Linda-LAN: A Controlled Parallel
Processing Environment

George E. Cline and James D. Arthur

TR 92-37

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

July 29, 1992

Linda-LAN:
A Controlled Parallel Processing Environment

George E. Cline and James D. Arthur

Virginia Polytechnic Institute & State University
Department of Computer Science
Blacksburg, VA 24061

Abstract

An investigation is performed on 2 controlled parallel processing environment
based upon the Linda paradigm, a conceptually simple programming and
operational framework. The environment utilizes the unused computing
resources available on a network of computers to provide a low-cost parallel
processing solution. The environment efficiently and effectively manages
system resources via a centralized control sub-system. A detailed overview of
the environment executing on a local area network is presented along with
analysis on its control sub-system. In addition, the control sub-system's

execution characteristics of stability and scalability are substantiated.

I. Introduction

The computing problems of today are becoming increasingly more complex and time consuming, For
exainple, mapping out the human genome requires a significant amount of computing power and time to
analyze the approximately 100,000 genes in the human cell. In order to develop physical maps of each
chromosome and to determine the sequences of various DNA chains, powerful parallel computers, vector
processors and special-purpose computers are a necessity; however, the expense of such machines far
exceeds the limits of many users. Alternative methods of achieving parallel performance at an
economical price are desired. One such alternative results from the idle CPU cycles existing on local
area networks. With the increase in the computing power of workstations and their declining costs, the
unused computing power attached to a local area network (LAN) can effectively be transformed into a
paraliel processing environinent. Exploiting such an environment requires a specification and operational

framework that is portable, easy to use and efficient.

The focus of this research effort is to create a controlled paratlel processing environment utilizing a
conceptually simple parallel programming framework that operates on a local area network of low cost
personal computers. The establishment of a controlled environment provides for effective and efficient
management of utilized network resources. The employment of a conceptually simple parallel
programming framework facilitates the utilization of such an environment and the application of low cost
personal computers offers an economical solution to parallel processing. The intent of this paper is two-
fold. First, the newly created environment and the sub-system which controls it are examined. Second,
the desirable execution characteristics of scalability and stability are shown to exist within the control
sub-system. We hypothesize that scalability and stability are achieved within the control sub-system by
effectively and transparently controlling environment processors and the allocation of instantiated

program processes (o processorst.

Scalability exists in two forms. The first form deals with the scalability of network processors and the
second form deals with program processes. Network processors are added and removed arbitrarily during
the life of the system. In order for the environment to remain useful to its users, the execution of the
control sub-system must scale relative to the change in the number of processors. If relative scalability is
not achieved within the control sub-system, users will not consider the environment to be an effective

parallel processing alternative, The execution must also be able to scale with the change in the number

1 The term effective refers to the efficient and appropriate selection of environment processors.
Transparency refers to the hidden selection of a processor from an executing program so that the
program is not required 10 be especially written, compiled, or linked for the environment, based on
number of processors used.

of instantiated program processes. A dependency may exist between the number of program processes
and program input. For instance, a parallel program to find occurrences of a string within a text file
could be written to create a new search process for each line of data found within the 'text file. If this
form of scalability is not attained, programmers may be burdened with the responsibility of controlling

the number of utilized processes from within the program source code. The environment would not be

regarded as being easy to use by its programmers,

The execution characteristic that is desirable for any processing environment is stability. If an
environment can produce predictable patterns of program execution, the environment is judged to be
stable. Only a stable environment provides the usability and dependability required by its users.
Stability is especially desirable to this research endeavor in that it will help to identify those areas of the
control sub-system which require enhancement and possibly provide information on future research.

Without having stability within the control sub-system, stability within the environment cannot he

achieved.

This paper begins by giving a brief background of the Linda paradigm, which was the chosen
specification and operational framework for Linda-LAN2. A detailed overview of the cument Linda-
LAN environment is described, as well as its physical and logical topologies. In addition, an examination
of the control sub-system is presented. Special attention is given to the control sub-system's allocation
strategy of program processes to environment processors. Finally, the experimental results substantiating
the stability and scalability of Linda-LAN's control sub-system are offered.

II. Background

Linda is an effective parallel computational framework which was specifically chosen for the Linda-LAN
environment [CARR189a, GELER85a and GELERS85b]. There are a number of reasons for choosing the
Linda paradigm. In particular, Linda

¢ establishes a coordination language which allows a parallel program to perform process

creation, synchronization, inter-communication and the sharing of distributed data structures
through a logically shared object memory, called Tuple Space[BERNDS9],

* simplifies the complexities of simultaneously executing parallel processes, by allowing the
programmer to develop each executing process independently from the restfCARRNS(],

2 Linda-LAN is a software-based framework implemented by the Linda research group at Virginia
Polytechnic Institute and State University. The LAN is the only "specialized” hardware needed to
support the parallel environment which executes C-Linda programs.

e is portable; implementations of Linda systems exist on several different machine
architectures and network configurations.

In addition, by building upon the basic Linda paradigm, additional advantages for Linda-LAN's network

environment are offered:

* A true parallel computational environment is established.
¢ Idle CPU cycles existing on local area networks are exploited,

* An architecturally low cost parallel environment is made accessible to a wide range of users.

Linda is a coordination language rather than a complete parallel programming language. A coordination
language [CARRIS0 and ZENIT90] provides the primitives to create processes as well as coordinate
communication among processes. By virtue of being a coordination language, Linda primitives can be
introduced into many base programming languages. The original implementation, using C as its base
language, exploits a preprocessor approach which transforms Linda operations into C source code,
Implementing the Linda primitives in this way is especially useful when parallel systems need to be
developed in multiple languages. Linda has been embedded in a wide variety of other languages - C4++,
FORTRAN, various Lisps, PostSeript, Joyce, Modula-2 and soon Ada [GELERS(].

When one discusses the Linda paradigm, two characteristics are often touted: its ease of use and its
portability. From a conceptual standpoint, parallel programming within the Linda framework is
intentionally high level, which is exactly why it is so flexible and powerful. Not so surprising, however,
this high-level approach is at the root of Linda's greatest criticism - its questionable performance
[DAVIDS9]. Linda does exhibit acceptable performance on both shared and distributed memory parallel
(MIMD) machines [BJORNS8, BJORNSY and CARRIZ7]. In addition, Linda has demonstrated its
applicability on local area network platforms, although performance suffers for applications with tightly
coupled processes [LELERSES and WHITESS].

Because Linda does not rely on any specific type of architecture, Linda programs are easily ported to a
wide variety of machines with little or no modification. Machines currently hosting Linda include
workstations such as Sun, DEC, Apple Mac IT and Commodore AMIGA 3000UX. Linda has also been
ported to paralle]l machines such as the Sequent, S/Net and the Hypercube.

3 Implementations include the Sequent and Encore multi-processor shared memory machines as well as
VAX/VMS Ethernet networks.

The Linda approach supports process creation and inter-communication through a shared data/process
repository called Tuple Space (TS). Linda provides operations to generate data tuples (out), to read data
tuples (rd), and to remove them from TS {(in). Tuple Space not only contains data tuples but also
process tuples (created with the eval operation) which are often called "live tuples.” These process
tuples are instantiated and are eventually replaced by a data tople when the instantiated process finishes
executing. TS can also be used to share data structures among processes and synchronize the order of

actions that processes perform.

The Tuple Space concept is highly desirable within a network environment. Each of the TS primitives,
initiated from within a Linda program, corresponds directly with a series of communication messages
interacting with Tuple Space. Tuple Space may reside on a dedicated network machine or be distributed
across the network onto any number of network machines. Activated Linda process tuples may also
reside on any number of network machines. Once again, although the Linda paradigm is conceptually
sound, there are recognized performance bottlenecks in accessing Tuple Space on a network platform;

however, these performance problems are being addressed and solved by current research| ARTHU91 and

SCHUM91],

II1. Linda-LAN Overview

The first objectives set forth within this research effort are 1o establish a controlled parallel processing
environment within a conceptually simple specification and operational framework on a low-cost local
arca network. Linda-LAN is the environment which meets those objectives. Linda-LAN is a parallel
programming environment based upon Linda, a conceptually simple paradigm supporting an easy to use
coordination (parallel} language. Linda-LAN utilizes the multiple processors offered by the workstations
of a local area network. The environment is primarily a software-based system and requires no
specialized hardware. The system supports the distribution and execution of programs written in the C-
Linda language. Linda-LAN establishes control of network resources and manages them via a control
sub-system. Moreover, the idle cpu cycles existing on the LAN workstations are used by the
environment, making this parallel processing system highly cost effective in solving the more complex

and time consuming problems of today.,
A. Physical Topology

The physical topology of the Linda-LAN environment is illustrated in Figure 1. The environment utilizes

an Internet network of UNIX-based workstations. Although present implementations require a

homogeneous environment of Commodore AMIGA 3000UX workstations, plans are being made to
migrate into a heterogeneous environment. The Linda-LAN system is not limited to a local area network
or to the physical Ethernet LAN as depicted in Figure 1. Machines may be connected to the environment
over existing gateways or be interconnected via other physical network technology. This facility is
provided through TCP/IP Internet Protocols. The current versions of Linda-LAN , however, do utilize a
single physical Ethernet,

Linda-LAN Processor #1

Linda
o>

Linda]'_rKcmel

Linda-LAN Processor #2

Process
Linda
@ Process
Tuple Server ' ,
L-Kemel Linda
Process
g
Tuple =
Space th
= Linda-LAN Processor #3

(T om _
Linda
Communications Server Process

L-Man

Figure 1. Physical Topology of Linda-LAN.

Linda-LAN is composed of multiple Linda-LAN Processors, Tuple Servers and the Communications
Server. The attached workstations (nodes) within the environment can execute Linda program processes
(active tuples), manage the shared Tuple Space, or manage the environment. As seen in Figure 1, the
physical topology of the Linda-LAN environment allows for the distribution of multiple Linda processes
initiaied from within a single Linda program onto several Linda-LAN Processors (workstations) of a
network. Linda-LAN Processors are able to support more than one executing Linda process; however, a
maximum of on¢ Linda program may execute at any given time on the system. This limitation was
introduced into the system for the benefit of other network users. Current network utilization by non-
Linda users is extremely high. Minor modification of the system is required to increase the number of

executing Linda programs. Future research may be directed towards the scheduling and execution of

multiple Linda programs.

The Linda program processes communicate with Tuple Space via a node resident process, called a Linda-
LAN Kernel (L-Kernel). The L-Kernel packages each Tuple Space request and routes the request to a
specified node containing another environment process, called a TS Manager (TS-Man), which manages
and serializes all requests to Tuple Space. The TS Manager resides on a specified workstation of the
environment, called the Tuple Server. Although a single Tuple Server is depicted in Figure 1, multiple
Tuple Servers may exist. In fact, later versions of Linda-LAN have been implemented with multiple
Tuple Servers. This flexibility offers enhanced performance o the system, by improving the access to
Tuple Space. The communication demands of the system mainly occur between the workstations, which

execute Linda processes, and the designated Tuple Server(s).

The communication between any two nodes of the system is point to point via the BSD socket
communication protocols found within the System V Release 4 UNIX operating system. The point to
point communications are made available by the system process, called the Linda-LAN Manager (L-
Man), which executes on the last physical component of the Linda-LAN system called the
Communications Server. Network address information on all participating workstations is maintained at
the Communications Server. During system instantiation and program instantiation, the Communications
Server relays needed network information to all executing system processes. Only one Communications

Server exists per Linda-LAN system; however, multiple Linda-LAN systems may operate over common

nodes of the network,

In addition to the network information, global system information is managed at the Communications
Server. The global information is collected from system processes, called Linda-LAN Communication
Managers (L-Coms), which reside on each participating workstation that executes a Linda program

process, Each L-Com periodically provides L-Man with utilization information on the processor on

which the L-Com resides. Due to the wide fluctuations in workstation activity during the execution of a
program, the utilization information is a necessity in the mapping of Linda program processes to idle
Linda-LAN Processors (workstations). One of the duties of the Linda-LAN Communications Server is to
determine the Linda-LAN Processor to which a Linda program process is to be distributed. Without the
utilization information, effective program execution would not be possible. In addition, if not for the
Communications Server, the primary user of a workstation may find executing Linda program processes

consurning unavailable cpu resources.

Since the global information maintained at the Communications Server is highly important, the Toss of
the Communications Server would result in the failure of the system and any executing program. An
outage of any other node, except for the Tuple Server, may not result in the immediate failure of the
system. The Tuple Server is also a key component in the robustness of the system. The breakdown in a
Tuple Server would result in the loss of shared program data and cause the system to fail. Future single
Tuple Server versions of Linda-LAN can offer some hope in maintaining the integrity of the system by
following existing fault tolerance mechanisms provided by today's file server technology. Although
greater performance benefits are seen with the muitiple Tuple Server versions of Linda-LAN, the
robustness offered by the single Tuple Server versions of Linda-LAN may be found to be more desirable.

These fault tolerance issues are an area of research which regnire further investigation.
B. Logical Topology

Figure 2 represents the logical topology of the Linda-LAN environment. The environment is composed
of a control sub-system and a data sub-system. The control sub-system is responsible for maintaining
network information, system instantiation and termination, program instantiation and termination, data
sub-system instantiation and termination, program scheduling, process to processor allocation, network
monitoring, and executable code distribution. The data sub-system is responsible for handling all Tuple

Space requests, process execution, process instantiation and termination, and all communication between

program processes and Tuple Space.

Linda-LAN was specifically designed for the partitioning of the system into the control and data sub-
systems. By dividing Linda-LAN, a more simplistic view of the environment has been established and
our research efforts have become more focused. The management activities of the environment have
been segregated into a separate entity. These activities can be effectively controlled and managed within
the control sub-system. The data sub-system is left to concentrate on the efficient execution of a
program. In addition, the separation has made the implementation of the system much smoother. Figure

3 represents the interaction between the control sub-system and the data-sub-system as viewed by the

control sub-system. The remainder of this section concentrates on the control sub-system components
and the advantages found within it. In addition, the control sub-system's process to processor allocation
strategy is discussed. The data sub-system is not specifically addressed within this paper and is left for

future publications to discuss.

AN
L-Man

\ 9
\ g
S,
14
=
g
L-Com L-Com L-Com]
8
B

NS
AN

Linda Linda
Process Process
L-Kernei L-Kernel L-Kermel

‘TS5-Man

wosAs-qng ey

yd
N

Figure 2. Logical topology of Linda-LAN.
C. Control Sub-System

The control sub-system of Linda-LAN consists of the Linda-LAN Manager (L-Man) and a multiple
number of Linda-LAN Communication Managers (L-Coms). One L-Com exists per Linda-LAN
Processor, while a single L-Man resides on the Communications Server. As seen in Figure 2, a hierarchy
exists between the L-Coms and L-Man. The L-Man is in complete control of the system, while each L-
Com is responsible for the' workstation on which it resides. The components work together to perform
program instantiation and termination, data Sub-system instantiation and termination, program

scheduling, process to processor allocation, and executable code disiribution. In addition, the L-Man

performs system instantiation and termination, program scheduling, and network monitoring, as well as

keeping track of all network information,

System instantiation is performed at the Communications Server by a designated system administrator
starting the Linda-L AN Manager. The responsibility then shifts to the L-Man to instantiate all L-Coms at
the participating Linda-LAN Processors (workstations) listed within a system table. The data sub-system
components are instantiated after a program has been scheduled for execution. By having the system
initiated by an administrator, centralized control over the availability of the system is established. In
addition, the environment provides the administrator with control over which machines participate in the
system. The administrator is able to modify the System table of network information prior to the
instantiation of the system. As each processor is added or removed from the system, the control sub-

system scales appropriately by adding or removing a L-Com.

L-Man

L-Com L-Com L-Com

Data Sub-System of Linda-LAN

Figure 3. Linda-LAN as viewed by the control sub-system.

In order for a user to have a C-Linda program executed on the system, the user must follow 2 three step
procedure. First, the user compiles and links the program at a participating Linda-LAN Processor.
Second, the user submits a request to its local L-Com to distribute the executable code to all other Linda-
LAN Processors. The request is first routed to the Linda-LAN Manager for approval. Once approved,
the L-Man informs all other L-Coms to retrieve the executable code from the L-Com which originated
the request. Finally, after the code has been distributed, the user must submit another request to its local
L-Com for the program to be executed. This request is also passed on to the L-Man for approval. After
being approved, the program is scheduled for execution and the L-Com, which originated the execution

request, is informed by the L-Man 1o release the program into the system for execution.

There are numerous advantages offered by having the environment operate in this fashion. First, any
Linda program process is able to execute on any participating Linda-LAN Processor. Second, once a
program is compiled and linked for one Linda-LAN Processor, the same executable code is applicable to
all other Linda-LAN Processors. There is no need for the program to be compiled or linked onto the
other homogeneous machines. This procedure must change when Linda-LAN is migrated to a
heterogencous environment; however, the compilation and linking of the source program will only be
required on a non-homogeneous subset of the Linda-LAN Processors. For example, if the system were
composed of twenty machines utilizing three different machine architectures, the source program would
only require compilation and linking on three machines which represent the three architectures. The
remaining machines would copy the executable code from machines with an identical architecture. This

new procedure is easily accomplished via the centralized control of network information found at the L-

Man.

Another advantage of having the user perform the above procedure is the ability to add new Linda-LAN
Processors to the environment without requiring the re-compilation, re-linking, or complete re-
distribution of the program. Machines are merely .added to the system tables found at the L-Man and the
executable code is distributed to the new machine. Finally, it should be noted that Linda-LAN only
tequires a program to be re-compiled, re-linked, and re-distributed when the actual source code is
changed. Programs can be repeatedly executed with changes in the number of instantiated Linda

program processes, the program input, or the number of Linda-LAN processors utilized.

Before a Linda program is actually released into the system for execution, the data sub-system is
instantiated by the control sub-system. The instantiation of the data sub-system is simple. First, the TS
Manager is initiated by the L-Man at the designated Tuple Server listed within a system table. Once the
TS-Man is instantiated, it returns network addressing information to the L-Man. The L-Man routes this
information to all participating L-Coms. Each L-Com instantiates a local Linda-LAN Kernel, passing it

10

TS-Man's network addressing information. During each L-Kernel instantiation, a communications
dialogue with the TS-Man is established. After a communications dialogue is established between the
TS-Man and the L-Kemel on which the request for Linda program execution was initiated, the Linda

program is released into the system.

Advantages are offered by having the data sub-system initiated at program instantiation. First, the data
sub-gystem components are not required until a program has been executed. To have each workstation of
the network manage unnecessary processes is wasteful. Second, the L-Coms are considered fight-weight
processes. Each L-Com utilizes a small amount of cpu processing and requires few system resources.
The data sub-system components, on the other hand, require large amounts of system resources. Another
advantage is found in the fact that the data sub-system components are not required to contain the code to
manage themselves when therz is no work to be done. Finally, the data sub-system components are
alleviated from much of the communications setup., All network addressing information is supplicd by
the control sub-system. The data sub-system merely acquires the connections to the other needed

components of the data sub-system and executing program processes.

Program termination is another function of the control sub-system. An executing program informs an L-
Kernel of its desire to terminate, A request for termination may result from normal or abnormal
termination. The L-Kernel routes the request 1o its local L-Com. The L-Com, in turn, sends the request
on 10 the L-Man. The L-Man informs the TS-Man and all participating L-Coms of the program
termination request. Each -L-Com informs its local L-Kernet to terminate itself and all remaining Linda
processes. The program termination is well controlled under both normal and abnormal termination.
Data sub-system termination is also performed at program termination. The data sub-system components

are no longer required and system resources can be freed.

To terminate the Linda-LAN system, the system administrator must issue a request to the Linda-LAN
Manager. The L-Man aborts any active program via an abnormal program termination request and

informs all L-Coms to terminate themselves. Once again, centralized control is made available to the

system administrator,

Another managerial function of the system which is performed by the Linda-LAN Manager is the
monitoring of the network. In order to determine the availability of a Linda-LAN Processor, the L-Man
occasionally queries each L-Com for its workstation's cpu load utilization. This information is returned
to the L-Man and is used for the allocation of program processes to environment processors. If an L-Com
does not respond, it can possibly be removed from the table of participating Linda-LAN Processors. By

removing the Linda-LAN Processor from the table, the environment assumes the machine is unavailable

11

and continues processing requests. If a program is currently executing on the system, the current versions
of Linda-LAN abort the program and the system. The main reason for operating in this fashion is to

provide for some robustmess within the system. Future research should be directed towards fault

tolerance issues.

Although the control sub-system has many essential duties, the most critical task of the control sub-
system is process to processor allocation. Without an effective mapping of Linda program processes to
available processors, inconveniences to the primary users of the network workstations may result and
valuable program execution time may be lost. The Linda-LAN Manager is responsible for the mapping
of Linda program processes to Linda-LAN Processors. The L-Man is informed via a request from the TS
Manager to select a Linda-LAN Processor to eval (spawn) a new Linda program process. In the current
versions of Linda-LAN, the L-Man utilizes a round-robin approach in determining the next Linda-LAN
Processor to execute a Linda program process. As long as a Linda-LAN Processor has not surpassed its
cpu load utilization limit set at system instantiation, it may be selected as the next workstation to execute
a Linda program process. If all Linda-LAN Processors have surpassed their cpu load utilization limit, the

least recently selected workstation is chosen.

The main advantage of this mapping strategy is its simplicity and efficiency of selection. Although many
different and sophisticated strategies are possible for the selection of Linda-LAN Processors, the current
implementation does not require any additional information from a Linda-LAN Processor, except for the
current cpu load utilization information. Other allocation methodologies may require knowledge on the
termination of a Linda program process or on the expected execution time of a Linda program process or
on the types of cpu processors available. Strategies, such as least-recently-used, most-recently-used,
prioritized scheduling, and shortest-remaining-time scheduling can be implemented within the centralized

Linda-LAN Manager; however, future research must be directed towards these strategies to determine

their viability.

Once a Linda-LAN Processor has been selected, the L-Man informs the appropriate L-Com. The L-Com,
in turn, informs its local L-Kernel of its selection. The L-Kernel initiates (spawns) another executable
version of the Linda program onto the workstation, The Linda program establishes a connection with the
local L-Kernel and requests from the TS Manager, via the L-Kemel, for the name of the Linda program
process to execute and any applicable process parameters. After the necessary information has been

obtained from TS, the Linda program process begins execution.

Overall, the Linda-LAN control sub-system centralizes the management activities of the system and gives

control over the environment to a designated system administrator. The sub-system establishes

12

monitoring capabilities for the entire system as well as providing for the collection of global system
statistics. The control sub-system also relieves the data sub-system from performing any management
activities, In addition, intelligent global scheduling of programs, processes, and processors are
performed. Furthermore, the division of the system into a control sub-system and data sub-system has

focused research efforts and has provided a more simplistic view of the system,

IV. Substantiating the Scalability and Stability of Linda-LAN

The efficiency and effectiveness of the Linda-LAN environment is influenced by both the execution of
the control and data sub-systems. The resuits provided within this section are only applicable to the
control sub-system of Linda-LAN. Results from the data sub-system will be addressed in future
publications. While many goals are desired of Linda-LAN, the goals attributable to the control sub-
system are for the provision of the execution characteristics of scalability and stability. Without
achieving these desired goals, the Linda-LAN environment would be considered an ineffective and
unusable solution for paralle! processing. The execution of the system would not be able to respond with
changes in the number of utilized environment processors nor with changes in the number of executed
program processes. In addition, a repeatedly executed program would be unstable, undependable and
unpredictable. Linda-LAN would not be deemed a viable low cost parallel processing solution which

operates within a conceptually simple parallel programming framework.

351

154

101

Number of Control Messages

o A oo
0 10 20 30 40 5 70 B0 90 100 110 120 130 140 150 160 17D 180 180 200 210 220 230 240 250 260 270
Execution Time (seconds)

Figure 4. Program execution characteristics on the control sub-system of Linda-LAN.

13

We hypothesize that the desired goals of scalability and stability are attained within the control sub-
system of Linda-LAN by effectively and transparently controlling the environment processors and the
allocation of instantiated program processes to processors. Linda-LAN allows for the alteration in the
number of utilized environment processors via system tables located at the Linda-LAN Manager. The
modification of the system tables are transparent to the users of Linda-LAN. Furthermore, the Linda-
LAN system allows a program to vary the number of processes utilized by the program based on its input
data. Since the control sub-systerm manages the environment processors utilized and the mapping of the

Program processes 1o processors, proper scalability and stability should be achievable,

In order for the control sub-system of Linda-LAN to be considered stable, the repeated execution of a
program across Linda-LAN must generate the same execution characteristics on the control sub-system,
These execution characteristics can be seen in Figure 4. The execution characteristics are represented by
the various control messages produced by an executing program. As seen in Figure 4, three control
message types can occwr during a program’s execution?, Start-up messages refer to the control sub-
system messages which occur after a user submits a request for program execution and before the
program is actually released into the system. The eval messages refer to the control sub-system messages
which occur during the instantiation of a new program process. Finally, the termination messages refer to

the control sub-system messages which occur during program termination,

Figure 5 illustrates the multiple executions of the same C-Linda program across the Linda-L.AN system
under identical conditions’. As can be seen, the program repeatedly executed with relatively the same
execution pattern across the control sub-system. Therefore, stability is shown to exist within the control
sub-system. Although Figure 5 represents the execution of one C-Linda program, the results are
indicative for all other C-Linda programs tested. Result parallel and agenda parallel programs as
described by Carriero and Gelemnter in How to Write Parallel Programs were tested, Predictable results

for each type of program were achieved. The reasons for obtaining stability within the control sub-
system are directly attributable to the centralized scheduling of program processes to processors. The
data collected from the mapping of processes to processors showed identical distribution patterns by the
Linda-LAN Manager component of the control sub-system. Exactly the same processors were selected

for each instantiated process. The control sub-system behaved identically for each execution. The

4 CPU load utilization messages are a fourth message type which can occur. Utilization messages are
constantly issued at approximately the same time intervals by the L-Man during system execution.
These messages have been ignored for simplicity.

5 Truly identical conditions on the network and the utilized workstations can not be achieved; however,
steps were taken to ensure idle network and workstation conditions existed. In addition, identical
program input data was used so that the number of instantiated processes for each execution was
exactly the same.

14

variability in Figure 5 is attributable to conditions outside of the control sub-system, such as the data sub-

system, network communications and the process scheduling of the UNIX operating system.

Scalability within the control sub-system is also attainable by the Linda-LAN environment. Figure 6
illustrates the execution of the same C-Linda program as the number of environment processors are
increased. Figure 7 illustrates the execution of the same C-Linda program as the number of program
processes are increased. Both figures demonstrate the scalability of the control sub-system. As the
number of environment processors or program processes increases, so do the number of control messages,
Specifically, the number of start-up and termination messages increase linearly as the number of
environment processors increases. This fact is shown in Figure 8. As the number of processors increase,
the L-Man must inform each L-Com of the instantiation of a new program for execution. Since there
exists one L-Com per Linda-LAN Processor, a linear increase in the number of start-up messages is
expected. The same argument is true for the linear increase in the number of termination messages.
Looking back at Figure 6, the execution time of the program shortens as the number of processors are
added. The control sub-system is not adding undue overhead to the system as the number of Processors
are increased. As expected, the program execution time is also improving as the number of processors

are increased.

3
|
&

li
| : f/‘
i A e T B
eair s s e o

Number of Control Messages

Figure 5. Execution patterns of a program repeatedly executed under identical conditions,

15

Owz Bvs B Bws Dw

@ 2 Execution Tire (seconds)

Figure 6. Repeated execution of a program as the number of environment processors are varied.

Number of Control Messages

I
T T T T
0 10 20 30 40 50 60 70 80 9 100 110 120 130 140 150 160 170
Execution Time (seconds)

Figure 7. Repeated execution of a program as the number of instantiated processes are varied.

16

a8

sages
al

8

ol Mes

g

@Tam
(] Buals
N st

]

8

Number of Contr

8

1 2 3 4 5 8

Nummber of Processors

Figure 8. Scalability of control sub-system as the number of processors increases.

ges

l B T

: N St

Number of Control Messa

o TTITRTFITTIoeT IIIIIllIIIIIIIilIIlIliIllllllliilllllllllllll

0 o N T R . Gy
""’""'"m:f—’ﬁt—Eﬁﬁm&%gmg&'%;?vvvﬁmmmmaw

MNumrber of Tnstantiated Processes

Figure 9. Scalability of control sub-system as the number of instantiated pracesses increases.

17

Figure 9 also demonstrates a linear increase in the number of control messages as the number of program
processes increase. Once again, the centralized scheduling by the control sub-system is attributable to the
scalability of the control sub-system as the number of instantiated processes increases. For each process
instantiated in Figure 7, the number of control messages increases. Specifically, the eval messages which
deal with process to processor allocation increase. Looking back at Figure 7, a different effect is seen on
program execution time. As the number of instantiated processes increase, the program execution time
lengthens. This fact has been linked to the overhead generated by the data sub-system’s instantiation of a
process on a Linda-LAN processor. The Jorking mechanism provided by the UNIX operating system and
the retrieval of required start-up information from the Tuple Server are time consuming activities. On the
other hand, the control sub-system's overhead in process instantiation is quite small in comparison,
Although a linear relationship is seen in the scalability of the control sub-system as the number of

program processes increase, the scalability of the environment in its entirety may not hold.

V. Concluding Remarks

With the increasing user demand for greater computational computing power, the Linda-LAN

environment is a conceptually attractive configuration which provides

* atue parallel computational environment at an economical price,

¢ greater computing power than conventional uni-processor workstations,
* wider accessibility to a parallel environment,

* utilization of idle network cpn cycles, and

* centralized control of all management activities and system resources.

In addition, the Linda paradigm provides the system with a portable and easy to use operational
framework. The Linda language gives the programmer the ability to design, develop and implement
parallel programs in a comprehensible and structured manner. By partitioning the system into the control
and data sub-systems, research efforts have become more focused and the implementation of the system

has been simplified. In addition, a more simplistic view of the environment is created.

The control sub-system of Linda-LAN centralizes System management activities. Global scheduling of
programs, processes, and processors is provided, as well as global system monitoring and the collection
of system statistics. The control sub-system empowers a designated administrator with control over the
environment. The control sub-system alleviates the data sub-system from performing any management

activities, Furthermore, scalability and stability have been shown to exist for the control sub-system. A

18

linear relationship exists between the number of control sub-system messages and the number of program

processes instantiated, as well as the number of environment processors used. Overall, the current

versions of the Linda-LAN system offer a viable parallel processing environment within a conceptually

simple parallel programming framework that utilizes a local area network with low cost personal

computers. In addition, the Linda-LAN system is well controlled and managed via a centralized control

sub-system.

References

[ARTHU91]

[BERNDS9]

[BJORNSg]

[BJORNS9]

[CARRIST]

[CARRIS8]

[CARRI89a]

[CARRIgOb]

[CARRIS0]

[DAVIDE9]

[GELER85a]

J. D. Arthur, G, Cline and K. Landry, "Linda-LAN: A Distributed Parallel
Processing Environment Based Upon The Linda Paradigm,” A Research
Proposal, Computer Science Department, Virginia PolyTechnic Institnte and
State University.

D. Berndt, "C-Linda reference Manual (DRAFT) Beta Version 2.0," Scientific
Research Associates, January 1989,

R. Bjomson, N. Carriero, D. Gelernter and J. Leichter, "Linda, the Portable
Parallel,” Research Report YALE/DCSIRR-520, January 1988,

R. Bjomson, N. Carriero, and D. Gelemnter, “The Implementation and
Performance of Hypercube Linda,” Research Report YALEUIDCSIRR-690,

March 1989,

N. Carriero, "Implementation of Tupie Space Machines,” Research Report
YALEUIDCSIRR-567 (PhD thesis), December 1987,

N. Carriero and D. Gelernter, "Applications Experience with Linda," Proc.
ACM Symp. Parallel Programming, July 1988.

N. Carriero and D. Gelernter, "Coordination Langnages and their
Significance," Yale Tech Repori, YALEU/DCS/RR-716, July 1989.

N. Carriero and D. Gelernter, "Linda in Context," Communications of the
ACM, Vol. 32, No. 4, April 1989.

N. Carriero and D. Gelemter, How fo Write Parallel Programs. MIT Press,
Cambridge, 1990,

C. Davidson, “Technical Correspondence on Linda in Context,”,
Communications of the ACM, Vol 32, No. 10, October 89, pp.1249-1252,

D. Gelernter, "Generative Communication in Linda," ACM Transactions on
Programming Languages and Systems, Vol. 7, No, 1, January 1985, Pages 80-
112,

19

[GELERS5b]

[GELER9(]

[LELERSS]

[LELER9Q]

[SCHUMBD1]

[WHITESS]

[ZENIT90]

D. Gelemter, N. Carriero, S. Chandran and S. Chang, “Parallel Programming
in Linda,” Proceedings of the 1985 International Conference on Parallel
Processing, August 1985, Pp.255-263.

D. Gelemnter, "Ada-Linda: Motivation, Informal Description and Examples,”
Yale Tech Report.

Wm. Leler, "PIX, the latest NeWS," Cogent Technical Report, Cogent
Research, November 1988,

Wm. Leler, "Linda Meets Unix," IEEE Computer, February 1990, pp.43 - 54.
C. Schumann, K. Landry and J. D. Arthur, "Comparison of Unix
Communication Facilities Used in Linda,” Proceedings of the 1991 Virginia

Computer Users Conference.

R. Whiteside and J. Leichter, "Using Linda for Supercomputing On a Local
Area Network," in Proc. . upercomputing ‘88, November 1988.

S. E. Zenith, "Linda Coordination Language; subsystem kernel architecture
(on transputers),” Research Report YALEU/DCSIRR-794, May 1990,

20

