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Abstract

In many Janguages, the programmer is provided the capability of
commuricating, through the use of function calls, with other separate,
independent processes. This capability can be as simple as a service
request made fo the operating system, or more advanced as Tuple
Space operations specific to a Linda programming system. The
problem with such calls, however, is that they block while waiting for
data or information to be returned. This synchronous nature and lack
of concurrency can be avoided by initiating the request for data
earlier in the code and retrieving the teturned data later when it is
needed. In order to facilitate this concurrency of processing, an
instructional footprint model is developed which formally desctibes
movement of instructions. This paper presents research findings that
entails the development of the instructional footprint model, an
algorithmic framework in which to exploit concurtency in
programming languages, and some preliminary results from applying
the instructional footprint model.

1. Infroduction

Many languages offer the capability to communicate with a separate, independent process to perform a
service or a computation. The investigation discussed in this report focuses on calls to functions that are
implemented as a independent processes, but, for the most part are synchronous in nature causing the
calling process to block while waiting for data to be returned. The called function (or independent
process} performs the computation for the requested service. The inherent characteristic we are
attempting to minimize is the lost computing time the calling process spends blocked waiting for return
data. The proposed solution is to provide the capability to parallelize computations of the independent

function with normal computations of the calling process. In other words, the goal is to transform

synchronous service calls to asynchronous ones.



. For example, suppose a program makes a request to the operating system to retrieve a record from a file.
The program initiates the request by passing to the independent function (in this case the operating
system) the necessary information to retrieve the record from the file. At this point, the program blocks
awaiting the returned record from the operating system's file i/o service routine. Three activities occur
while the program is blocked - 1) the request information is transferred to the operating system, 2) the
—service is performed, and 3) the record is returned back to the program. Once the record is returned, the

program requesting the record can continue processing.

One way to exploit concurrency in this scenario is fo recognize the presence of the independent function
calls in a program and automatically initiate the data request for the call earlier in the code and get the
returned data later in the code at the time it is needed. This transformation of synchronous function calls
to asynchronous ones can be achieved automatically without the programmer being aware that it is
happening. The span of code from the point where the initiation of the data request is made for a
independent function call to the point where the return data is received is called the footprint of the
function call. This research is concerned with determining the footprints of independent function calls
(instructional footprinting) and, for one application domain, the appropriate mechanisms for initiating the

data request and receiving the return data for the function call.

2. Motivation

This research effort is motivated by the need to improve performance in Lindal! programs. Linda is a
coordination language [CARRISOb, GELER92 and ZENIT90] that provides primitives to create
processes, as well as to coordinate their communication. Because Linda is a coordination language,
Linda primitives can be introduced into many base computational languages. Linda has been embedded

in a wide variety of languages - C++, Fortran, various Lisps, PostScript, Joyce, Modula-2, and soon Ada

L Linda is the product of a research project conducted by Gelernter and Carriero at Yale in the mid
80's in an effort to design a coordination language for parallel programming that is conceptually
simple and, both architecture and language independent.



[BORRMB8, CARRI90 and GELER90]. In addition, Linda has been implemented on a wide variety of
architecture platforms - workstations such as Sun, DEC, Apple Mac II and Commodore AMIGA
3000UX, as well as a network of DEC VAX machines [ARTHU91]. Linda has also been ported to
parallel machines such as the Sequent, S/Net and the Hypercube [BIORNS9a, BIORNS9b, CARRIS6a,
CARRIB6b, CARRI87 and LUCCOS86] including a Linda machine currently being built [KRISH87 and
KRISH88]. Many "real world" applications have been written using Linda, some of these are described

in [ASHCRS89 and CARRISSa].

The Linda approach supports process creation and intercommunication through a shared data/process
repository called Tuple Space (TS) [CARRI87, CARRI89a, GELER85a and GELERS5b]. Linda
provides operations to generate data tuples (OUT), to read data tuples (RD), and to remove them from TS
(IN). Tuple Space not only contains data tuples but also process tuples (created with the eval
operation) which are often called "live tuples." These process tuples are instantiated and are eventually
replaced by a data tuple when the instantiated process finishes executing, TS can also be used to share

data structures among processes and synchronize the order of actions that processes perform.

Several implementations of Linda utilize a scparate process (i.e. an independent function) in controlling
TS [CARRI87 and SCHUM91]. In particular, network versions of Linda are often implemented with
independent processes controlling TS [CARRI87, SCHUM91 and WHITESS]. In the case when TS is
managed by a separate process and when an IN is performed fo retrieve a tuple from TS, the process
initiating the IN must block until a tuple is returned. This waiting time includes the time it takes to find
the tuple requested, as well as the time it takes to transfer information to and from the TS managing
process. Moreover, the requested tuple may not be present in TS, in which case the TS manager will
process other pending requests, while occasionally checking for a matching tuple for the blocked Linda
program. Meanwhile, the calling process is blocked the entire time the TS manager is looking for a

matching tuple to atrive. This wall time may be accentuated when Linda programs are placed on a LAN



platform. This is due to the taxing communications overhead of transferring tuple structures and data

across a network.

It becomes apparent rather quickly that TS is potentially a serious performance bottleneck. One solution
for improving the performance of a Linda system is to parallelize the normal compufation of Linda
programs with the requested services of TS. This involves providing two explicit primitives - one for
initiating a data request for an IN operation and one to receive the tuple data being returned. In general,
this would involve extensive modifications to the Linda compiler and fo the underlying run-time kernel.
Such modifications would compromise the conceptual simplicity of the Linda language in order to
provide cerfain capabilities that may not be wanted or needed by all Linda programmers. This is called

the second system effect which is warned against by Brooks [BROOK75). An alternative approach is to:

1) Provide the primitives for the initiation and retrieval routines for IN operations,

2) Automatically determine the optimally safe positions for the initiation and
retrieval of an IN, and then

3) Place the initiation and retrieval routines at these positions.

To summarize, the focal point of this research is to aid in the transformation of synchronous calls to
independent functions into asynchronous calls. Assuming the availability of mechanisms for initiating an
independent function call and for later retrieving the return data, this research concentrates on
determining two pieces of information for an independent function call:

1) The earliest point in the code to safely initiate a data request for the call and,
2) The latest point that the call's return data can be safely retrieved.

3. Background
This research effort involves the use of similar techniques applied in other related fields. The following
sections describe consanguineous research in the areas of parallel programming, futures, remote

procedure calls and code transformations such as vectorization and loop parallelization,



3.1 Tuple Pre-Fetch

Researchers at Yale have proposed [CARRI90) an optimization technique similar to the one described in
this paper, Their optimization, called fuple pre-fetch, focuses on breaking the performance bottleneck
created by a centralized TS managing process. However, at Yale the emphasis is placed on control flow
and not on data flow. Their proposed research is closely related to work associated with loop
parallelization. In [CARRI90), Carricro describes tuple pre-fetch as ability, given that an in or rd

downstream must be executed, to initiate that in or rd operation early.

Tuple pre-fetch is often applied to in or rd operation in loops. Once it is known that an in or rdina
loop is guaranteed to be executed, say i the next iteration, the in or rd operation is initiated. The
primary difference between tuple pre-fetch and instructional footprinting is the extent at which flow
analysis is performed. Tuple pre-fetch is only interested in initiating Linda operation early, while
instructional footprinting also addresses the benefits of delaying the receipt of tuple data until it is

needed.

3.2 Futures

Futures, which were first developed and implemented by Halstead [HALSTS5] for a Lisp variant called
MultiLisp and intended for use on a multi-processor machine, provide an éxplicit means of parallel
processing. Through the use of futures, MultiLisp can Spawn concurrent computations and provide for
their synchronization. Futures provide of means a parallelizing activities, but unlike instructional
footprinting it only addresses half of the problem. The concurrency provided by futures begins at the
function invocation whereas our research provides for the early initiation of concurrency. In addition to
Lisp, futures have been used in other languages such as C [CALLA90] and C++ [CHATTS89]. Listov
[LISTO88] proposes the use of a new data type called a promise that is designed to support asynchronous
calls. Promises are similar in functionality to futures but are based upon an asynchronous communication

mechanism, the call-stream,



3.3 Remote Procedure Calls

A remote procedure call (RPC) is one example of an independent function. In most cases, RPCs are
synchronous requiring the process initiating the call to block while the remote procedure executes
[BIRRE84 and WEIHL89). Listov addresses the need for asynchronous calls in [LISTO86] and proposes
the use of a new data type called promises to be used in conjunction with an asynchronous
communication mechanism called call-streams [LISTO88]. Call-streams are used to make an RPC
asynchronous while a promise, as Listov describes it, can be considered a "clajm ticket" for an RPC that
must later be used to "claim" the returned result. However, unlike instructional footprinting, it is up to
the programmer to decide when to initiate the call-stream and when it is needed to claim the return value
of the called function. In our research, safe positions for initiating and retrieving return data for an

independent function call ate automatically determined without any guidance from the programmer,

3.4 Program Transformations

Parallelizing and vector compilers make use of code transformations to automatically exploit inherent
para.]]elism in serially written programs. This automatic detection of parallelism and/or vector operations
is beneficial because of the abundant amount of code already written for non-parallel/vector machines.
Therefore, the vast computing resources of vector and parallel machines can be tapped from existing
code with little or no modification, Much work has been done to determine data dependencies between
instructions [BANER76, BANER79, BURKEY0, LIS0 and WOLFE90] including in-depth analysis of
reference patterns involving subscript and structure variables [BALAS89, BURKES6, CHASE9(} and
LARUS88]. Arnay vectorization and loop patallelization are two research areas that rely on extensive
control and data flow analysis in order to create vector/parallel programs from serial ones. Similarly, the

determination of instructional footprints relies on the same types of controf and data dependency analysis.

4. Instructional Footprint Model
The Instructional Footprint Model (IFM) is a tool for analyzing the interaction of program instructions.

Similar to Berstein's conditions that are used to determine the interdependence (or independence) of



processes [MAEKA87], IFM can be used to ascertain the footprint of instructions (i.e. how far back or
forward in a program an instruction can be moved). The footprint is primarily defined by the existence of
certain dataflow dependencies. These dependencies create restrictions on instruction movement. The
model can be used to analyze the mobility of an instruction relative to other instructions or as a compiler

optimization technique to increase the performance of a program.

The model is not designed to footprint all instructions of a program at once, However, it can be applied
to any individual instruction within a program to determine its footprint. Once an individual instruction
has been identified, the model can be applied to determine the heel and foe of the footprint. The heel is
the earliest position and the toe is the latest position in the code where an instruction can be safely
executed. The question is what is safely executed. The following example illustrates where the heel and

toe of a given instruction can be safely placed for program execution,

PROCEDURE foo

BEGIN

I =L+ m; (1)
M=M+1;

L =M+ 1;

X=X *1I+K;

L = 1200;

J = 500;

K=1I+ZX; {(7)
END

Figure 1.  Example of Instruction Footprint.

In determining the footprint of instruction 4, the carljest position that the heel can be safely placed is
between instructions 1 and 2. The reason the heel cannot be placed before instruction 1 is due to the fact
that variable I is being written to in instruction 1 and referenced in instruction 4. ‘This creates a conflict
beiween the two instructions, therefore instruction 4 cannot be safely moved past instruction 1.
Similarly, the toe is positioned between instructions 6 and 7 because there is a contlict with the reading

and writing of X between instructions 4 and 7.



The conflict of variables is one criteria for determining the safe placement of the heel and toe of
instructional footprints. Another determining factor for safe placement is the identification of procedural
boundaries as seen in Figure 1. The placement of instruction 4 obviously cannot leave the confines of its
procedure because the semantics of the procedure would be changed. This nesting restriction applies not
only to procedures but to conditional and looping constructs as well. These nesting restrictions help
define what are called the hard boundaries which are simply the outermost limits for the placement of the
heel and toe. The actual positions of the heel and toe (called the soft boundaries) are located within the
limits of the hard boundaries. This model is geared toward procedural languages, therefore procedural
boundaries will always act as hard boundaties. This means that given an instruction to footprint, we only

have to address the code between the BEGIN and END of the defining procedure.

For a given instruction, the first step in the footprint determination process is to define the hard
boundaries for that instruction. Once the hard bouﬁdaries are in place (above and below the instruction),
the process of locating the heel and toe can begin. This process simulates the movement of the
instruction to be footprinted backward in the code to find the heel and then forward to find the toe. The

movement of an instruction is complicated when conditional and looping constructs are encountered.

PROCEDURE foo

BEGIN
IF (I < 100)
I =1L +M; (1)
M=M+1; (2)
L =M+ 1; (3)
ENDIF;
X=X*1I+K; (4)
L = 1200; (5)
J = 500; (6)
K=71+ X; {(7)
END

Figure 2. Example of a Complicating IF.

For example, in Figure 2 the heel of instruction 4's footprint cannot be placed between instruction 1 and 2
(where the conflict occurs) because it is within a conditional. This would change the semantics of the

code. Because a conflict has been found within the conditional, the heel cannot be moved inside the IF.



It would be helpful, and less complicating, to know if a conflict exists before entering into the IF. This
can be accomplished through the use of aggregare instructions which represent a group of instructions.
For example, in Figure 2 the entire IF statement can be combined into a single aggregate instruction.
This means that one check, instead of many individual ones, can be made to determine if a conflict exists
between the IF and instruction 4. Because a conflict does exist, the IF can be deaggregated into its
component instructions for analysis. The information about the existing conflict can be used (before
entering the IF) to make a decision about the placement of the heel. The IF is one of four aggregate
instructions addressed in this model. The others are the WHILE, REPEAT, and BLOCK. The specific

details for handling conflicts for each of the aggregate instructions are discussed in Section 4.1.

Consider the code segments between the hard boundaries and the instruction to be footprinted. The
process of determining an instruction's footprint can be simplified by first taking these program segments
and aggregating them each into a single instruction. In the process of determining the heel and toe
positions, deaggregation only takes place when the instruction being footprinted cannot move past the
aggregate instruction due to conflicting data flow dependencies. Once the instruction is deaggregated,
the process of finding the heel and toe of the footprint continues. The specific details concerning the

termination of the footprint determination process are described in Section 4.2,

4.1 Model Deseription

In order to adequately model control and data flow in a program, the IFM model includes representations
for instructions as well as programs. This section describes how programs and instructions are modeled
as well as provides definitions for hard and soft boundaries. In addition, the aggregation and

deaggregation functions are described.

4.1.1 A Program in the IFM Model
A program in the IFM model is a sequence of instructions where each instruction has two important

attributes - computation and control. The questions are 1) what is considered an instruction and 2) how



are the concepts of computation and conirol captured in the IFM model. The answer (o the first question
is analogous to what constitutes a line of code in a program. For instance, one person may tally lines of
code by counting semicolons while another may count the number of statements. In either case, what is
considered a line of code is determined by the person performing the analysis. Similarly, the pieces of a
program important to this model are considered instructions. Figure 4 shows examples of instructions

(tepresented as nodes) as they relate to the BLOCR, IF, WHILE and REPEAT statements.

Proc(i);
<<
+_,_
a) Block of code b) IF Statement ¢) WHILE statement d) REPEAT statement

Figure 4. Sample Instruction Graphs of Code Segmenits.

As seen in Figure 4a, assignment and procedure calls are considered instructions in the IFM model. The
conditional parts of the IF, WHILE and REPEAT are also regarded as instructions. Although the ENDIF,
ENDWHILE and the REPEAT do not perform any computation, they do provide flow of control for their
constructs. They are viewed as distinet instructions because they provide flow of control and are useful
in the formulation of other parts of the model such as the aggregate and deaggregate functions. Notice
that the THEN and ELSE keywords have not been represented in the IF graph of Figure 4b. The reason
is that the distinction between the THEN and the ELSE parfs is not imporfant to the development or use of

the IFM model, Therefore, they are not considered instructions.

The answer to the question How are the concepts of computation and control captured in this model? is

reflected in the definition of a program. A progtam, in formal terms, is a pair ( 1, € ) in which both 1

10



and C are unordered sets representing computation and control respectively.  Recall that when an
instruction is being footprinted, we are only concerned with the program segment between the BEGIN
and END of the defining procedure. This means that for each instruction to be footprinted, | and C can
be focused to define only the program segmént between the procedure’s BEGIN and END. For a progtam

(segment) P, the following defines | and C:

I - An unordered set containing the instructions in program P.

C - An unordered set of control flow pairs. These control
flow pairs describe the entire flow of control for P. For
example, a contrel flow pair (1 2) means that instruction
2 can be executed immediately after instruction 1.

To clarify the roles that [ and € play in the definition of a program, consider the following example.

PROCEDURE bar

BEGIN
I = 2; {1)
WHILE (I > 0) (2)
I=(I-1) + (I-2); (3)
ENDWHILE; (4)
K =1I; {3)

END

Figure 5. Example Procedure for the Construction of | and C.

The setl wouldbe { 1 23 4 5 } representing actual statements and the set C would be {(12)(23)
(2 5) (3 4) (4 2) } representing control flow possibilities between statements. The control flow pairs
of C capture the flow of control for the procedure. The pairs (2 3) and (2 5) represent the flow entering

and exiting the loop. The pair (4 2) represents the looping back to test the conditional of the WHILE.

Effectively, for a given program P, the set | is constructed by including all components of program P that
are considered an instruction. The set C is constructed by taking each instruction (assignments and
procedure calls), say i, and adding to C the control flow pair (i j) where j is the instruction immediately

following i in lexographical order.

11




Two accessory functions, T and ¢, facilitate the process of determining footprints. Given an instruction
and the set C , these functions will return a set of instructions. For T (the 7O function), the set returned
indicates the instructions that can immediately follow i in execution. The FROM function, ¢, returns a
set of instructions that can immediately precede i in execution. The following are the formal definitions

of T and ¢.

©(i,C)
¢ (i,C)

{j | (i j)isanelementof C)
{j | G i)isanelement of C1

Consider the example procedure in Figure 5. In applying T and ¢ to instructions 2 and 5 respectively,

1(2,C) returns {3 5} and §(5,C ) returns {2}.

4.1.2 An Instruction in the IFM Model

Recall that the term instruction refers to parts of a program that play an important role in characterizing
the IFM model (see Figure 4 for examples). In the same spirit, the attributes associated with instructions
mﬁst be related to the model. In particular, we must address the flow of data (the input ;md output of the
instruction) and the concept of aggregation as they pertain to individual instructions and the IFM model.
An instruction in the YIFM model can be described using three aitributes - the read set, the write set and
the component instruction sct. With respect to the flow of data, an instruction can be considered a black
box performing a computation using some input (the read set) and producing some output (the write set).
While the specifics of the mapping are not necessarily important, the resulting read and write set are.
The concept of aggregate instructions is incorporated into the model through the use of the component
instruction set. In other words, the component instruction set defines the segment of code an aggregate
instruction represents. More intuitively, an aggregate instruction represents a collection of instructions
(any of which can also be an aggregate instruction) whose unique identifications are elements of the

component instruction set. These three set are defined as:

In; - The component instruction set is an ordered set
of instructions representing a segment of code.

12



Pi - The read set is an unordered set of variables

such that x is a member of %; iff x is non-
destructively referenced in instruction i.

w; - The write set is an unordered set of variables

such that x is a member of ; iff x is
destructively referenced in instruction i.

For the IF instruction, Tt requires that the THEN and ELSE blocks of code be single instructions.
Therefore, if the THEN and ELSE are not single instructions, they must first be aggregated into block
insfructions before the IF instruction can be aggregated. This is also true of the looping bodies for the
WHILE and the REPEAT. These restrictions allow the aggregation and deaggregation functions to be
defined in an uncomplicated fashion. For non-aggregate instructions, JT; is defined to be the single

element set {i}.

4.1.3 Aggregation Function

Before the footprint of an instruction can be determined, the segments of code between the instruction to
be footprinted and the hard boundaries need to be aggregated info a single instruction, The underlying
motivation for aggregation, when searching for the soft boundaries, is to avoid repeated complex and
costly analysis of IFs, WHILEs and REPEATs. This can be achieved by aggregating sets of instructions
and their associated atiributes into aggregate instructions and then checking the aggregated attributes as a
single entity for data flow dependency conflics. Effectively, program segments can be collapsed into

aggregate instructions.

4.1.4 Deaggregation Function

In the process of determining an instruction's footprint, aggregate instructions that have data flow
conflicts with the instruction being footprinted need to be deapgregated in order to process the individual
instructions in more detail. Deaggregation involves the modification of I and C (representing the

program containing the aggregate instruction) to reflect the replacement of the aggregate instruction with

13



its component instructions. The following figure shows procedure bar with the WHILE instruction

aggregated.

PROCEDURE bar l={1 2.4 5%}
BEGIN C={(1 2.4) (2.4 5)}%
-—— Hard Boundary -—-
I=2; (1) P2.4 = + =
WhileInst; (2.4) wsd = 03 +p<5’3 z f I %
K = I; (footprint inst) (5) Ty 4 = { E 347}

~—— Hard Boundary ---
END

Figure 8. Example of the Aggregation of the WHILE from Figure 5.

Because the WhileInst conflicts with the instruction to be footprinted (variable I), the whileInst
needs to be deaggregated.  Applying deaggr( WhileInst, I, C ) results in instruction 2.4 being
replaced with instructions 2, 3 and 4. In addition, the control flow pairs involving 2.4 need to be replaced
with those for the WHILE structure. This resulis ink={1 2 3 4 5} and C-{a223)25»G9

(4 2)}. A formal definition of the deaggzegation function is provided in Appendix C.

4.1.5 Hard and Soﬁ Boundaries

In searching for the footprint of an instruction, the placement of the heel and toe is limited by certain
boundaries. Most notably are the boundaries imposed by functions. The footprint of an instruction must
remain within the BEGIN-END boundaries of the defining function. This class of boundaries is called
hard boundaries and is imposed by the language constructs that represent block-level abstractions. For
the previously defined canonical language, no footprint can cross a functional, conditional or looping
boundary. That is, like the BEGIN-END boundaries of a function definition, if the instruction being
moved resides within a loop or a conditional statement, then its heel and toe must remain within that

construct. Other hard boundary limitations may be applied depending on the target language being used.

The soft boundary positions, i.c. those that define the heel and toe of an instruction’s footprint, are

determined primarily by variable contentions between instructions. Moving an instruction backward (or

14



forward) in a program reduces to the problem of successively swapping that instruction with its
predecessor (or successor). In order to safely swap two instructions, i and j, the read/write sets of one
cannot conflict with the write set of another. In addition, other restrictions must be observed when
determining a soft boundary involving IFs, WHILEs or REPEATs. These construcis alter the normal
sequential flow of control for a program and need to be addressed in the determination of the soft

boundaries.

Suppose, for example, that the instruction being footprinted conflicts with an instruction in an TF. The
conflict may be with the THEN part, the ELSE part or both. Because either paih might be executed, the
difficulty is knowing (at compile-time) which part is to be executed at run-time. A solution is fo assume
that both the THEN and the ELSE parts are to be executed and then place the soft boundary accordingly.
In other words, propagate the instruction being footprinted through the code for both the THEN and ELSE

parts. This results in a split position for the soft boundary.

Altogether, conditions related to soft and hard boundaries define the entire set of movement restrictions
for an instruction. The soft boundary will never be outside the hard boundary and will always define
cither the heel or the toe of .thc instruction (depending on the direction the instruction is being moved).
Effectively, hard and soft boundaries exist on both sides of the instruction being footprinted, and thereby,

restrict the size of its footprint,

4.1.6 Function Calls, Gotos, and Pointers

In the model described thus far, function calls have not been considered, the control flow effect of GOTOs
has been ignored and the ability of referencing other variables through the destructive and nondestructive
dereferencing of pointers has been disregarded. These three programming capabilitics can be

incorporated into the model through compile-time analysis and/or the use of run-time extensions.

15



With respect to function calls, the difficulty in the IFM model is in determining what side-effects and
potential aliasing are caused by a function call. At compile-time, the IFM model can either assume the
worst case scenario - there is always a conflict -- or perform some form of interprocedural side-effect

and alias analysis at either compile-time, run-time or both.

With the minor exceptions of the IF, REPEAT and WHILE, the instructional footprint model so far has
assumed a sequential flow of control. In other words, GOTOs have been purposely excluded. However,
the use of GOTOs can be ignored. According to Ramshaw [RAMSHS8], it is possible to transform a
program with GOTOs into a functionally equivalent one without GOTOs. Therefore, any program with

GOTOs can be transformed into a GOTOless program before applying the 1FM model.

So far the model has disregarded the use of pointers, assuming all references are made to non-pointer
variables. With pointers, it is impossible in most cases to determine if two instructions conflict when
pointers are involved and therefore poses a difficult problem. The amount of compile-time analysis that
can be achieved for pointers is minimal because the values of pointers are not known at compile-time.
However, it may be possible o instrument the program being analyzed with run-time extensions in order

to provide some form of dynamic pointer analysis.

4.2 Algorithmic Framework

The IFM model alone is not enough to model code motion; an algorithmic framework is needed to
provide a basis for determining the footprint (the soft boundaries) of instructions. This section describes
the aggregation setup process needed for determining an instruction's footprint. In addition, the

algorithm for determining an instruction’s footprint is also discussed.

4.2.1 Aggregation Setup Process
Given an instruction to be footprinted, there exists two segments of code between the hard boundaries

and the instruction to be footprinted. The soft boundaries will be placed between these two segments.

16




Before the heel and toe of an instruction's footprint can be determined, nonetheless, it is expeditious to
convert all IFs, WHILEs and REPEATS into aggregate instructions. In addition to the compound
stalements mentioned above, blocks of code can and should be aggregated into single instructions. As
stated previously, the reason for this aggregation is to simplify the footprint determination process.
Dealing with compound instructions as a single unit is conceptuaily simpler than working with
Instructions on an individual basis. The goal of the aggregation sefup is to take each of the program
segments between the hard boundaries and the instruction to be footprinted and perform successive

aggregations until the segments of code are single aggregate instructions.

The Aggregation Setup Process is the prepatory step to determining the heel and toe (the soft boundaries)
of an instruction's footprint. Due to the restrictions on the aggregation function (i.e. the bodies. of code in
the IF, WHILE and REPEAT must be single (possibly aggregate) instructions) the order in which
sequence of instructions are aggregated is critical. Given the set of instructions shown in Figure 7, the

aggregation order of the setup process proceeds as shown,

PROCEDURE ordering

BEGIN
————— Hard Boundary -——--—
K = e +
IF (X < 100 Jommmomee e T TT7T +
THEN
X = (X=1) + (R-2)jmmmmmmmem e +
2 =72 + 1;
WHILE (Y < X = B)omme—mee +
A =A% Bjemm—r + [
C=cC*a; (1) (2) (3} >} (e)
£ =7 4+ I;-—u-= + |
ENDWHILE = + ‘
Y = ¥ - L +
ELSE
Y = (Y-1) + (Y42)jmmmmmm +
=1Y; (4)
2 = 0 _._l +
S +
I e +
Value = X * E; {Instruction to be footprinted)
Next = X + ;e T T +
Prev = Prev - 1; (1)
NewOne = Value + 1 e +
————— Hard Boundary --—---—
END

Figure 7. Example of the Aggregation Setup Process Order.

17



The aggregation setup process is applied twice in the above example, first to the segment of code
between the upper hard boundary and the instruction to be footprinted, and then to the segment of code
between the footprint instruction and the lower hard boundary. Notice that the aggregation of
instructions starts from the inside out. This is due to the restrictions of the aggregation function. For
example, the body of the WHILE loop needs to be aggregated into a single instruction before the WHILE
can be aggregated. The same applies to the body of the REPEAT as well as to the THEN and ELSE paris

of the TF.

4.2.2 Footprint Determination

The previous sections have laid a foundation for the actual determination of an instruction's footprint.
Recall that the aggregation setup process takes the segments of code between the hard boundaries and the
instruction to be footprinted and aggregates them each into single instructions. Following this process,
rules regarding conflicts of variables and the rules regarding soft boundaries within IFs, WHILEs and
R.EPEA'fs (described in Section 4.1) are applied and the footprint of an instruction is determined. In the
footprint determination algorithm, the instruction being footprinted and its neighbor instruction are
checked for variable conflicts to see if they can be swapped. If the swap is performed, then the
footprinting process continues with the instruction to be footprinted and its new neighbor. Otherwise, the
instruction type of the neighbor instruction is checked. If it is not an aggregate instruction, then the soft
boundary is found. If the neighbor instruction is 2 REPEAT or WHILE aggregate instruction, however,
the processing stops - the soft boundary is found. Otherwise, deaggregation occurs for the neighbor
instruction and the footprinting process continues with the footprint instruction and its new neighbor. In
the case where the neighbor instruction is an aggregate IF instruction, the footprinting process is

performed twice - first for the THEN part and then for the ELSE part.

5, Preliminary Results
Two experiments have been performed in order to show the utility of instructional footprinting as 2

performance optimization. In both experiments, programs are analyzed (according to the IFM model)
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and timings are taken for the original (un-optimized) program and then again for the optimized one. The
first experiment is the dining philosophers problem and the second js 2 program simulating a distributed

and redundant database system.

5.1 The Dining Philosophers Problem

The dining philosophers problem is a classic problem often used to measure the expressiveness (or lack
thereof) of a parallel programming language. Although this research is not intended to prove the
expressive capabilities of the Linda language, the dining philosophers problem is used for two reasons,
First of all, the dining philosophers problem and its solutions are generally known and readily understood
by many researchers. The second reason is that program structures or techniques found in solutions to the

dining philosophers problem typically can be found in solutions to more "real world" problems.

In this experiment, each philosopher is an EVATed Linda process that simulates a series of process
cycles. A process cycle consists of thinking, acquiring a "room ticket,"? picking up two chopsticks,

eating and then replacing the room ticket and the chopsticks.

The time spent thinking and eating by each philosopher is configurable in terms of how many seconds to
sleep, and for this experiment was set to zero, In the optimized version of the dining philosophers
routine, three INs (representing the room ticket and the two chopsticks) are initiated before thinking
because the INs do not conflict with the code in the think() routine. Initially, the dining philosophers
program is mun with 5 philosophers and 5 process cycles. In this run, the three INs of the philosopher
routine are executed 25 times accounting for a total of 75 IN requests made to the kernel. The program

is run 10 times and the average execution time js taken. The speedup from the original program to the

2 The "room ticket" is used to ensure against deadlock. If there are N seats at the table (ie. N
philosophers), then N-1 room tickets are issued, and therefore only allowing N-1 philosophers to
eat at the same time. This prevents the situation of where all philosophers want to eat at the
same time, and each pick up their left chopstick and wait forever for their right chopstick.
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optimized program is approximately 41%. This speedup shows a positive effect of initiating TN

operation early,

Dining Philosophers

Process Cycles= 5

10 + Osginal Sokuﬂon\ /
B —
Optimized Solution
L )

g
g / /
AL .
2 / 47%
= — . 37% 45% -
(% = speedup)
4
C
2 4
0 } t } } t t f i
2 3 4 5 ] 7 [} g 10

Number of Philosophers (processes)

Figure 8. Graph of Dining Philosopher's Execution Times vs Number of Philosophers.

Several other runs were made with the dining philosophers program where the number of philosophers
and the number of process cycles were changed. Figure 8 shows a graph plotting the execution times
versus the number of philosophers. The number of process cycles for this series of runs is held constant
at 5. The relative speedups are show below the optimized solution line. Notice that as the number of
philosophers (EVALed processes) increases, the speedup also increases. Also, notice that both lines have
"inconsistencies." The line representing the original solution shows a drop in execution time in going
from two philosophers to four and then proceeds to rises in a linear fashion afterward. In contrast, the
line representing the optimized solution does not show this initial drop but rather contains a couple of
plateaus. Further analysis is needed (with possibly more data) in order to explain the .sometimcs non-

linear results.
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3.2 The Distributed Database Problem

Another experiment performed is a distributed database simulation. The simulation consisted of three
sites (EVALed processes) each holding a database. The system consisted of a total of three records each
of which were duplicated at exactly two sites. The system provided ten different types of transactions (a
mixture of reads and writes of different records) and each site performed exactly two transactions each.
The types of transactions performed by each site are random, as well as, the simulated processing time of

each site,

The source code for this simulation was analyzed and it is found that only two routines could be
optimized - the routines for gaining exclusive and shared record locks. In each lock routine,
approximately 1 TN operation was optimized by initiating the IN before a printf routine. Due to the
randomness present in the program, the speedup varied; ranging from no speedup to approximately 10%,
Why such a discrepancy in speedups between this experiment and the one performed for the dining
philosophers problem? First of all, it is not the realistic expectation of this research investigation to
achieve speedup with every program. Moreover, Vwe fuily expect to find programs for which speedup
cannot be achieved. In fact, one of the goals of this research effort is to understand why it is that certain
programs are amenable to optimization and why other programs are not. For the database experiment,
any number of reasons could account for the lack of speedup, ranging from the number of times the INs
were cxecuted to the fact that the INs in the database program had return data while INs in the dining

philosophers program did not.

These two experiments point out two important facts. First, speedup can be achieved in programs that
apply the IFM model. Secondly, performance increases are not realized in all cases; some programs, for
any number of reasons, simply cannot be optimized, However, as exemplified by our two experiments,
what is important is not only achieving speedup in some programs, but realizing that some programs or
classes of programs obtain performance increases while other do not, and understanding why such

behavior occurs.
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6. Conclusions and Future Work

This paper addresses the issue of program performance improvements through the use of instruction
decomposition and code motion. Essentially, the goal is to transform synchronous, independent function
calls to asynchronous ones. The approach presented in this paper uses an instructional footprint model to
defermine an instruction’s footprint. This footprint can then be used to automatically transform a
synchronous call into an asynchronous one. The preliminary results of this research effort demonstrate
the utility of instructional footprinting. The dining philosophers experiment, experiencing speedups
ranging from 33% to 64%, demonstrates the feasibility of the instructional footprinting approach.
However, not all programs show such promising speedups. The distributed database experiment
exhibited less than a 10% speedup when optimized, indicating that not all programs are amenable fo

optimization.

As future work, the effect that different programming structures and techniques has on achieving
optimization speedup needs to be addressed. In addition, how speedup is affected by the use of different
patallel programming paradigms needs to be addressed as well. Another area of future work has to do
with the footprinting algorithm itself. Given that there are several instructions in a program to footprint,
it is not clear what the "optimal" footprinting order is and whether or not it would require multiple passes.
Not enly should the relationship among insiructions to be footprinted be analyzed, but the relationship
between an instruction to be footprinted and all other instructions must be analyzed as well. Finally, the
question of whether program intent is preserved when a program is optimized using instructional

footprinting needs to be addressed.
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