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Abstract

Three strategies for parallelizing components of the mathematical software package ELL-
PACK are considered: an explicit approach using compiler directives available only on the
target machine, an antomatic approach using an optimizing and parallelizing precompiler, and
a two-level approach based on extensive use of a set of low level computational kernels. Each
approach to parallelization is described in detail, along with a discussion of the effort involved.
In connection with the third strategy, a set of computational kernels useful for PDE solving
is proposed. We describe our experience in parallelizing six problem solving components of
ELLPACK using each of the three strategies and give performance results for a shared memory
multiprocessor. Our results suggest that the two-level strategy allows the best balance among
programmer effort, portability, and paralle! performance.

1 Introduction

Parallel computation and mathematical software packages are two key components of today’s high
performance scientific computing environment. Tt is widely recognized that well-written mathemat-
ical software packages can be extremely useful in building systems to solve large scale numerical
problems. The community has come to depend on the availability of good algorithms, implemented
in quality software, for a great number of problems. The significance of parallel computation for
large scale scientific computing is also widely recognized. The contemporary scientific comput-
ing environment is characterized by a wide variety of high performance vector and for parallel
computers—irom supercomputers with a few very powerful vector processors, to shared memory
machines with tens of processors, to distributed memory machines with hundreds or thousands of
processors. As parallel and vector computers become more and more common, and especially as
they begin to be used as general purpose scientific computing engines, there is a great need for a
wide variety of quality mathematical software packages on a wide variety of machines.
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At present there are few examples of large numerical packages available for parallel machines.
Strout, et al. [23] report on converting an ODE package for the Cray X-MP. Skjellum and Bald-
win [22] describe a set of portable numerical algorithms for message-passing machines. There is
work underway at Purdue toward parallelizing parts of ELLPACK for distributed memory ma-
chines [9]. Vectorized versions of TTPACK have been developed [10], and recently 2 parallel version
of TTPACK for the Cray Y-MP has been considered [18]. LAPACK [1] is a large package, similar
in functionality to LINPACK and EISPACK, and designed to be portable across a range of high-
performance machines {mostly shared memory vector multiprocessors). An important component
of the LAPACK project is the use of a set of basic linear algebra kernels on which the softwaze is
built. The third strategy for parallelization considered in this paper follows the LAPACK philoso-
phy in this regard. In addition to these research projects, there are several commerciaily available
libraries that have been vectorized, but very few which are available for a broad class of parallel
machines.

The lack of mathematical software packages for parallel machines is not surprising given the
rapid evolution in hardware, the unstable and immature software environments on most new pai-
allel machines, and the many difficulties inherent in building good parallel mathematical software.
Developing a completely new package for parallel machines is a very expensive and time consuming
process. Given the importance of having good mathematical software on parallel machines and the
huge investment in existing sequential packages, it is natural to consider ways in which existing
packages can be evolved toward efficient implementations on a range of parallel machines. Unfor-
tunately, parallelizing existing mathematical software packages is also a very difficult process: they
are large, complex, and often have many castomers who do not want to see significant changes
made to their favorite package (other than improved performance on the new parallel machines, of
coursel).

The purpose of this paper is to compare three approaches to parallelizing a large mathematical
software package for a shared memory multiprocessor. We focus on ELLPACK [20], a well-known
package for solving elliptic partial differential equations (PDEs). The three strategies considered are
explicit “by-hand” parallelization using nonportable language extensions, automatic parallelization
using a commercially available precompiler, and a two-level approach based on explicit paralleliza-
tion of a set of low-level primitives and reformulation of the code, as needed, to use these primitives.
In connection with the two-level approach, we propose a set of kernels appropriate for PDE solving
software. Section 2 describes the three approaches in more detail.

Tn order to illustrate and evaluate the three strategies considered, we have used each strategy
to parallelize six different ELLPACK problem solving modules. These include three discretization
modules (five point star, hodie, and hermite collocation), two linear system solution modules (linpack
spd band and jacobi cg), and a triple module (hodie fff) which includes both discretization and
solution. In Section 4 we describe our experience in parallelizing these codes and report parallel
performance for a test problem on a Sequent Symmetry S81 with up to 16 processors. Section 3
describes the setup for our numerical experiments. We conclude with a summary and discussion in
Section 5.
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2 Three strategies

2.1 Explicit parallelization

Our first approach to parallelizing the ELLPACK modules is an explicit, “by hand” strategy.
Portability is obviously sacrificed with this approach, and hence it is not a realistic alternative for
widely used packages. However, it does serve as a usefu] baseline for comparisons, allowing us to
see just what is possible when performance on only one machine is of primary importance. For this
experiment we did only relatively straightforward parallelization: code rewriting and reorganizing
was allowed, but we did not devote the significant additional effort needed to squeeze every last
ounce of performance out of the code (e.g., unrolling loops, rewriting key sections in assembly
language, etc.). We feel it is impractical to expect that kind of effort to be expended across an
entire mathematical software package.

The primary language extension used was the DYNIX Parallel Programming Library function
m_fork [L7] which creates processes (or re-uses existing processes) and assigns them to execute copies
of a specified subprogram. The m_fork call is also 2 synchronization point in that after finishing
with its copy of the specified subprogram, the parent process waits until all child processes have
completed their execution of the process before proceeding. Under this scheme, the logic to agsign
work to processes must be supplied by the programmer. Sequent’s ATS FORTRAN compiler
provides a set of special compiler directives which allow loops to be parallelized without directly
using the Parallel Programming Library calls. The DOACROSS directive is used to parallelize
a loop. The compiler automatically translates the DOACROSS directive into the appropriate
dedlarations and m_fork call needed to execute the body of the loop in parallel.,

2.2 Automatic parallelization

A second general approach to parallelizing large mathematical software packages relies heavily
on automatic detection of parallelism by compilers. The obvious potential advantages here are a
reduction in effort on the part of the programmer and a degree of portability (to the extent that
such tools are available on other machines). It is widely recognized that automatically recognizing
potential parallelism, and performing the necessary code transformations, is an extremely difficult
problem. Hence, a major goal of such software tools is to provide good feedback to the user about
what parts of the code could and could not be parallelized. In this way the user may be able to
collaborate with the compiler, achieving reasonably efficient code with less effort than by doing the
entire process alone.

We used the KAP/Sequent FORTRAN source-to-source preprocessor developed by Kuck &
Associates [12]. KAP trys to recognize parallelism in sequential code and automatically convert
programs to run in parallel using Sequent parallel programming directives. KAP also does opti-
mizations to improve the scalar performance of codes. There are KAP products available for both C
and FORTRAN, and for a variety of shared memory (vector) multiprocessors. With only a couple
of exceptions (noted in Section 4) we used the default KAP options for all our experiments.

2.3 A two-level strategy

The third major approach we consider for parallelizing a large mathematical software package is a
two-level strategy built on parallel implementations of a set of low level primitives. This approach
is motivated in essentially the same way as the threc levels of Basic Linear Algebra Subprograms
(BLAS) [13, 6, 5]. In fact, for PDE applications, these kernels themselves are of considerable

3



Table 1: Parallel kernels for pde solving.

Name (Source) | Function

daxpy  (BLASL) | vector update: y < a@ +y

dcopy (BLAS1) | copy one vector to another: y «

ddot (BLAS1) | dot product of two vectors: gy

dgbmv  (BLAS2) band matrix vector multiply: ¥ «— adz + By

dgemm (BLAS3) | matrix matrix multiply: ¢ «— aAB - 3C

dgemv  (BLAS2) | matrix vector multiply: y « aAz + By

dgthr  (SPBLAS) | vector gather: =i < Ui

dscal (BLASL) | scale a vector by constant: & « oz

dsctr  (SPBLAS) | vector scatter: g, < Zi

dsyrk (BLAS3) | perform 2 symmetric rank k update: €'« aAAT + BC
dtbsv (BLAS2) | solve a single banded triangular system:  « A le
dtrsm (BLAS3) | solve triangular systems of equations: B+~ aAlB
dyasx2 (ITBLAS) | sparse matrix-vector multiply: y; < ¥ + & 255’:1 i ;Tm; 4

dvadd componentwise vector addition: y; «— &; + %

dvfill vector fill: &; «— @

dvmult componentwise vector multiplication: #; «— Z:i¥i
dvrecp componentwise vector reciprocal: 4 < 1/

dvsqrt componentwise vector square root: 7 — /i
eval_grid evaluate a real function on a grid, returning a matrix
eval_grid_int evaluate an integer function on a grid, returning a matrix
foreach_point execute a subroutine once for each point in grid
foreach.hline execute a subroutine once for each horizontal grid line
foreach_vline execute a subroutine once for each vertical grid line
foreach_proc execute a subroutine once for each process

use. Several of the modules in ELLPACK already make use of Level 1 BLAS, so this approach is
quite natural for this package. If the number of kernels can be kept relatively small, if an efficient
implementation of the kernels is available on a given machine, and if the most time consuming code
in the package can be written in terms of these kernels, then a good balance between performance
and portability can be achieved. However, there can be considerable work involved if the existing
code makes no use of the kernels.

In Table 1 we list the kernels used for the experiments reported in this paper. The first set are
taken from the dense BLAS, sparse BLAS [3] or iterative BLAS [16]. The leading “d” indicates
double precision data. The second set of five kernels are simple vector operations. The final set of
six kernels are more unique to PDE solving. For example, it is useful to have an operation such
as foreach_point which allows a given computation to be performed in parallel at each grid point
of a rectangular grid. Similar operations over finite element discretizations are obviously possible.
We also need operations that apply a function to each horizontal or vertical grid line. It may also
be efficient to organize a foreach.point computation by lines in order to improve granularity. The
foreach_proc function is used for initializations that need to be done only once for each process.
Note that the members of this last block of operations are not kernels in the traditional sense, in
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that they do not represent a single simple operation. Instead, they might be termed “operators” or
“parallel control structures” since they take an arbitrary function and apply it at each grid point,
line, process, etc. For our purposes they do meet the most important criterion for kernels: they
hide nonportable details in a small section of code, allowing the large majority of code to remain as
is. For purposes of this paper we did no special optimizations of the kernels themselves. We simply
implemented them in FORTRAN, using the language extensions available under Sequent’s ATS
FORTRAN compiler. FORTRAN listings of our current Sequent implementations of the last set of
kernels are included in the appendix. Parameters are defined there as well. It is worth mentioning
that each of the last set of kernels takes only a small fixed number of parameters. This means
that to do complex operations at each point, line, etc., one may have to pass considerable data in
COMMON blocks. This is not attractive in many cases. A better alternative might be to allow
a variable number of parameters to be passed along with the function or subroutine which is to
be applied in parallel. A kernel allowing this would not be implementable in FORTRAN on many
systems, however.

3 An experiment

ELLPACK is a system for numerically solving elliptic PDEs. It consists of a very high level language
for defining PDE problems and selecting methods of solution, and a library of approximately fifty
problem solving modules. Each of the modules performs one of the basic steps in solving an
elliptic PDE: discretization, reordering of equations and unknowns, linear system solution, etc. It
is straightforward to use ELLPACK to solve linear elliptic PDEs posed on general two dimensional
domains or in three dimensional boxes. The system may also be used to solve nonlinear problems,
time dependent problems, and systems of elliptic equations. The problem solving modules comprise
over 100,000 lines of FORTRAN.

For the purpose of this paper we focus on six modules in ELLPACK: five point star {discretiza-
tion by five point centered finite differences), hermite collocation (discretization by collocation with
hermite bicubic basis functions), hedie (discretization by nine point HODIE method), linpack spd
band (band Cholesky factorization and triangular system solution), jecobi cg (Jacobi iteration with
conjugate gradient acceleration), and hodie fft (HODIE discretization and solution by fast solver).
These modules amount to only a fraction of the code in ELLPACK, but they are representative of
the important classes of codes in the package, namely discretization modules, direct and iterative
solution modules, and so-called “triple” modules which include both discretization and solution.

In the next section we report performance for each of the six modules, using each of the three
parallelization strategies on a test problem. For all but hodie fft we approximately solve:

1

mu = f(=z,9), (1)

(6% ug)e + (67 uy)y —
where f is chosen so that the true solution is u(z,y) = 0.75¢*¥ sin(wz)sin(zy), and we impose
Dirichlet boundary conditions on the unit square. For hodie ffi the test problem is Vig —u = f,
where the right side function is again chosen so that the true solution is known. A uniform
mesh with spacing b = 1/128 (1/64 for hermite collocation) is placed on the domain, resulting
in a discrete system with 16129 equations and unknowns (16384 for hermite collocation). For the
solution modules, linpack spd band and jacobi cg, we used the linear system generated by five point
star. All computations were done in double precision on a Sequent Symmetry 581.



Table 2: Time, speedup, and efficiency for five point star. Sequential time is 15.35.

Explicit Kernel
p|{Time Sp Ef|Time Sp Ef
111543 0.99 99 |16.04 0.96 96
21 7.90 1.94 97| 810 1.90 95
41 404 380 95| 4.20 3.65 91
8| 213 721 9| 217 7.07 88

16 | 1.16 13.23 83| 1.18 13.01 81

4 Performance results

In this section we describe our experience in developing parallel versions of six ELLPACK modules
using the three strategies described in Section 2. For each module we briefly mention the most
important aspects of the parallelization process and comment on the results. In order to be fair,
we tried to devote about the same amount of effort to each approach. Thus, as mentioned above,
we only did relatively straightforward code modifications in the explicit and kernel approaches,
and we implemented the kernels themselves in a very straightforward way. We used assertions and
directives in a few cases to assist KAP in its parallelizing, but we felt it was not fair to do all
the modifications required by the explicit approach, and then give that code to KAP. If that were
allowed, then KAP’s performance would be the same as that of the explicitly parallelized code, and
KAP would only be used to put in the DOACROQSS compiler directives, a very small help in the
context of the entire effort. In Tables 27 all times are given in seconds and are the average of at least
three runs. The variation in time from run to run was less than 3%. Parallel speedup and efficiency
are measured relative to the sequential time taken by the standard ELLPACK implementation.

FIVE POINT STAR. The five point star module was written by Ron Boisvert and John
Nestor {20]. Its performance is dominated by function evaluations and arithmetic needed to com-
pute the coefficients of the discretization. In order to parallelize the main loop of this module, the
code must be modified somewhat. Each iteration of the main loop generates a single equation, and
can be done in parallel if a relatively minor dependency involving equation and unknown number-
ing is removed. A second loop which decides which grid points correspond to unknowns can also
be parallelized after some minor modifications. KAP is unable to make these necessary modifi-
cations however, since they require interprocedural analysis and knowledge of certain ELLPACK
data structures. A version based on PDE solving kernels is relatively easy to derive using dvill,
eval_grid.int, and foreach_point. Table 2 shows quite good performance for both the explicit and
the kernel parallel version of five point star.

HERMITE COLLOCATION. The hermite collocation module was written by Elias Houstis [8].
Like five point star, the majority of the work is in function evaluations and arithmetic needed to
compute the coefficients of the discrete problem. In order to parallelize the main loop which
generates the equations a few more code modifications are required than in the case of five point
siar. While KAP does parallelize a couple of minor loops, it again has no success with the most
important loops. The kernel version uses foreach_point, foreach_hline, foreach_vline, and dvfill, and
as can be seen in Table 3, achieves results comparable with the explicitly parallelized version.



Table 3: Time, speedup, and efficiency for hermite collocation. Sequential time is 12.14.

Explicit Kernel
p| Time Sp Ef | Time Sp Ef
1(11.93 1.02 102{11.97 1.01 101
2| 6.04 201 100 6.08 2.00 100
4] 3.13 388 97| 3.15 3.8 96
8t 164 740 93| 164 740 93
16 0.96 1265 79| 0.96 1265 79

Table 4: Time, speedup, and efficiency for hodie. Sequential time is 37.65.

Explicit Kernel
p| Time Sp Ef|Time 5p Ef
113963 095 953799 0.99 99
2 (20,13 1.87 94|19.65 192 096
411034 364 91| 9.93 3.79 95
81 513 734 92| 500 7.53 94
16 | 2.79 13.49 84| 2.65 14.21 89

HODIE. The hodic module was written by Robert Lynch [14]. Fourth order accuracy is achieved
for the problem given by (1). In addition to the usual function evaluations and arithmetic, HODIE
methods require extra evaluations of the right side function f and the solution of a small linear
system to determine the coefficients of each linear equation.

Good parallel performance can be achieved for hodie if the main loop over the horizontal grid
lines can be parallelized. Fach iteration of this loop generates the equations corresponding to a
single grid line. The code is particularly hard to parallelize, however, because it makes extensive
use of COMMON blocks, with some data in COMMON needing to be shared among the parallel
processes, and some needing to be private. Furthermore, exactly which data should be shared
depends on the problem (e.g., in a constant coefficient case cach process can share a copy of certain
data, while in a variable coefficient case they each need their own copy). These problems can
be worked around in an explicitly parallelized version by making local some of the variables that
were in COMMON, and at the expense of some extra overhead for copying. Table 4 shows that
good parallel performance is achieved. It is not surprising that KAP is unable to make the rather
significant changes required; it parallelized eight minor loops and achieved virtually no speedup.
Finally, a kernel version of hodie, using dvfill and foreach hline, performs similarly to the explicit
version. Note also that hedie can be used to generate a sixth order accurate discretization for a
simpler problem (e.g., a generalized Helmholtz problem). Similar parallel performance is achieved
for this case as well.

HODIE FFT. The hodie fft module was written by Ron Boisvert [2]. It solves a Helmholtz
problem using fourth order accurate 9-point compact finite differences and linear system solution
by the fast fourier transform (fft). The method is extremely fast, especially when n = 1/h = 2F for
some k, as is true in our example. The dominant work is in function evaluations, n fit’s of length



Table 5: Time, speedup, and efficiency for hodie ffi. Sequential time is 11.71.

Explicit Kernel
p| Time Sp Ef | Time Sp Ef
11055 111 111]11.79 0.99 99
2| 549 213 1074 6.17 1.90 95
41 282 415 1047 3.15 3.72 93
81 150 7.81 98| 1.79 6.54 82
16 | 0.85 13.78 86| 1.18 9.92 62

n, the solution of n n X n tridiagonal linear systems, and n inverse ft’s of length n.

Our explicitly parallelized version of hodie ffi contains several loops that are relatively easy to
parallelize and do initializing, copying, function evaluations, and vector operations. Approximately
25% of the sequential time is spend in fft’s and tridiagonal solves. This work can be parallelized very
efficiently if new private workspace can be provided for each parallel task. The size of the workspace
depends on the mesh size %, so, assuming no dynamic memory allocation, a local declaration in
the library routine will not suffice. The ELLPACK system includes a preprocessor which takes a
user’s high level description of the problem (the ELLPACK “program”) and generates a FORTRAN
program with arrays dimensioned to the appropriate sizes, as a function of the mesh size requested
by the user. In the present case we can modify the preprocessor to declare private workspace of
the appropriate dimension. This is done with a TASK COMMON declaration in ATS FORTRAN.
With this solution we see from Table 5 that the results are excellent. The explicit version is more
efficient than the sequential version because the extra workspace allows a more efficient version of
a few loops in the discretization phase.

The KAP and kernel parallel versions of iodie fft do not fare as well as the explicitly parallelized
version. KAP parallelizes 100 loops in all (although many only run in parallel if some granularity
condition introduced by the system is satisfied). The resulting parallel code achieves only negligible
speedup, however. The kernel version meanwhile, is based on eval_grid, foreach_hline, foreach_vline,
foreach_proc, and a few Level 1 BLAS routines. From Table 5 it can be seen that the parallei
efficiency of the kernel version degrades much more quickly with increasing numbers of processors
than the explicitly parallelized version. The primary reason for this degradation has to do with an
an O(n?) vector operation of the form

2= for+ Gi(at+b+etd)+fale+ f+g+h),

where fo, By, B2, are scalars, and z,a,b,¢,d, e, f, g, and A are stored as two dimensional arrays.
This operation can be explicitly parallelized as a single parallel loop. The kernel version, on the
other hand, requires three O(n%) dscal’s, four O(n?) dvadd’s, and 4n O(n) dvadd’s. Thus we
have 4n + 7 parallel steps instead of one. The reason we need 4n dvadd’s of length = is that the
arrays containing e, f,g, and A are not conformable with the other data. Very substantial code
modifications would be required to change this. An alternative approach would be to use eval_grid,
since this calculation does more or less correspond to evaluating the same fanction at each of the
grid points. But that would require considerable changes to the code as well.

JACOBI CG. The jacobi cg module is from ITPACK [11]. The sequential time for this module is
dominated by a matrix-vector multiply in the ITPACK routine pjac, a subprogram that performs
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Table 6: Time, speedup, and efficiency for jacobi cg. Sequentia,_l time is 546.4.

Txplicit KAP Kernel
p| Time Sp Ef | Time Sp Ef| Time Sp Ef
1 542.68 1.01 101 {577.97 (.95 95| 584.03 0.94 94
21273.62 2.00 100 |289.64 1.89 9429441 1.86 93
41139.59 3.91 98 |145.81 3.75 94 | 147.55 3.70 93
8| 7153 7.64 95| 73.93 7.39 92| 7585 7.20 90
16 | 37.77 1447 90 ] 3951 13.83 86| 40.94 13.35 83

Table 7: Time, speedup, and efficiency for linpack spd band. Sequential time is 653.92.

Explicit KAP Kernell Kernel2
p| Time Sp Ef| Time Sp Ef| Time Sp Ef{ Time Sp Ef
1]690.78 095 95]703.00 093 93|704.13 0.93 93[938.29 0.70 70
21357.83 1.83 01 |375.58 1.74 87137819 1.73 86 |488.89 1.34 67
4118942 3.45 8620496 3.19 80 |209.78 3.12 78| 263.86 248 62
8| 109.80 5.96 7412237 534 67 |127.80 511 64| 151.03 4.33 54
16 | 79.16 8.26 52| 8492 7.70 48| 93.56 6.99 44 | 104.17 6.28 39

one Jacobi iteration. There is also substantial time spent in other (mostly vector) operations. A
total of 17 loops were explicitly parallelized. The best performance was achieved by interchanging

- the nested loops in pjac. In fact, for the sequential time reported we interchanged the loops also
so that this effect would not obscure other changes due to parallelism. Table 6 shows the excellent
results.

KAP and kernel versions of jacobi cg also perform well. There were only two loops that KAP
would not parallelize that had been in our explicit version—neither amounting to a significant
amount of time. For two other loops it was necessary to use the assert directive to convince KAP
to parallelize a loop despite the presence of procedure calls. Interestingly, KAP parallelized two
minor loops which we had missed in our explicit parallelization. Modifying jacobi cg to use the two-
level strategy is straightforward. It requires the use of scatter and gather operations from the sparse
BLAS, a matrix-vector multiplication kernel (yasx2) from the iterative BLAS, and several Level 1
BLAS. Since the ITPACK code is organized to be easily vectorizable, much of the computation is
already organized into simple vector operations {e.g., dvfill, dscal). A small loss of efficiency occurs
in the kernel version because a vecior operation that computes a linear combination of three vectors
must be implemented as a parallel dscal, followed by two parallel daxpys.

LINPACK SPD BAND. The linpack spd band module consists of routines dpbfa and dpbs! from
LINPACK [4]. Its performance is dominated by vector dot products in the inner loop of dpbfa.
An explicitly parallelized version of dpbfa is described in [19]. The data in Table 7 are from new
runs. The most important features of this implementation are a reordering of the computation to
compute the upper triangular Cholesky factor by rows instead of columns, and a (static) round-
robin scheduling strategy that assigns the work needed to update a pivot row equally to all the
processors. The triangular system solves in dpbsl parallelize very poorly and become a bottleneck
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as the number of processors grows: 22.6 of the 653.9 seconds (3.5%) taken by the sequential version
of linpack spd band are spent in dpbsl; with 7 = 16 processors the explicit parallel version spends
19.4 of 79.2 seconds (24.5%) in dpbsl.

A KAP version of linpack spd band is also described in [19]. Its performance is comparable
to the explicit version, but it does require the modification to compute the triangular factor by
rows instead of columns. It does not use the special scheduling strategy, but comes close by using
dynamic scheduling (indicated with a directive setting the “chunksize” to one). KAP has the same
lack of success with dpbsl as the explicit version does.

Finally, we give data for two kernel versions of linpack spd band in Table 7. The first version
is discussed in [19] and is based on Level 2 BLAS calls. The dominant work of each step of the
factorization is formulated in terms of the matrix-vector operation y = y — ATz, where 4 is a
general band matrix (BLAS routine dgbmv). The extra overhead of using a general routine like
dgbmv and the fact that there is slightly more sequential computation in the BLAS-based version
causes some degradation with respect to the explicitly parallelized code.

A block oriented version of Cholesky factorization, using Level 3 BLAS routines, is also possible.
Our second kernel version uses dpbirf and dpbirs from LAPACK [15]. It uses parallel kernels dtrsm,
dsyrk, dgemm, dtbsv, and dgbmv. The data reported here is based on a block size of 32. A block
size of 16 gives slightly better performance. The primary reason for the significant extra overhead
in this version is the extra computation done with zeros (see [15]). Clearly the second kernel version
is not as efficient as the others on this example, although its speedup with respect to itself is slightly
better than the others.

5 Discussion and conclusions

5.1 Comparing the strategies

We have considered three general strategies for parallelizing large mathematical software packages:
explicit parallelization using nonportable language extensions, automatic parallelization using the
KAP preprocessor, and a kernel-based strategy. In terms of programming effort, the explicit and
two-level approaches take the most effort and KAP the least. More specifically, the work required
with the kernel-based approach depends very much on how the sequential code is constructed, and
on whether parallel versions of the kernels themselves are available. The current definition of the
“foreach” kernels, which does not allow a variable number of parameters to be passed, can cause
problems and should be addressed. With all three strategies, very good knowledge of the algorithm
and code is required. One might suppose that using KAP would remove this requirement, but we
find that getting good performance with an automatic parallelizer still requires knowing enough of
the code to be able to help the parallelizer with the important loops while ignoring others.

Regarding portability, using a tool such as KAP is the most attractive. The kernel-based
approach also is quite portable, requiring only efficient implementations of the kernels on a new
machine,

Regarding performance, we have seen that results for the kernel-based strategy can approach
those of the explicitly parallelized code. Of the six modules tested, only two (linpack spd band
and hodie fft) showed significantly better performance with the explicit versions. There will always
be some extra overhead with the two-level strategy, but our experience suggests that it can be
made quite small. In both of these cases, we believe that farther improvements to the kernel-
based algorithms will make a significant difference. The linpack spd band module should probably
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be a kernel itself, since the most efficient approach depends strongly on the architecture [7, 21].
The automatic parallelization strategy was only successful with the two linear system solvers.
The significant code modifications required to achieve good parallel performance with the more
complicated discretization modules were beyond the scope of KAP, even with assistance from the
user. The automatic approach, in particular, has problems with several typical features of high
quality mathematical software, namely extensive use of subroutine and function calls, extensive
error checking for increased robustness, and extensive use of general workspace arrays.

5.2 Conclusions and future work

Our experience suggests that the two-level strategy is a good one, with a set of efficient kernels
supporting the rest of the software. It seems to represent the best way to balance the conflicting
goals of parallel performance, programmer effort, and portability. Some work is certainly required
to modify existing software to be based cleanly on the kernels, but we find that this is comparable
to the explicit parallelization, with the added benefit that you only have to do it once. From
then on, as you move from machine to machine you only need to implement the kernels efficiently.
The automatic strategy saves work when it works, but we find it incapable of dealing with typical
coraplex codes.

One slight complication with the kernel-based strategy is the problem of variable granularity
(see [19]). Since there are instances when 2 kernel that normally runs in parallel should be run
sequentially {e.g., if it is in the inner loop of a much larger computation, with parallelism occurring
at higher levels), the user should have the option of switching between a sequential and a parallel
version of each kernel. Exactly how this should be worked out needs further attention.

In order to more completely evaluate the two-level strategy there are several obvious directions
for future work. First, there are many more modules in ELLPACK which could be parallelized, not
to mention investigating this approach for other packages. Secondly, there are several difficult issues
such I/O, error messages, and error recovery, which have not been addressed at all in this work.
A production quality parallel math software library obviously must solve these issues. Finally,
portability and flexibility of the approach should be tested by implementing the kernels (and thus
the modules) on other machines: first on other shared memory architectures, and more interestingly
on distributed memory machines. It is important to consider the impact on these ideas of some
of the issues that are unique to distributed memory environments (e.g., network topology, message
passing, scalability, etc.).
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Appendix

subroutine eval _grid (f, a, lda, imin, imax, jmin, jmax)

¢
T e e e e e e e
¢ Purpose: evaluates a function at each point of a grid, returning

c the values in a two dimensional array.

c

¢ Parameters:

c f function to evaluate

c a array to return values in

< lda leading dimension of array a

c imin,imax bounds on first index

c jmin, jmax bounds on second index

T T T e
¢

double precision a(lda,*), f
external f
c$doacross share(a, imin, imax), local(i)
do 20 j = jmin, jmax
do 10 i = imin, imax
a(i,j) = £(i,j)

10 continue

20 continue
return
end
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subroutire eval_grid_int (£, a, nx, ay)

Purpose: evaluates an integer function at each point of a grid,
returning the values in a two dimensional array.

c
c
c
¢ Parametors:
c
c
[

£ function to evaluate

a array to return values in

nx,ny dimensions of array a
e e e e
c

integer a(nx,ny), £
external f
c$doacross share(a,nx), local(i)
do 20 j = 1, ny
do 10 i = 1, nx
a(i,j) = £(i,j

10 continue

20 continue
return
end

subroutine foreach_hline (proc, jstart, jstop)

¢ Parameters:

c proc brocedure to call

c jstart index of first grid line

c jstop index of last grid line

T e e e
c

external proc
c$doacross
do 10 j = jstart, jstop
call proc(j)
10 continue
return
end
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subroutine foreach_point (proc, nx, ny)
Purpose: calls a procedure once for each grid point

c
c

¢ Parameters:
c proc Procedure to call
c

external proc
c$doacross share(nx), local(i)
do 20 j = 1, ny
do 10 i = 1, nx
call proc(i,j)
10  continue
20 continue
return
end

subroutine foreach_proc (proc, x, n)

¢ Parameters:

< proc procedure to call

c X an array of workspace

c n dimension of x

T o e e e
¢

double precision x(n)

external proc

if (m_fork{proc, x, n) .ne. 0) stop ’foreach_proc’
return

end
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