The Simulation Model Development
Environment: An Overview

Osman Balci and Richard E. Nance

TR 92-32

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

June 3, 1992

Technical Report TR-92-32+

THE SIMULATION MODEL DEVELOPMENT
ENVIRONMENT: AN OVERVIEW

by

Osman Balci and Richard E. Nance

Department of Computer Science
and
Systems Research Center
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

1 June 1992

T Cross-referenced as Technical Report SRC-92-004, Systems Research Center, VPI&SU.

ABSTRACT

The purpose of this paper is to provide an overview of the Simulation Model Development Environ-
ment (SMDE) that has been under development since 1983. The SMDE architecture is composed of
four layers: (0) Hardware and Operating System, (1) Kernel SMDE, (2) Minimal SMDE, and (3)
SMDEs. Following the incremental development software engineering life cycle, SMDE software
components are identified. Guided by the principles enunciated by the Conical Methodology, evolu-
tionary prototyping and rapid prototyping approaches have been used to develop the following mini-
mal SMDE tools: Premodels Manager, Assistance Manager, Model Generator, Model Analyzer,
Model Translator, and Model Verifier. The Model Generator has been the most critically important
tool, and five prototypes have been developed. The automation-based software paradigm has been
achieved to a large extent with the development of the Visual Simulation Support Environment
based on the DOMINO (multifaceteD ¢Onceptual fraMework for vIsual simulatioN mOQdeling) and
the VSMSL (Visual Simulation Model Specification Language).

CR Categories and Subject Descriptors: 1.6.7 [Simulation and Modeling]: Simulation Support
Systems—Environments; 1.6.8 [Simulation and Modeling]: Types of Simulation—Discrete event,
Visual, D.2.2 [Software Engineering]l: Tools and Techniques—Computer-aided software
engineering

Additional Key Words and Phrases: Automation-based software paradigm, simulation software
engineering, software development environments, visual simulation.

_ii—

TABLE OF CONTENTS

Page

ABSTRACT.................. rrreeets e sttt ranen errssiseenten e b et rasernanasaas et et e st st s e bae st aban veennn 11
1. INTRODUCTION rrerre s ste e st es e ar s aanes bt ettt s et s annans feeerenaeees e e erae e e naaneaas 1
2. SMDE ARCHITECTURE...................... e sian s ns b et ee et es e bee s ns RPN |
2.1 Layer 0: Hardware and Operating SyStem.........coeeevemerrueveresnsrsessrennns cresrsssestsneenssnansessaerens 1
2.2 Layer I1: Kernel Simulation Model Development Environment..............ovveeeveeevovvennnn. e 2
2.3 Layer 2: Minimal Simulation Model Development Environment...........oevevvevevevveeevnane. reeresd
2.4 Layer 3: Simulation Model Development ENVIrONMENtSverveeeveceeevsrerenernnns veerosnesrerned

3. MINIMAL SMDE TOOLS...................... Ferestser et aras Ceterbete ettt s st ensens crervernonenns 4
3.1 Project Manager............... eeeresae et ae st aaeas cereberttete et et es e st e e naas ereesrvearareranaaareareesreranes 4
3.2 Premodels Managero...... roeerase et et s aeas reereeet e e et e saa et e aennnns crerevesernsscsraennsdt
3.3 Assistance Manager............. reertet e s e eeaaiesresanans etesrase st te e crerestaeaasere e aaeraas 5
3.4 Command Language Interpreteroovueuveerennnne... et et et e e saaansaenns crrveressrnsasrenssennnnne]
3.5 Model Generator et ae s erbaaes ceerestte et e e e aseranas SOOI
3.5.1 Model Generator Prototype L.........ccccovveeveeeenenece. Ceeseeeesrer e re e srae e asnraann veverererenenesressenne d

3.5.2 Model Generator Prototype 2.........cvveevveevecemevconeneenn. SO OO OTOPRRTOUUPION B

3.5.3 Model Generator Prototype 3.............. dresaest bt st e s be e nan cereresssanssntee e resenaaresareesanes 3

3.5.4 Model Generator Prototype 4...........ooveeeveveeeeevreeeennnen bttt e et be s b e baas B

3.5.5 Model Generator PrototypPe 5.....c.vvvnveeeeeerveneversesensenns et ereerseean e e ter b aerae s esbeenrssnten 8

3.6 Model Analyzer................... creetereae st e aarenraaans ettt et e rt e aaeaneaas verssnressesssnosioraeese 10
3.7 Model Translator........... b s bt st e s s esran reerreer e st aeen e 12
3.8 Model Verifier Ceereesias st e e e saesteraaans Creb e e aa s aatas veosseessesssssnsensenierseenres L3
3.9 Other Tools ..c.oooueerererieecreeennnnn rrhe e esn et enatas bt ettt e atanbansas IRUTOUTORRRIOTOION X.

4. CONCLUDING REMARKS AND FUTURE RESEARCH..................... cresterasteseaerae st e e asrane 14

ACKNOWLEDGEMENTS Naraedestrernrressrnnesesastisnan L eaAttrttreettaresnnantanniiniesuu.u..nu»u14

“n

— 11 —

1. INTRODUCTION

The ever-increasing complexity of simulation model (software) development is undeniable. A
simulation programming language supports only the programming process—one of ten processes in
the life cycle of a simulation study [Balci 1990). There is a need for automated support throughout
the entire model development life cycle. This support can be provided in the form of an environ-
ment composed of integrated software tools providing computer-aided assistance in the development
of a simulation model.

The authors have pursued research in building a discrete event Simulation Model Development
Environment (SMDE) since 1983. The SMDE project has addressed a complex research problem:
prototyping a domain-independent discrete-event SMDE to provide an integrated and compre-
hensive collection of computer-based tools to [Balci and Nance 1987a]:

@ offer cost-effective, integrated and automated support of model development
throughout the entire model life cycle;

@ improve the model quality by cffectively assisting in the quality assurance of the
model;

@ significantly increase the efficiency and productivity of the project team; and

@ substantially decrease the model development time.

Guided by the fundamental requirements identified by Balci [1986b], incremental development,
evolutionary prototyping, and rapid prototyping approaches have been used to develop the proto-
types of SMDE tools on a Sun computer workstation. The object-oriented paradigm, enunciated by
the Conical Methodology [Nance 1981, 1987], has furnished the underpinnings of the SMDE
research environment (The collection of tool prototypes).

Section 2 presents the SMDE architecture. The minimal SMDE tools are described in Section 3.

Concluding remarks and future research are given in Section 4.
2. SMDE ARCHITECTURE

Figure 1 depicts the architecture of the SMDE in four layers: (0) Hardware and Operating
System, (1) Kernel SMDE, (2) Minimal SMDE, and (3) SMDEzs.

2.1 Layer (0: Hardware and Operating System

A Sun computer workstation with 8 megabytes of main memory, 380 megabytes of disk subsys-
tem, a 1/4-inch cartridge tape drive, and a 19-inch color monitor with 1152x900 pixel resolution
constitute the hardware of the prototype SMDE. A laser printer and a line printer over the Ethernet
local area network serve the SMDE for producing high quality documents and hard copies of Sun

screens and files.

Model
Analyzer

Model
Translator

Maodel
Generator

Command
Language
Interpreter

Assistance
Manager

Model
Verifier

Kernel SMDE

[o]

Hardware and
Operating System

Source
Code
Manager

Elecironic
Mail
System

Premodels
Manager

Project
Manager

Minimai : SMDEs
SMDE

Figure 1. Simulation Model Development Environment Architecture

The UNIX SunOS 4.0 operating system and udlities, a graphical human-computer interface
(SunView), device independent graphics library (SunCore), computer graphics interface (SunCGlI),
Sun programming environment (SunPro), and INGRES relational database management system
constifute the software environment upon which the SMDE is built. Nance et al. [1984] evaluate the

UNIX operating system as a foundation for building a simulation model development environment.
2.2 Layer 1: Kernel Simulation Model Development Environment

Primarily, this layer integrates all SMDE tools into the software environment described above.
It provides INGRES databases, communication and run-time support functions, and a kemel inter-

face. Three INGRES databases occupy this layer, labeled project, premodels, and assistance, each

2

administered by a corresponding manager in layer 2. All SMDE tools are required to communicate
through the kernel interface. Direct communication between two tools is prevented to make the
SMDE easy to maintain and expand. The kernel interface provides a standard communication proto-
col and a uniform set of interface definitions. Security protection is imposed by the kernel interface

to prevent any unauthorized use of tools or data.
2.3 Layer 2: Minimal Simulation Model Development Environment

This layer provides a “comprehensive” set of tools which are “minimal” for the development
and execution of a model. “Comprehensive” implies that the toolset is supportive of all model devel-
opment phases, processes, and credibility assessment stages. “Minimal” implies that the toolset is
basic and general. It is basic in the sense that this set of tools enables modelers to work within the
bounds of the minimal SMDE without significant inconvenience. Generality is claimed in the sense
that the toolset is generically applicable to various simulation modeling tasks.

Minimal SMDE tools are classified into two categories. The first category contains tools specif-
ic to simulation modeling: Project Manager, Premodels Manager, Assistance Manager, Command
Language Interpreter, Model Generator, Model Analyzer, Model Translator, and Model Verifier.
The second category tools (also called assumed tools or library tools) are expected to be provided by
the software environment of Layer 0: Source Code Manager, Electronic Mail System, and Text

Editor. The prototypes of the minimal SMDE tools are described in Section 3.
2.4 Layer 3: Simulation Model Development Environments

This is the highest layer of the environment, expanding on a defined minimal SMDE. In addi-
tion to the toolset of the minimal SMDE, it incorporates tools that support specific applications and
are needed either within a particular project or by an individual modeler. If no other tools are added
to a minimal toolset, a minimal SMDE would be a SMDE.

The SMDE tools at layer 3 are also classified into two categories. The first category tools
include those specific to a particular area of application. These tools might require further custo-
mizing for a specific project, or additional tools may be needed to meet special requirements. The
second category tools (also called assumed tools or library tools) are those anticipated as available
due to use in several other areas of application. A tool for statistical analysis of simulation ountput
data, a tool for designing simulation experiments, a tool for documentation and credibility assess-
ment {Kranowski 1988], a graphics tool, a tool for animation, and a tool for input data modeling are
some example tools in layer 3. A Visnal Simulator tool has been developed under the Visual Simu-
lation Support Environment prototype based on a multifaceted conceptual framework [Derrick

1992].

An SMDE tool at layer 3 is integrated with other SMDE tools and with the software environ-
ment of layer 0 through the kernel interface. The provision for this integration is indicated in Figure
1 by the opening between Project Manager and Text Editor. A new tool can easily be added to the

toolset by making the tool conform to the communication protocol of the kernel interface.
3. MINIMAL SMDE TOOLS

Each minimal SMDE tool is briefly described below with references containing detailed infor-

mation about the development of the tool.
3.1 Project Manager

Project Manager software tool: (1) administers the storage and retrieval of items in the Project
Database; (2) keeps a recorded history of the progress of the simulation modeling project; (3) trig-
gers messages and reminders (especially about due dates); and (4) responds to queries in a
prescribed form concerning project status. Other than the preliminary design decisions, no work has
been done on the Project Manager. Its development is very dependent on how the other minimal
SMDE tools are constructed; therefore, its development is being delayed until sufficient progress is

achieved on the other tools.
3.2 Premodels Manager

The overall goal of the Premodels Manager (PM) software tool is to enable the user to: (@)
locate and reuse components of successfully completed simulation studies, and (b) learn from past
experience. The following design objectives are identified to meet this overall goal [Beams 1991;
Beams and Balci 1992]:

® Provide easy methods of installing and maintaining documentation of successfully completed
simulation studies [Nance 1977, 1979] in the Premodels Database.

@ Provide appropriate methods of access to documentation of successfully completed simulation
studies in the Premodels Database. Initiative, mechanisms, and complexity of access should
vary according to task and type of user.

@ Provide a stratified display, capabilities for copying and pasting, capability for storing in a
user-created file, and printing of the information located by a user in the Premodels Database.

@ Provide a user interface that satisfies the nine usability principles for interfaces: enable simple
and natural dialogue, speak the user’s language, minimize the user’s memory load, promote
consistency, provide feedback, provide clearly marked exits, provide shortcuts, supply good
error messages, and prevent errors.

® Provide context-sensitive help that is always available in a consistent manner. The system
should use all available information on the user’s state and avoid placing the burden on the
user.

The PM consists of a collection of windows, as shown in Figure 2, which work together to
allow different types of interactions between users and the Premodels Database. Three types of
windows are used in the PM: (1) working windows (Browser, Searcher, Installer, and Maintainer),
(2) access windows (Driver, Retriever, and Administrator), and (3) support windows (File Viewer,
Describer, and Helper).

The PM has been evaluated with respect to the five design objectives stated above and has been
found to provide effective reusability and learning support within the SMDE [Beams 1991; Beams
and Balci 1992]. The design objectives altogether contribute to enabling the user to locate and reuse
components of successfully completed simulation studies and learn from past experience.

The rapid prototyping software engineering approach has been used in developing the PM. The
first PM prototype, developed by Box [1984], focused on the terminology problem in searching
model components in the database. Subsequent PM prototypes have been developed, evaluated, and
discarded prior to the current version described above. Knowledge gained by experimenting with

one prototype PM has been used in developing the next improved PM prototype.
3.3 Assistance Manager

The overall goal of the Assistance Manager (AM) software tool is to provide effective and efficient
transfer of assistance information to an SMDE user. “Effective” means accurate information is
provided that is relevant to the user's needs. “Efficient” implies that if the user is involved in inter-
action with the SMDE, it is not necessary to switch tasks or modes in the process of seeking help.
The following objectives are identified to meet this overall goal {Frankel 1987; Frankel and Balci
1989]:

(1) Provide general information for beginning system users. Such information would serve to
acquaint new users with the environment, and establish a context for subsequent learning,

(2) Provide detailed and specific help on the use of an SMDE tool.

(3) Provide definitions and example usages of technical terms encountered in documentation and
comrmunication within the environment,

(4) Provide tutorial assistance for SMDE users. The tutorial should give the user a protected arena
for limited experimentation with a tool's features.

(5) Provide help that is constantly available and immediately accessible. Methods should be avail-
able to suspend temporarily interaction with the AM, or save the current display for future
reference. The user should not be required to step through an artificial protocol or syntax to
access immediate assistance.

(6) Provide help that is unobtrusive; i.c., messages or prompts that are only visible when required
or asked for.

(7) Provide a help system that is flexible enough to accommodate experienced users as well as
novice or casual users.

T =
3GIS ANYH |HOIY Y3do

T
301 gy 1431 HO/ONY 03 uoging esnou jybLy eyy esp - eued [oujuon
loued 311 end osmoag (3Y O L9%Le BUY BLA 185 S| yIgADuY Ay o snooy ay)

sy20foud
gV

+ ‘toued A47WND eyl pue |eued JnNvy eyt
st + 40 ebued d |o43uoo ey} —— s|eued § sujejued tasmouy ay|
81 gvA 40 39nvy

touey ofiuey Jasnoug S YISAOMG 3HL BNISP "SB

8867-3ap-1a
4861-29p~18

192418 ULBW ¥ pROY jdog
S1ajuI OL44edg Y3 Jo Apnig uolieinulg v

" cpaomioy
suefao JECCEINTE

g1981u00 o Baofoad
183 2 powlo.ad

20" peBC,,

886T~AOU=-GY
6BBT-JBW-ZT
L86T-unf-pp

UOLR|NWLS UCL}DBSIaUT DE4JBd)] WLSpOy
T

~add) praid Asy

AN

‘platy Asy paulejuiew welsAg :pifoud
pifoud

“s8LpR1s uoiie|nuis pajadwo) :sioafodd
syoaloud

N¥nl3d

ta1epdwoad- s1o8laad
rajepyutd s1osfoad
:[n} %943u0ad sy0alaqad

i[A] alatrd-sqoafoad [fHd 243 93 wimsy
:[n) pifood-syoefoad £ HunLay

[uoridiraseq] Busn yjim dysy
Ly saousy

13s00d s308foud
11sadwood- s3nafoud
1eyepduwood- s300foud
(93epyLutd-syoaloud
:[f1] 3243uood-s1ro8laad
:[n] 8(313d-s308fod
:[n] ptfoud syoaloud

L3eudoyul asmo.g

} ouESsS |R4SUSY

_.a.__a,_au_.._wwa..umzagn m.ﬂﬂm M@OEWH
TEE—— o] H STep d

1sjoaload :uorydiaoseqg Laued LG-1au0) Jdaaliiey

syoefoad reweu 3| ge| - : JIUNH S 5300WIHS E it
3Bl BYSU] tuotREJAlSIuLUPE WelsAg
WIkeE

il [warsas |
1
[
il
RETRERTF)
Y} WOy UOLJBUWIOJUL 4O | BASEJ}EY

ELEIETEL]
Laueyd |vajuo] Jasnodqg

aebeuel] sTopoweId syj ©7 BWODTIM

Loued [DJ3U0] J43ALdQ
oI d

ORISR 04

Figure 2. Premodels Manager

(8) Provide context-sensitive help wherever possible. The system should use all available informa-
tion on the user's state and avoid placing the burden on the user.

(9) Provide appropriate methods of access to the help information. Initiative, mechanisms, and
complexity of access should vary according to task and type of user.

(10) Provide a straightforward and systematic method for tool developers (application program-
mers) to build help into tools which may be added to the environment.

(11) Provide help that is available in a consistent manner from any tool within the environment.

(12) Administer the Assistance Database by serving as an interface between the user or programmer
and the database contents.

(13) Provide easy methods for update and expansion of the AM database. This is critical in order to
accommodate the tailoring and updates that are inevitable in a large software environment.
Updates should be enforced in a manner which helps enforce database integrity and consis-
tency.

The AM has four components providing: (1) information on how to use an SMDE tool; (2) a
glossary of technical terms; (3) introductory information about the SMDE; and (4) assistance for tool
developers for integrating help information. Evaluation of the AM with respect to the 13 design
objectives stated above has found the tool able to provide effective and efficient transfer of assis-
tance information to an SMDE user [Frankel 1987; Frankel and Balci 1989].

3.4 Command Language Interpreter

The Command Language Interpreter (CLI) is the language through which a user invokes an
SMDE tool. Early in the SMDE project, the CLI was prototyped based on the proposal of Moose
[1983], and was fully described by Humphrey [1985]. Later, following the acquisition of the Sun

computer workstation, the CLI was replaced by the SunView graphical user interface.

3.5 Model Generator

The Model Generator (the simulation model specification and documentation generator) is a
software tool which assists the modeler in: (1) creating a model specification in a predetermined
form which lends itself for formal analysis; (2) creating multi-level (stratified) model documentation
[Nance 1977, 1979], and (3) accommodating model qualification. The Model Generator (MG) has
been the most critically important SMDE tool. Five MG research prototypes have been developed.

3.5.1 Model Generator Prototype 1

The first MG prototype [Hansen 1984] implements the definition stage of the Conical Meth-
odology [Nance 1981, 1987] and is implemented in C programming language on a VAX 11/780
computer system running a Unix emulator. The paradigm assumed for this prototype is a general
tree for the purpose of simplicity. The hierarchical tree representation of a model facilitates the top-

down definition and bottom-up specification approach of the Conical Methodology.

3.5.2 Model Generator Prototype 2

The second MG prototype focuses on the specification stage of the Conical Methodology and is
implemented in C programming language on a VAX 11/780 running System V Unix [Barger 1986;
Barger and Nance 1986]. The prototype: (1) provides a more structured approach to the model
development process, especially the model specification phase; (2) utilizes, observes, and enforces
the Conical Methodology principles, and (3) creates a relational database representation of a model
specification from which a Condition Specification [Overstreet and Nance 1985, 1986; Overstreet et
al. 1986] can be generated.

3.5.3 Model Generator Prototype 3

The third MG prototype builds on the capabilities of the first two and is developed on the Sun
computer workstation described in Section 2.1 [Page 1990]. It supports both the definition and spec-
ification phases of the Conical Methodology. Under the conceptual framework of the Conical Meth-
odology, the prototype enables a modeler to create a model specification in the Condition Specifica-

tion language which lends itself for formal analysis.

354 Model Generator Prototype 4

The fourth is based on a conceptual framework developed by O. Balci and implemented by J. L.
Bishop [Bishop 1989; Bishop and Balci 1990]. Under the title of General Purpose Visual Simulation
System (GPVSS), this prototype includes the visualizationfanimation capability in the automatic
generation of simulation models. It consists of over 11,000 lines of documented code developed on
the Sun computer workstation described in Section 2.1. The GPVSS prototype assists a simula-
tionist to: (1) graphically design a simulation model and its visualization, (2) interactively specify
the model’s logic, and (3) automatically generate the executable version of the model, while main-
taining domain independence. This prototype provided the first experience in achieving the auto-

mation-based software paradigm [Balci and Nance 1987b].

3.5.5 Model Generator Prototype 5

The fifth MG prototype builds on the fourth one and has been a major prototype with full func-
tionality. The prototype is a part of the Visual Simulation Support Environment (VSSE) containing
the following software tools: Model Generator, Model Analyzer, Model Verifier, Model Translator,
and Visual Simulator as shown in Figure 3 [Derrick 1992]. The VSSE has been developed on the
Sun computer workstation described in Section 2.1 and consists of over 50,000 lines of documented

code.

JolE|huls |ensta

1

P ———
apog

JNAANONT AN

saualag sapmdmag

[tany a4

oY
APIRISURLL
J03ELSUBI) |apoR i * 8l (__Lovon Bunisixg sharnsy
ubiLsag ;
Nk
. 1¥0dd
alBULUY LB NULE
JagjLaaps |apoy & :

Jazh|ewy |apay

ufLsag
J01eJausy |apoy &EQ
(@]m]

S[O0L ISSA

_}0BSUELY, (8pOW By} &g paump S| ®ieq aded) oyl|=

|
a N : Muww:wgw
“ h fL__1001 ¢
NOILVIOWI @/
[

VST

834 1SeInqla3y
Juu@ amzmmmmmm S3A rsasse(n

NOILVINIWNIOG
108[044 yoasasay 3

14008y me|p E ON :sajuejsuT
j4otday mapp [ezALeuy) 0N :sjhodesy
NOXILYIANVLISNI ONY NOILINIJ3q

(3-16dey mapa)
1-0day mayp E S3A :sjoefqp ojweuhg

NOILVITSIOFdE AIVYHI

ey N e e s34 st
(300doy 4] Caztivay) s34 +huosyasodag

ke s 1) pue aBessay
Yir-o3-4y31
S1uUalale}s N 315e7)
.. Sa3InqlJa1iy N 3se]
§ seuiynoy sesn y yseq FE) (3aes07)
“ s8L43Ug N jsey
N TN :

NOILYJIIAXI3dS 91907

(o vag) (oHi) on_:seousysur
(340day otp) Cetisuy) s34 :oynoher
(1504 no14) C=hieov) —-——

NOILYITATI3dS SSV'1D

Figure 3. The Visual Simulation Support Environment

10

All VSSE tools have been developed under a new conceptual framework, called DOMINO
(multifaceteD cOnceptual fraMework for vIsual simulatioN mOdeling). The DOMINO has been
under development since 1984 and required tremendous amount of experimentation with many
discarded undocumented prototypes. Only through the development of a fully functional environ-
ment (i.e., VSSE) and through a lot of experimentation, it was possible to test the feasibility and util-
ity of the DOMINO conceptual framework.

The VSSE MG enables a modeler to provide a graphical, pictorial representation of a simulation
model under the DOMINO conceptual framework as shown in Figure 4, After the model is graph-
ically architectured, the modeler identifies the submodels and performs an object-oriented specifica-
tion. Using the VSMSL (Visuai Simulation Model Specification Language), which resembles the
HyperTalk language, the modeler specifies the logic of a submodel. Once the specification is
completed, the model can be translated automatically and fully into executable C code after it is
successfully analyzed. By activating the Visual Simulator, a visual execution of the model can be
obtained.

The prototyping research mentioned above, [Balci 1988; Balci and Nance 1989; Balci et al.
1990; Derrick 1988; Derrick et al. 1989; Nance 1984, 1988; Nance and Arthur 1988; Nance and
Balci 1984, 1987; Nance et al. 1981], and Derrick's Ph.D. research [Derrick 1992] have brought
significant contributions to achieving the automation-based software paradigm in the simulation
modeling domain [Balci and Nance 1987b].

3.6 Model Analyzer

The Model Analyzer diagnoses the model specification created by the Model Generator and
effectively assists the modeler in communicative model verification. Overstreet and Nance [1983]
identify the following as the purposes of model analysis: (1) to assist in the identification of concep-
tual errors (misperceptions) or descriptive errors (misrepresentations) as early as possible in the
model development process, (2) to suggest alternatives that might be less prone to errors or might
offer more efficient model development and experimentation, and (3) to provide guidance and
checks on the model development process. Four Model Analyzer prototypes have been developed.

The first prototype [Moose and Nance 1987a,b] enabled the recognition of three forms of diag-
nostic analysis: analytical, comparative, and informative diagnostic, all using the Condition Spec-
ification form of model representation. Attribute utilization, attribute initialization, and attribute
classification testing have been fully implemented. This Model Analyzer prototype: (1) takes a
model in the Condition Specification format as input, (2) parses the specification and displays syntax

errors, (3) compiles model diagnostic information, (4) enables the modeler, through menu selections,

N

by
Ynog-1j3.Jopn

NN

aue jujop

‘PY 404 s9DLay

ﬁ,,.vfl

II _8ugn

I *

A[I
g1 _sue]

Vi

g aueq

o
/ F auety
VL2 LT 7 7777 7777

—_—

'PY u04 sadtug

_ 1nDAy7 [

133r90

| LOOAV NOILISOJWOD30

JIWVYNAQ 3SYH
JIKWVYHAQENS
1J33£490 ITHVYNAQ
LI0H0 DIRVLES
TIOGHLENS

£ 8ueq

Figure 4. Graphical Model Construction under the Visual Simulation Support Environment

11

to view components of the model representation and pieces of the diagnostic information, and (5)
produces and displays an action cluster incidence graph representation of the model. The prototype
was built using the lex and yacc tools of the Unix operating system,

The second prototype implements a control and transformation metric for measuring model
complexity [Wallace 1985, 1987, Wallace and Nance 1985], and provides diagnostic assistance
using digraph representations of simulation model specifications [Nance and Overstreet 1987a,b;
Overstreet and Nance 1983, 1986].

The third Model Analyzer prototype [Puthoff 1991] provides automated and semi-automated
graph-based model diagnostic testing for model representations in the Condition Specification
format. A file containing a Condition Specification of a model is submitted to the Model Analyzer.
This Condition Specification is parsed using lex and yacc, and all analysis information is stored in an
INGRES relational database. Based on the action cluster incidence graph and action cluster attribute
graph, diagnostics are performed on the model specification. The Model Analyzer can output vari-
ous aspects of the model, graphically display four different representations of the model, and
perform the following diagnostic testing techniques: (1) analytical techniques (attribute utilization,
attribute initialization, attribute reference, action cluster determinacy, statement order dependency,
connectedness, accessibility, and out-complete), (2) comparative techniques (attribute cohesion,
action cluster cohesion, and complexity), and (3) informative techniques (immediate precedence
structure and decomposition) [Overstreet and Nance 1983: Nance and Overstreet 1987a,b].

The prototype also includes a rule-based expert system component, developed in Prolog on a
VAX 8600, to produce a simplified action cluster incidence graph using knowledge generic to simu-
lation and knowledge specific to the application domain [Overstreet and Nance 1986].

The fourth Model Analyzer prototype has been created under the Visual Simulation Support
Environment [Derrick 1992]. This prototype accesses a relational representation of a simulation
model in an INGRES database and performs completeness and consistency testing on the model
specification created by the VSSE Model Generator under the DOMINO conceptual framework.

3.7 Model Translator

The Model Translator translates the model specification into an executable code after the quality
of the specification is assured by the Model Analyzer. The first prototype Model Translator has
been developed under the General Purpose Visual Simulation System [Bishop 1989; Bishop and
Balci 1990]. The second is a tool in the Visual Simulation Support Environment [Derrick 1992].
Both prototypes extract the model specification from an INGRES relational database and fully
convert it into a C programming language code. The use of C and INGRES are compietely hidden

12

from the SMDE user. If translation errors occur, those errors are mapped back to the specification
and the user is informed about the locations of the errors within the model specification. The simu-
lator code is created by using object-oriented programming constructs under the Process Interaction

conceptual framework [Balci 1988].
3.8 Model Verifier

The Model Verifier is intended for programmed model verification {Whitner and Balci 1989].
Applied to the executable representations, it provides assistance in substantiating that the simulation.
model is programmed from its specification with sufficient accuracy. Extensive groundwork and
earlier research [Balci 19864, 1987a, 1987b, 1989, 1990; Balci and Nance 1985; Whitner 1988] have
contributed to the development of the Model Verifier, A prototype Model Verifier has been devel-
oped as part of the Visual Simulation Support Environment [Derrick 1992]. This prototype performs

instrumentation-based dynamic testing on the executable representation of the simulation model.
3.9 Other Tools

Source Code manager, Electronic Mail System, and Text Editor are the other tools expected to
be provided by the programming environment of the operating system used.

Source Code Manager is a software tool which configures the run-time system for execution of
the programmed model, providing the requisite input and output devices, files and utilities. Its devel-
opment is being delayed until a standard executable model representation is adopted for the SMDE.,

Electronic Mail System facilitates the fiecessary communication among people involved in the
project. Primarily, it performs the task of sending and receiving mail through (local or large)
computer networks. The Sun workstation's MailTool is currently being used as the Electronic Mail
System of the SMDE. The Sun computer workstation is a node on the Internet computer network
with the node name of “mdesun.cs.vt.edu”.

Text Editor is used for preparing technical reports, user manuals, system documentation, corre-
spondence, and personal documents. Currently, the Sun text editor serves as the text editor of the
SMDE.

13

4. CONCLUDING REMARKS AND FUTURE RESEARCH

The SMDE described in this paper can also be labeled “Computer-Aided Simulation Software
Engineering Environment” or “Simulation Support Environment.” We recognize that the complete
set of requirements for building a SMDE poses a significant technical challenge under the objective
of problem domain independence within the discrete event simulation area. Nevertheless, we have
overcome the challenge by way of an evolutionary development of SMDE tool prototypes. In the
creation of the Visual Simulation Support Environment prototype, we have not only achieved the
automation-based software paradigm to a large extent, but also provided the capability of animating
the simulation model.

One of the most challenging tasks has been the development of a conceptual framework for
visual simulation modeling. The DOMIN O—multifaceteD cOnceptual fraMework for vIsual simula-
tioN mOdeling—has been developed to provide the underpinnings of the Visual Simulation Support
Environment.

The future research will deal with completing the prototyping of some SMDE tools and building
a production version of the SMDE, on a hardware/software platform to be determined, based on the

experience we have gained over the last nine years.

ACKNOWLEDGEMENTS

The SMDE research project has been sponsored in part by the U.S. Navy and IBM through the
Systems Research Center at VPI&SU. The contributions of all those people listed as authors in the

References section below are gratefully acknowledged.

14

REFERENCES

Balci, O, (1986a), “Credibility Assessment of Simulation Results,” In Proceedings of the 1986
Winter Simulation Conference, J.R. Wilson, J.O. Henriksen, and S.D. Roberts, Eds. IEEE,
Piscataway, NJ, pp. 38-43.

Balci, O. (1986b), “Requirements for Model Development Environments,” Computers & Operations
Research 13, 1 (Jan.-Feb.), 53-67.

Balci, O., Ed. (1987a), Proceedings of the Conference on Methodology and Validation (1987 Eastern
Simulation Conferences, Orlando, FL, April 6-9). Published as Simulation Series [9, 1 (Jan.
1988), SCS, San Diego, CA.

Balci, O. (1987b), “Credibility Assessment of Simulation Results: The State of the Art,” In Proceed-
ings of the Conference on Methodology and Validation, Q. Balci, Ed. Published as Simula-
tion Series 19, 1 (Jan. 1988), 19-25. SCS, San Diego, CA.

Balci, O. (1988), “The Implementation of Four Conceptual Frameworks for Simulation Modeling in
High-Level Languages,” In Proceedings of the 1988 Winter Simulation Conference, ML.A.
Abrams, P.L. Haigh, and J.C. Comfort, Eds. IEEE, Piscataway, NI, pp. 287-295.

Balci, O. (1989), “How to Assess the Acceptability and Credibility of Simulation Results,” In
Proceedings of the 1989 Winter Simulation Conference, E.A. MacNair, K.J. Musselman, and
P. Heidelberger, Eds. IEEE, Piscataway, NJ, pp. 62-71.

Balci, O. (1990), “Guidelines for Successful Simulation Studies,” In Proceedings of the 1990 Winter
Simulation Conference, Q. Balci, R.P. Sadowski, and R.E. Nance, Eds. IEEE, Piscataway,
NJ, pp. 25-32.

Balci, O. and R.E. Nance (1985), “Formulated Problem Verification as an Explicit Requirement of
- Model Credibility,” Simulation 45 , 2 (Aug.), 76-86.

Balci, O. and R.E. Nance (1987a), “Simulation Model Development Environments: A Research
Prototype,” Journal of the Operational Research Society 38, 8 (Aug.), 753-763.

Balci, O. and R.E. Nance (1987b), “Simulation Support: Prototyping the Automation-Based Para-
digm,” In Proceedings of the 1987 Winter Simulation Conference, A. Thesen, H. Grant, and
W.D. Kelton, Eds. IEEE, Piscataway, NJ, pp. 495-502.

Balci, O. and R.E. Nance (1989), “Simulation Model Development: The Multidimensionality of the
Computing Technology Pull,” In Impacts of Recent Computer Advances on Operations
Research, R. Sharda et al., Eds. Elsevier Science Publishing, New York, NY, pp. 385-395.

Balci, O., R.E. Nance, E.J. Derrick, E.H. Page, and J.L. Bishop (1990), “Model Generation Issues in
a Simulation Support Environment” In Proceedings of the 1990 Winter Simulation Confer-
ence, Q. Balci, R.P. Sadowski, and R.E. Nance, Eds. IEEE, Piscataway, NJ, pp. 257-263.

Barger, L.F. (1986), “The Model Generator: A Tool for Simulation Model Definition, Specification,
and Documentation,” M.S. Thesis, Department of Computer Science, VPI&SU, Blacksburg,
VA, Aug.

Barger, L.F. and R.E. Nance (1986), “Simulation Model Development: System Specification Tech-

niques,” Technical Report SRC-86-005, Systems Research Center, VPI&SU, Blacksburg,
VA, Aug.

15

Beams, 1.D. (1991), “A Premodels Manager for the Simulation Model Development Environment”
M.S. Thesis, Department of Computer Science, VPI&SU, Blacksburg, VA, Sept.

Beams, J.D. and O. Balci (1992), “Providing Reusability and Learning Support in the Simulation
Model Development Environment,” Technical Report TR-92-03, Department of Computer
Science, VPI&SU, Blacksburg, VA, Mar.

Bishop, J.L. (1989), “General Purpose Visual Simulation System,” M.S. Thesis, Department of
Computer Science, VPI&SU, Blacksburg, VA, June.

Bishop, J.L. and O. Balci (1990), “General Purpose Visual Simulation System: A Functional
Description,” In Proceedings of the 1990 Winter Simulation Conference, Q. Balci, R.P.
Sadowski, and R.E. Nance, Eds. IEEE, Piscataway, NJ, pp. 504-512.

Box, C.W. (1984), “A Prototype of the Premodels Manager,” MDE Project Memorandum, Depart-
ment of Computer Science, VPI&SU, Blacksburg, VA.

Derrick, E.J. (1988), “Conceptual Frameworks for Discrete Event Simulation Modeling,” M.S.
Thesis, Department of Computer Science, VPI&SU, Blacksburg, VA, Aug.

Derrick, E.J. (1992), “A Visual Simulation Support Environment Based on a Multifaceted Concep-
tual Framework,” Ph.D. Dissertation, Department of Computer Science, VPI&SU, Black-
sburg, VA, Apr,

Derrick, E.J., O. Balci, and R.E. Nance (1989), “A Comparison of Selected Conceptual Frameworks
for Simulation Modeling,” In Proceedings of the 1989 Winter Simulation C onference, E.A.
MacNair, K.J. Musselman, and P. Heidelberger, Eds. IEEE, Piscataway, NJ, pp. 711-718.

Frankel, V.L. (1987), “A Prototype Assistance Manager for the Simulation Model Development
Environment,” M.S. Thesis, Department of Computer Science, VPI&SU, Blacksburg, VA,
July.

Frankel, V.1.. and O. Balci (1989), “An On-Line Assistance System for the Simulation Model Devel-
opment Environment,” International Journal of Man-Machine Studies 31, 699-716.

Hansen, R.H. (1984), “The Model Generator: A Crucial Element of the Model Development Envi-
ronment,” Technical Report SRC-85-004, Systems Research Center, VPI&SU, Blacksburg,
VA, Aug.

Humphrey, M.C. (1985), “The Command Language Interpreter for the Model Development Environ-
ment: Design and Implementation,” Technical Report SRC-85-011, Systems Research
Center, VPI&SU, Blacksburg, VA, Mar.

Kranowski, M. (1988), “CADCAS: A Tool for Computer-Aided Documentation and Credibility
Assessment of a Simulation Study,” M.LS. Project Report, Department of Computer Science,
VPI&SU, Blacksburg, VA, July.

Moose, R.L., Jr. (1983), “Proposal for a Model Development Environment Command Language
Interpreter,” Technical Report SRC-85-012, Systems Research Center, VPI&SU, Black-
sburg, VA, Dec.

Moose, R.L., Jr. and R.E. Nance (1987a), “Model Analysis in a Model Development Environment,”
Technical Report SRC-87-010, Systems Research Center, VPI&SU, Blacksburg, VA, July.

16

Moose, R.L., Jr. and R.E. Nance (1987b), “The Design and Development of an Analyzer for
Discrete Event Model Specifications,” In Impacts of Recent Computer Advances on Opera-
tions Research, R. Sharda et al., Eds. Elsevier Science Publishing, New York, NY, pp. 407-
421.

Nance, R.E. (1977), “The Feasibility of and Methodology for Developing Federal Documentation
Standards for Simulation Models,” Final Report to the National Bureau of Standards, Depart-
ment of Computer Science, VPI&SU, Blacksburg, VA, June

Nance, R.E. (1979), “Model Representation in Discrete Event Simulation: Prospects for Developing
Documentation Standards,” In Current Issues in Computer Simulation, N. Adam and A.
Dogramaci, Eds., Academic Press, New York, pp. 83-97.

Nance, R.E. (1981), “Model Representation in Discrete Event Simulation: The Conical Meth-
odology,” Technical Report CS81003-R, Department of Computer Science, VPI&SU, Black-
sburg, VA, Mar.

Nance, R.E. (1 984), “Model Development Revisited,” In Proceedings of the 1984 Winter Simulation
Conference, S. Sheppard, U.W. Pooch, and C.D. Pegden, Eds. IEEE, Piscataway, NJ, pp. 75-
80.

Nance, R.E. (1987), “The Conical Methodology: A Framework for Simulation Model Develop-
ment,” In Proceedings of the Conference on Methodology and Validation, O. Balci, Ed.
Published as Simulation Series] 9,1 (Jan. 1988), 38-43. SCS, San Diego, CA.

Nance, R.E. (1988), “Contemplations of a Simulated Navel or Recognizing the Seers among the
Peers,” Technical Report SRC-88-004, Systems Research Center, VPI&SU, Blacksburg, VA,
Jan,

Nance, R.E. and J.D. Arthur (1988), “The Methodology Roles in the Realization of a Model Devel-
opment Environment,” In Proceedings of the 1988 Winter Simulation Conference, M.A.
Abrams, P.L. Haigh, and J.C. Comfort, Eds, IEEE, Piscataway, NJ, Pp- 220-225.

Nance, R.E. and O. Balci (1984), “A Model Development Environment for Combat Systems Experi-
mentation,” Final Report for FY 84 to the Naval Sea Systems Command and the Office of
Naval Research, VPI&SU, Blacksburg, VA, Oct.

Nance, R.E. and O. Balci (1987), “Simulation Model Management Objectives and Requirements” In
Systems and Control Encyclopedia: Theory, Technology, Applications, M.G. Singh, Ed.
Pergamon Press, Oxford, pp. 4328-4333.

Nance, R.E., O. Balci, and R.L. Moose, Jr. (1984), “Evaluation of the UNIX Host for a Model
Development Environment,” In Proceedings of the 1984 Winter Simulation Conference, S.
Sheppard, U.W. Pooch, and C.D. Pegden, Eds. IEEE, Piscataway, NJ, pp. 577-584.

Nance, R.E., A L. Mezaache, and C.M. Overstreet (1981), “Simulation Model Management: Resolv-
ing the Technological Gaps,” In Proceedings of the 1981 Winter Simulation Conference, T.1.
Oren, C.M. Delfosse, and C.M. Shub, Eds. IEEE, Piscataway, NJ, pp. 173-180.

Nance, RE. and C.M. Overstrect (1987a), “Diagnostic Assistance Using Digraph Representations of
Discrete Event Simulation Model Specifications,” Transactions of the Society for Computer
Simulation 4, 1 (Jan.), 33-57.

Nance, R.E. and C.M. Overstreet (1987b), “Exploring the Forms of Model Diagnosis in a Simulation

Support Environment,” In Proceedings of the 1987 Winter Simulation Conference, A.
Thesen, H. Grant, W.D, Kelton, Eds, IEEE, Piscataway, NJ, pPp. 590-596.

17

Overstreet, C.M. and R.E. Nance (1983), “Graph-Based Diagnosis of Discrete Event Model Spec-
ifications,” Technical Report TR-83-28, Department of Computer Science, VPI&SU, Black-
sburg, VA, June.

Overstreet, C.M. and R.E. Nance (1985), “A Specification Language to Assist in Analysis of
Discrete Event Simulation Models,” Communications of the ACM 28, 2 (Feb.), 190-201.

Overstreet, C.M. and R.E. Nance (1986), “World View Based Discrete Event Model Simplification,”
In Modelling and Simulation Methodology in the Artificial Intelligence Era, M.S. Elzas, T.I.
Oren, and B.P. Zeigler, Eds. North-Holland, Amsterdam, pp. 165-179,

Overstreet, C.M., R.E. Nance, O. Balci, and L.F. Barger (1986), “Specification Languages: Under-
standing Their Role in Simulation Model Development,” Technical Report SRC-87-001,
Systems Research Center, VPI&SU, Blacksburg, VA, Dec.

Page, E.H., Jr. (1990), “Model Generators: Prototyping Simulation Model Definition, Specification,
and Documentation under the Conical Methodology,” M.S. Thesis, Department of Computer
Science, VPI&SU, Blacksburg, VA, Aug,

Puthoff, F.A, (1991), “The Model Analyzer: Prototyping the Diagnosis of Discrete-Event Simulation
Model Specifications,” M.S. Thesis, Department of Computer Science, VPI&SU, Black-
sburg, VA, Sept.

Wallace, J.C. (1985), “The Control and Transformation Metric: A Basis for Measuring Model
Complexity,” M.S. Thesis, Department of Computer Science, VPI&SU, Blacksburg, VA,
Mar.

Wallace, J.C. (1987), “The Control and Transformation Metric: Toward the Measurement of Simula-
tion Model Complexity,” In Proceedings of the 1987 Winter Simulation Conference, A.
Thesen, H. Grant, W.D. Kelton, Eds. IEEE, Piscataway, NJ, pp. 597-603.

Wallace, J.C. and R.E. Nance (1985), “The Control and Transformation Metric: A Basis for Meas-
uring Model Complexity,” Technical Report SRC-85-007, Systems Research Center,
VPI&SU, Blacksburg, VA, Mar.

Whitner, R.B. (1988), “A Taxonomical Review of Software Verification Techniques: An Illustration
Using Discrete-Event Simulation,” M.S. Thesis, Department of Computer Science, VPI&SU,
Blacksburg, VA, Oct,

Whitner, R.B. and O, Balci (1989), “Guidelines for Selecting and Using Simulation Model Verifica-

tion Techniques,” In Proceedings of the 1989 Winter Simulation Conference, E.A. MacNair,
K.J. Musselman, and P. Heidelberger, Eds. IEEE, Piscataway, NJ, pp. 559-568.

18

