* from §*. The subproblems are solved
sequentially for¢ = 1,..., N, with one pass through all the subsystems constituting one outer itera-
tion. The outer iterations are repeated until the same point (%, 7) solves all N subproblems. While
solving the ¢th subsystem the values of X1,..,, X1, xi+l LXN YLyl yie YN
are fixed. They can be chosen in a Gauss-Seidel manner where the first ¢ - 1 X and Y subvectors
used have their latest values from solving the first 4 — 1 subproblems. A parallel algorithm, solving
the subproblems concurrently, would use a Jacobi scheme where the values of all the X7 and Y7
vectors are updated only at the end of each major outer iteration. The ensuing discussion assumes
a Jacobi scheme.

4. Decomposition with Approximate Coupling.

In the scheme proposed by Sobieski [29], a measure of the constraints in each of the other
subsystems is also brought into the ith subsystem in the form of one cumulative constraint C¥ per
subsystem. The approximate cumulative constraint CF of the kth subsystem in the ith subsystem
is obtained from the corresponding constraints g% € E™ as a linearization of the Kreisselmeier-
Steinhauser cumulative constraint

1 (&
Kk(m,y)?-;ln Ze"gf(“”y)

j=1

The p in the Kreisselmeier-Steinhauser function is a constant used to control the accuracy of the
cumulative constraint approximation. The linearization of this cumulative constraint of the kth
subsystem with respect to the variables of the ith subsystem is

7 -
CHX'Y) = (X3, %) + 3 92 (x4, %5) (i - (xd), )

i=1 7%

In the ith subsystem the cumulative constraints of the other subsystems are brought in as

constraints. Therefore, a violated cumulative constraint of one subsystemn may be satisfied by
decisions taken in every one of the other subsystems. Therefore, we introduce coefficients ¥ to
represent the fractional “responsibility” assigned to the ith subsystem for reducing the violation
of the cumulative constraint of the pth subsystem, for each p = 1,...,N. Thus we have N2
r-coefficients. The r!’s are defined in such a way that

Sobieski [29] suggested the initialization of the r-coefficients in such a way that they are proportional
to the degree of influence exerted by the ith subsystem on the pth cumulative constraint. This
initialization is discussed in the Appendix. '

To further reduce the objective function we allow cumulative constraints to be violated in one
subsystem, provided that the violation will be offset by oversatisfaction of that constraint in another
subsystem. To account for such tradeoffs, we introduce the N? coefficients t¥, corresponding to
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the cumulative constraint of the pth subsystem when present in the ith subsystem. Tor the pth
cumulative constraint,

N

=

i=1
maintains the constraint at a value of zero. This condition and the condition on the r-coefficients
are enforced in what is called the coordination optimization phase, which is solved to update the
values of the r’s and the #’s at the end of every outer iteration. The #!’s are initialized at the
beginning of the algorithm to zero.

As has been described above, the rl’s are needed only in the case of a violation and the
t2’s only when the constraints are critical, therefore only one of the iwo is needed at a time.
Therefore we introduce N coefficients s? which act as switches, one for each of the cumulative
constraints of the subsystems. s is set to one (activating the r-coefficients) if the corresponding
constraint K, < 0 is violated at the outset of the system optimization procedure and stays at
one until the K, is driven to a critical status (zero value). Once K, becomes critical, s? is reset
to zero (activating the t-coefficients) and stays at zero until the system optimization procedure
terminates. The switch s is applied selectively to the natural constraints g* of the ith subsystem
(i.e., the constraints that are assigned to the ith subsystem) by multiplying the r-coefficient rt by
a factor of max{§*(X{,Ys),0}, so that constraints which are alrcady satisfied are not taken into
consideration. :

Thus, the ith subsystem optimization problem is

min (X9
subject to  §*(X*,Y?) < ' max{g*(X{,¥¢),03(1 — 1) + (1 — &),
CP(X*, YY) < KP(X&YE;:) sP(L—rf)+ (1 - "),
| p=1,...,i=1,i+1,.... N,
R (X4LY) =0.

The constrained minimum of © obtained from each subsystem optimization is a function of
the constants r{ and ¢¥, and its partial derivatives with respect to ¥ and ¥ (assuming they exist)
can be computed from the expressions given in the Appendix using gradient information for the ©
and C' functions. These derivatives are used for a linear approximation of @ that is the objective
function for the coordination optimization phase, the last (and synchronizing) step of an outer
iteration.

The coordination optimization phase (COP) solves a linear program to adjust the coefficients
r? and 7, so that the objective function @ will be further reduced (if possible) at the end of the
next outer iteration. The linear program uses a linear extrapolation of ® based on the partial
derivatives 00 /0z described above. Here z represents either an r- or a t-coefficient. Move limits
(upper and lower bounds UP, {7, L? and L? for 77 and 7, respectively) are needed to prevent
large changes in the r- and ¢-coefficients caused by the nonlinearity of the original problem. For
the first COP execution, the r¥’s may be initialized as already suggested and the t2’s are initialized
to zero. For every subsequent execution, the ri’s and the #£’s are initialized to the terminal values
from the previous COP execution. The result of the COP execution is a new set of r’s and

t{’s to be used in the next outer loop of subsystem optimizations. The adjustment of the s
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and #’s to the new values amounis to a reassignment of the responsibility for eliminating the
constraint violations among the subsystems and to issuing a new set of instructions about trading
the constraint violations/oversatisfactions among these subsystems. Let (z9,%,) be the current
updated point (the result of the Jacobi outer iteration) and

N N N N
01 = O(z0,%0) + ZZ gg,Arf + ZZ%{%Atf,

p=1 i=1 2 p=1i=1 "¢

where Arf = (rf — (r7)o} and At! = (2 - (#})g). The partial derivatives 5@ /0vF and 0O [0t} are
evaluated at the optimal point computed by the éth subsystem optimization. Let

(a1 2 N 1 N 1 N
R—(Tl,‘i“l,..,,ﬂ“l,7‘2,...,7‘2,...,T’N,...,TN)

and
N
T = (t{,ti,...,t{",t%,...,t;\’,...,t}v,...,tN).

Then ©; is a function of R and T'. The linear program solved during the coordination optimization

phase is:
I}%’lTﬂ 6, (Ra T)

N
subject to Zri:l, p=1,...,N,
k=1

N
Y =0, p=1,..,N,
k=1

0<r<1l, p=1,...,N, k=1,...,N,
Li < < UE,
Ly < <UE,

p=1,.
p=1,...,.N, k=1,...,N.

H

5. Pseudocode for algorithm.

An algorithmic description of the whole process in pseudo-code is given next, using the fol-
lowing model quadratic programming problem (without the variables ¥ and equality constraints
h{z,y) = 0) for specificity:

min z’Az
&

subject to Bz <d,

where
Aqy apAyy ... egNAiy By, Bi2Bi2 ... PinBin
oz Ay Az ... aanAsy | BuBu By -v. BanBon
A= ) ; . ) , B= ) ) ] ,
oinAiy condiy ... ANN_ BnBrn1 BweBw: ...  Bny
dq x?
da X2
d= . ’ r= : y
dy XN



and X% ¢ E™i | Aij € E™%% | By € EP* g € EPi, the A;; are symmetric and positive definite
and the ay;, B;; are fixed “coupling” parameters, for all 5,5 = 1,...,N. Using notation defined
in the Appendix, pseudo-code for the algorithm applied to this quadratic programming problem

(QP) is:

Choose an initial estimate z and initialize the r-, 5- and #-coefficients;

Repeat until minimum reached
begin

fori=11to N do

begin

Calculate the linearization Cf (X*) of the cumulative constraint for the jth subsystem, for

all j #4
Calculate the ith subsystem’s self responsibility

6 = s'max {§* (X§, %) ,0} (1 - rd) + (1 - 5°) £};

Solve the QP (ith subsystem)

J#i

SOV it gL i XN AL YT
zgfxina(x) = (XA X" +2 (Za,J(X)AWX)

N
subject to Z'B“B‘”Xj —d; < &,

i=1

Ci (x%) <o,

(Bi = 1)

for all j # 4;

Calculate (if not already available) the Lagrange multipliers using the method given in

the Appendix.

Calculate 8—6 and 3—0 forj=1,...,N;
J otd

TG 2

end
Solve the LP (Coordination Optimization Phase)

I}%l%l@l(RsT)
N N
subject to Zri =1, th =0,
k=1 k=1
0<rp <1, LE<<UE,
p=1,...,N,

end (repeat)
6. Initial tests,

Testing of this algorithm was first performed on a simple 2 X 2 case;
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Example 1.
min 22 + 22
T
subject to  z; + Sz < 4,

18371 -I--’Gz 2 2a

where z = (2, 2)" € E2

Here each constraint is taken to be in a subsystem by itself with X! = (21) and X? = (z2). The
results are tabulated in Table I. The column headings are the starting points, the last column
gives the solutions for the different values of g, and each entry contains a convergence code and
the number of iterations taken. The code IF means an infeasible subproblem is encountered at
the very first iteration and the procedure is terminated, R means the solution is reached in the
iteration indicated, but subsequently an infeasible subproblem is encountered, WR means a wrong
point is reached before an infeasible subproblem causes termination, O means there is oscillation
through the number of iterations indicated, WC means there is convergence o a point other than
the solution, and NC means there is no convergence even after the number of iterations indicated.

TABLE I
Original algorithm applied to the 2 x 2 case.

[; (23) | (4+1) | (1,1) [(0.8,1.5)| (103) | solution

10.0 | R 1R 1| R 1/ R 11 R 1] (0.0,2.0)
0.1 |[WR 1|IF 1|WC 4|WC 4|IF 1 }(0.198,1.98)
0.3 {WR 1|IF 1{WC B5|WC 4|IF 1 {(0.55,1.835)
05 |WR 1|IF 1{0 150|NC 150|{WR 1 (0.8,1.6)

1.0 | O 150{0 150f{ 0 150{ O 150| O 150 | (1.0,1.0)

As can be seen from the table, the main problem with the algorithm is not being able to deal
with infeasibility in a subproblem. This issue of infeasibility was mentioned in the appendix of
[29], and is addressed in the next section. Another reason for the algorithm not being successful
is the way the s-coefficient is set permanently to zero once a constraint becomes critical. When
a constraint that was once critical becomes violated, the r-coefficients cannot be brought in to
reduce the violation.

7. Modifications to the original algorithm.

Several modifications and variations of the origirial algorithm as described in [29] are discussed
in detail in [26]. All these modifications were genuine attempts, based on rational considerations,
to fix the failures of the algorithm. Probably the COP should be entirely redesigned, but that
constitutes a completely new algorithm, and was not pursued here. These modifications, fally
described and justified in [26), are listed next.

Natural Constraints.

The natural constraints of the subsystem being solved are used instead of the cumulative
constraint representing them. The algorithm described in Section 4 includes this modification.
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Changes in setting of the switch coefficients sP.

Set the s coeflicient at the end of every outer iteration depending on whether the correspond-
ing comstraint was satisfied or not.

Handling infeasibility.
Infeasibility in a subsystem is handled by introducing a new variable w in each of the constraints
and adding a large multiple of this variable to the ob jective function to be minimized.

Limit on t-coefficients.

Bounds on the ¢-coefficients ¢}, are variable and related to the sensitivity of the pth cumulative
constraint to the variables of the kth subsystem.

Convergence criterion.

The convergence criterion involves the difference between three successive iteration values of
the design vector and the difference between the values of the - and r-coefficients.

Changes to the p coefficient.

After the required convergence criterion is met the p coefficient is increased and the whole
process is repeated again to check if the convergence criterion is still met.

Cross derivatives.

The cross derivatives are checked to see if one subsystem is at all dependent on the variables
of another subsystem, if not the corresponding 7- and ¢-coefficients are fixed at zero. This is done
at the end of every outer iteration.

Changes to the r-coeflicients.

The diagonal r-coefficients rf are assigned a minimum value of (.2 always and a 20% move
limit is imposed on all the r-coeflicients. '

No COP.
If the objective function of the COP is a constant then the COP is skipped for that iteration.

Resetting the {-coefficients.

After the COP a check is performed on the t-coefficients to see if for a particular p the sum of
the contributions of all the corresponding coefficients to the objective function of the COP is ZEro.
If so all the ¢ coefficients corresponding to this p are forced to be zero,

8. Further tests.

The original algorithm as proposed by Sobieszczanski-Sobieski [29] did not prove to be suc-
cessful as indicated by Table I. Results of two of the most successful variations to this algorithm
tested on the 2 X 2 case are tabulated in Tables I and III. The characteristics of the algorithms
used are given above the corresponding tables, “s updated” indicates that the s-coeflicient is up-
dated at the end of every outer iteration as indicated in the modifications given in Section 7. “w
used” means that an artificial variable w was introduced to deal with infeasible subproblems. The
inclusion or exclusion of the COP is in the case of an infeasibility in any subproblem. The limit on
the magnitude of the t-coefficient is 1 initially and this bound is decreased using a factor of 0.8 as
described in [26]. The most successful version was used for larger test problems like the 3 x 3 case
with two subsystems and the 6 X 6 case with three subsystems. The tests were carried out for five
different values of 8 and for five different starting points. The column headings are the starting
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points, the last column gives the solutions for the different values of 3, and each entry contains
a convergence code, and the number of iterations until the two-norm of the change in {z,R,T)
is less than 0.0001. For Tables II and III the number of iterations the limit on the -coefficient
is held fixed (at 1.0) before being reduced is 10, and 30 for Table IV. The code ¢ means there
is convergence to the solution, WC means there is convergence but not to the solution, and NC

means there is no convergence even in the specified number of iterations.

Tasie II
s updated, w used, no COP,
t bound at 1 and 0.8 update
after 10 iterations.

B (23)| (4,1) [(1,-1)](0.8,1.5) (10,3)| solution
0.0 |[C 61 C 6[C 6|C 6/C 6| (0.0,2.0)
0.1 [C 71{WC 12|C 71{C 71|C 71 |(0.198,1.98)
0.3 |C 67/WC 25{C 64/C 67{C 67 [(0.55,1.835)
0.5 |C 66 WC 18C 66/C 65|C 64 | (0.8,1.6)
1.0 [C 7| C 8|Cc 7|C e2|Cc 8] (1.0,1.0)

TaBLg IH
s updated, w used, COP,
t bound at 1 and 0.8 update
after 10 iterations.
6 | @23)[@D](1)](0.8,15)](10,3)] solution
00 |C 6|C 6|C 6]C - 6|C 6] (0.020)
0.1 |C 71|C 67|C 71|C 7T1{C 71 {(0.198,1.98)
0.3 |C 67|C 721C 64|C 67|C 67 |(0.55,1.835)
C
C

0.5 [C 66]C 65|C 66 65\C 64 | (0.8,1.6)
10 [¢ 7lC slc 7 62/C 8| (1.0,L.0)

Figures 1 and 2 are provided for a better understanding of the path taken from the starting
point to the solution. The pictures correspond to Example 1 with 8 = 0.1. Figure 1 includes alt
the iterate values (except for the starting point) up to the solution. The first few segments are
numbered 1 — 8 at their midpoints. Figure 2 is a blown up view of the region of convergence that
is marked in Figure 1. Some of the intermediate segments are numbered at their midpoints here.

The solution is indicated by a *.



FiGURE 1. Trace of the solution iterates for Example 1, corresponding to
" B = 0.1, with starting point (2,3) and solution ( 0.198,1.98).
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FiGURE 2. Blown up view of the region of convergence of
the plot shown in Figure 1.
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Example 2.

min 2} + 23 + a2
£
subject to 2y + 23 + Bus < 4,
—&1 — @2 — fr3 < -2,
—pz1 — By — Brs < -2,
where ¢ = (21, %2,23)° € E°

Here, the first two constraints belong to one subsystem and the third constraint to another sub-
system, X' = (21,22) and X? = (x3).

TAaBLE IV
s updated, w used, COP,
t bound at 1 and 0.8 update
after 30 iterations.

3 (0,1,-3) | (1,1,0}{(4,0.1,0.8)[(-10,3,-10) | (0,0,0) solution
00 [C  6lc 6|C 6] C 6] C 6 (1,1,0.4)
01 | C 86[{C 89|C 98| C 891 C 87 [(0.9819,0.9819,0.3607)
0.3 | C 85|{C 82|C 921 C 82| C 80 |(0.9569,0.9569,0.2870)
C
C

05 | C 93|C 81 811 C - 89| WC 80 [(0.8888,0.8888,0.4444)
1.0 {WC 102]C 103 TT{WC 1021 C 76 |(0.6666,0.6666,0.6666)

In Tables II-IV for 8 = 0, the 6 iterations corresponds to 3 iterations for the convergence test
to be satisfied with 2 consecutive values of p; thus 6 actually is the smallest possible number of
iterations, and.corresponds to reaching the solution in one step. For the WC entries in Table IV,
performing a cold start at the point they converge to results in convergence to the correct solution.
Figure 3 corresponds to Example 2 and gives a trace of the iterates for 8 = 0.5 and starting point
(0,1,—3) (not included in the picture).

Move limits on the x vector.

Introducing move limits on the = variables will help prevent oscillation of the iterates. The
size of the move limits permitted can be varied depending on the problem. liet m be the move
limit permitted and Z; the current value of z;. Then the constraint

&; — m)E;| — 0.1 < 2; < & 4 m|@| + 0.1

is added for evé_ry coﬁlponent 2; of the z vector.

Tests were performed on the following 6 x 6 example using different move limits and the results
are tabulated accordingly.
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Ficure 3. Tra,ce of the solution iterates for Example 2, corresponding to
B = 0.5, with starting point (0,1,-3) and solution (0.88,0.88,044).
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Example 3.

Here there are three subsystems with n,

If the algorithm as described thus fa,
Table V. In Table V the number in each
in this table correspond to a move limit o
on the ¢-coefficients is held fixed for 30 iterations
the solution only in the cage of Ji}
starting points. An attempt to use
to convergence to the solution — th

is a fundamental flaw,

The cause of the divergence was trace
thorough explanation, in the context of Fx
sensitivity information is offered in [26]

min i + 23 + 22 + 2502 + 2.52% + 1022

subject to

$1+$2+$3+0'—ﬂ$5—2)8$6 <4,

T T2 —23 - P+ 04 0< -2,
—$1—$2—~5933+0+0+0__<_—'2,
0+0+0+ 24+ a5 — g < —4,

B + By + 0 ~ bzg — das — Bag <20,
Br1+ By — Brs + 0+ 0— g < —6,

where z = (ml,x2,$3,m4,m5,m6)t € ES

for, but the correct design is not apparent,

Table VI gives the results for the 6 X6
the sensitivities obtained over two iterations. In each entry in Table VI,
e number of iterations taken, the number below
i-coefficient is held fixed (at 1.0) before being
ermitted on each component of the z vector.
les V and VI), they are not a cure for the
move limits on z, r, and ¢ is not the remedy,
th results no better than those in Table VI.

average of

gives gives the number of iterations the limit on
reduced, and the third number gives the move limit p
While smoothed sensitivities clearly help (compare
larger 3 cases. We remark that simply changing the
since hundreds of move limit variations were tried wi

I is used,

fm =0,

d to the sensitivity information used in the COP. A
ample 3, of the failure of the COP to provide correct
- This suggests a complete redesign of the COP is called

the ¢-

TABLE V

Tab

s updated, w used, COP,

i bounded at 1 and 0.8 update.

=3,m = 2and ng = 1.
the results are not encouraging as indicated by
entry gives the number of iterations taken. The entries
3 on each component of the vector, The limit
before being reduced. There is convergence to
0.0; for larger Bs the solution is not obtained for any of the
the actual solution vector as the starting point also did not lead
€ process actually diverged away from the solution. Clearly, this

(0,0,0, {

8 (1,2,3, | (-10,4,4, (1,11, | (-4,2,2, solution

- 0,0,0) -1,1,5) 0.8,0.1,1) 1,1,1) 0,1,1)
00 /¢ 17|C¢ 17fc w9lc wlc o (0.6,0.6,0.6,-2.0,2.0,6.0)
0.1 [NC 154/ NC 154|WC 113[NC 154 NC 151 (-24,2.4,7.0,1.7,18,4.8)
0.3 |NC 151|WC 153|WC 105|WC 105| NC 150 (-2.7,2.7,8.0,,1.5,1.8,1.9)
0.5 |WC 104 WC 197|WC 104 WC 106 | WC 106 (-1.7,-1.7,6.3,~1.5,~1.9,1.0)
1.0 |WC 102/ WC 105|WC 102|WC 102| WG 105 (-0.5,0.54.2,1.2,2.0,0.7)
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TaBLE VI
s updated, w used, COP,
t bounded at 1 and 0.8 update.

A (0,0,0, (1,2,3, | (-10,4,4, (1,1,1, | (-4,2,2, solution
0,0,0) | -L15) [080.1,1)] 1,1,1) | 0,1,1)
0.0 |C 17| C 17[c 9]¢ 17lc 17 (0.6,0.6,0.6,-2.0,-2.0,6.0)
i0 0310 0310 0310 0310 0.3
01 | C 110{ C 190 C 113]C 72| WC 109 (-24,2.4,7.0,1.7,1.84.8)
30 01]70 033 0110 0330 0.1
03 |WC 105/ C 203| C 108 C 163{WC 103 (—2.7,-2.7,8.0,-1.5,—1.8,1.9)
30 0.1/8 01130 0.1]60 0130 0.1
0.5 [WC 103|WC 103[WC 104|WC 107 | WG 107 (-1.7,1.7,6.3,-1.5,1.9,1.0)
30 01030 01]30 01/3 0.1 30 0.1
1.0 |WC 103|WC 103|WC 104 WC 102 WC 102 (—0.5,-0.5,4.2,—1.2,—2.0,0.7)
30 0.1/30 0.1130 0.11!30 0.1{30 0.1

9. Conclusions.

Despite the success reported by [8] with the original algorithm of Sobieski [29], we have required
major modifications even for a 2 X 2 quadratic program. For larger QPs with weak subsystem
coupling, the modified algorithm described in Section 7 works reasonably well. For larger QPs
with strong coupling, the sensitivities obtained from the parallel subsystem optimizations were too -
unreliable for the COP to produce rational changes in the 7- and #-coefficients. One possibility for
correcting this problem may be to compute subsystem sensitivities with a global (and hence serial)
step, as advocated in [25].

Several other observations are worth noting. Although some practitioners are willing to accept
points with substantially improved objective function values that are not even local optima, the
many instances of convergence to nonstationary points reported in the tables reinforce the belief
that provable convergence properties are important,

The failure of the original algorithm, and mimerous rational patches to it, on small QPs makes
it extremely unlikely that the scheme would work on more general nonlinear programs (although
with enough pé.fameter tinkering we could get the Gptiinal solution for any given problem). Ad- |
mittedly, the coupling in the QPs is artificial, and the possibility remains that the coupling in
practical multidisciplinary optimization problems (such as aeroelasticity) is such that the present
decomposition algorithm works.
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Appendix.
Initialization of the r-coefficients.

The coefficients may be initialized on the basis of sensitivity information so as to assign a
greater responsibility for a cumulative constraint satisfaction (of the ith subsystem say) to those
subsystems that have a greater influence on that constraint. Let

9K
(Kpr); = BIX“_; {20, ¥0)-

Since 1< p< N,1<k<N,and 1< i< ny, there are Nny such partial derivatives (K,y):, for
every k. Now define

a’* = max |(ka),-|, 1<p< N, 1<kLN,
1<i<nyg

which measures the influence of the kth subsystem’s variables X* on the pth subsystem’s con-
straints, as represented by K,. Normalizing these N? influence coefficients gives the r-coefficients

Optimum Sensitivity Analysis.
Let z denote either of 77 or 7, and define the modified constraint functions

g (X"FY") = §'(X*,Y") — [¢ max{§* (X3, Y), 03 (1 — ri) + (1 — s )] ,
CP(X YY) = CP(X, YY) - [Ry (X3, %) 821 — 0 + (1 - )],
i=1,...,N, p=1,...,i—1,i+1,...,N.

g. a
Let V; = (8X{-,...,8X:;4),

G=|Cti,

\ CN /
and G denote the subvector of G corresponding to the active constraints at the current point.

It is assumed that the dimension of G% is less than or equal to n,, and that the Jacobian matrix
VG, has full rank. Then the sensitivities of the minimum of © with respect to the constraints

§ <0, CF < 0 are given by the Lagrange multipliers
i iye]1 i ¢
A= |[(ViGh) (viel)'] T (viG) (vie),
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where everything is evaluated at the current point—the result of the Nth subsystem optimization.
Now from this the sensitivities of the minimum of © with respect to the ¥ and ¢? are given by

_8_(2 = )\t 8Gf4
dz az '

Observe that from the form of G%, the partials oG [0z are trivial to compute. A would not
be computed explicitly from the projection operator as described above, but rather from a QR
factorization of (V:iG4) ‘, as described in Fletcher [11].
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