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Abstract

The stacknumber (queuenumber) of a poset is defined as the stacknumber {quenenumber}) of its
Hasse diagram viewed as a directed acyclic grapk. Upper bounds on the gueuenmmber of a poset
are derived in terms of its jumpnumber, jts length, its width, and the queuenumber of its covering
graph. A lower bound of Q(+/n) is shown for the queuenumber of the class of planar posets. The
gueucnumber of a planar poset is shown to be within a small constant factor of its width. The
stacknumber of posets with planar covering graphs is shown to be ©(n). These results exhibit sharp
differences between the stacknumber and guenenumber of posets as well as between the stacknumber
(quevenumber) of a poset and the stacknumber (quevenumber) of its covering graph.
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1 Introduction

Stack layouts and queue layouts of undirected graphs appear in a variety of contexts such as VLSI, fault-
tolerant processing, parallel processing, and sorting networks. In a new context, Heath and Pemmaraju
[10] use queue layouts as the basis of a flexible scheme to efficiently perform matrix computations on
2 data driven network. Bernhart and Kainen [2] introduce the concept of a stack layout, which they
call book embedding. Chung, Leighton, and Rosenberg [4] study stack layouts of undirected graphs and
provide optimal stack layouts for a variety of classes of graphs. Heath, and Rosenberg [11] develop the
potion of queue layouts and provide optimal queue layouts for many classes of undirected graphs. In
some applications of stack and queue layouts, it is more realistic to model the application domain with
directed acyclic graphs (dags) or with posets, rather than with undirected graphs. Varous questions
that have been asked about stack and queue layouts of undirected graphs acquire a new flavor when

there are directed edges (arcs). This is because the direction of the arcs imposes restrictions on the node




orders that can be considered. Barrett, Heath, and Pemmaraju {1] initiate the study of stack and queue

layouts of dags and provide optimal stack and queue layouts for several classes of dags.

In this paper, we focus on stack and queue layouts of posets. Posets are ubiquitous mathematical
objects and various measures of their structure have been defined. Some of these measures are bump-
number, jumpnumber, length, width, dimension, and thickness [3,8]. Nowakowski and Parker [13] define
the stacknumber of a poset as the stacknumber of its Hasse diagram viewed as a dag. They derive a
general lower bound on the stacknumber of a planar poset and an upper bound on the stacknumber of a
lattice. Nowakowski and Parker conclude by asking whether the stacknumber of the class of planar posets
is unbounded. Hung [12] shows that there exists a planar poset with stacknumber 4; moreover, no planar
poset with stacknumber 5 is known. Syslo [15] provides a lower bound on the stacknumber of a poset
in terms of its bumpnumber. He also shows that while posets with jumpnumber 1 have stacknumber at

most 2, posets with jumpnumber 2 can have an arbitrarily large stacknumber.

The organization of this paper is as follows. Section 2 contains definitions. In Section 3, we derive
upper bounds on the queuenumber of a poset in terms of its jumpnumber, its length, its width, and
the queuenumber of its covering graph. In Section 4, we show that the queuenumber of the class of
planar posets is unbounded. A complementary upper bound result shows that the queuenumber of a
planar poset is within a small constant factor of the width of the poset. In Section 5, we show that
the stacknumber of the class of posets with planar covéring graphs is ©(n). In Section 6, the decision
problems of recognizing a 4-queue poset and a 5-stack poset are defined; Barrett, Heath, and Pemmaraju
[1] show that both problems are NP-complete. In Section 7 we present several open questions and

conjectures concerning stack and queue layouts of posets.

2 Definitions

This section contains the definitions of stack and queue layouts of undirected graphs, dags, and posets.

Other measures of the structure of posets are also defined.

Let G = (V, E) be an undirected graph without multiple edges or loops. A k-stack layout of G consists
of a total order o on V along with an assignment of each edge in £ to one of k stacks, s1,82,..., 8- Each
stack s; operates as follows. The vertices of V are scanned in left-to-right (ascending) order according to

o. When a vertex v is encountered, any edges assigned to s; that have v as their right endpoint must be



at the top of the stack and are popped. Any edges that are assigned to s; and have left endpolnt v are
pushed onto s; in descending order (according to o) of their right endpoints. The stacknumber SN (G)
of ¢ is the smallest k such that & has a k-stack layout. G is said to be a k-stack graph if SN(G) = k.
The stacknumber of a class of graphs C, denoted by SN(C), is the largest & such that there exists a graph
G e € with SN(G) = k.

A k-quene layout of G consists of a total order ¢ on V along with an assignment of each edge in £
to one of k queues, ¢i,4q2,...,qx. Bach queue ¢; operates as follows. The vertices of V' are scanned in
left-to-right (ascending) order according to ¢. When & vertex v is encountered, any edges assigned to g;
that have v as their right endpoint must be at the front of the queue and are dequeued. Any edges that
are assigned to g¢; and have left endpoint v are enqueued into ¢; in ascending order (according to o) of
their right endpoints. The guenenumber QN(G) of G is the smallest k such that G has a k-queue layoul.
The queuenumber of a class of graphs C, denoted by QN(C), is the largest & such that there exists a
graph G € C with QN(G) = k.

For a fixed order o on V, we identify sets of edges that are obstacles to minimizing the number of
stacks or queues. A k-rainbow is a set of k edges {(ai,bz-) |1 <i< k} such that

a1 <g g <g 0 <g Bpo1 <o G <o bp <o bpoy <o oo <o by <o by,

i.e., a rainbow is a nesfed matching. Any two edges in a rainbow are said to nest.

A k-twist is a set of k edges {(a,;,bi) 11<i< L} such that
a) <g Gy <g - <o Qo1 <g g <o by <o by <o --- <o bpo1 <o i,

ie., a twist is a fully crossing matching. Any two edges in a twist are said to cross.

A rainbow is an obstacle for a queue layout because no two edges that nest can be assigned to the
same quele, just as a twist 1s an obstacle for a stack layout because no two edges that cross can be
assigned to the same stack. Intuitively, we can think of a stack layout or a queue layout of a graph as a
drawing of the graph in which the vertices are laid out on a horizontal line and the edges appear as arcs
above the line. In a stack layout no two edges that intersect can be assigned to the same stack, while in
a queue layout no two edges that nest can be assigned to the same queue. Clearly, the size of the largest

twist (rainbow) in a layout is a lower bound on the number of stacks (queues) required for that layout.



The size of the largest rainbow in a layout equals the minimum queue requirement of the layout [11],
while the size of the largest twist in a layout may be strictly less than the minimum stack requirement

of the layout [7].

The definitions of stack and queue layouts are now extended to dags by requiring that the layout
order be a topological order. Following a common distinction, we use vertices and edges for undirected
graphs, but nodes and arcs for directed graphs. If G = (V, E) is an undirected graph then, G = (V, EVis
a dag whose arc set E is obtained by directing the edges in £. A topological order of G is a total order
o on V such that (u,v) € E implies u <, v. A k-stack (k-queue) layout of the dag G=(V,E)isa
k-stack (k-queue) layout of the graph G such that the total order is a fopological order of G. As hefore,
SN(G) is the smallest k such that G has a k-stack layout and QN (G) is the smallest k such that G has

a k-queue layout.

A partial order is a reflexive, transitive, anti-symmetric binary relation. A poset P = (5,<)is a set
S with a partial order < (see Birkhoff [3] or Stanton and White [14]). The cardinality |P| of a poset P
equals |S]. We only consider‘posets with finite cardinality in this paper. We write u < vif w < v and

u # v. The Hasse diagram HP)=(S, E) of a poset P = (5,<) is a dag with arc set
E = {{u,v) | v < v and there is no w such that v.<w < v}

(see Stanton and White [14]). A Hasse diagram is a minimal representation of a poset because it contains
none of the arcs implied by transitivity of <. The stacknumber SN (P) of a poset P is SN (H(P)); P
is a k-stack poset if SN(P) = k. Similarly, the quevenumber @N(P) of a poset P is QN(ﬁ(P))E Pis
a k-queue poset if QN(P) = k. The underlying undirected graph, H(P), of H(P) is called the covering

graph of P. Clearly, for any poset P
SN{H(P)) < SN(P) and QN(H(P)) < QN(P).

An example of a 2-stack poset is given in Figure 1. and example of a 2-queue poset is given in Figure
9. The stacknumber and the quenenumber of the covering graphs of the posets shown in Figure 1 and

Figure 2 is 1.

A diagram invariant is a property of posets that is shared by all posets with the same covering graph.
It is easy to verify that neither stacknumber nor queuenumber is a diagram inveriani. In fact, in the

subsequent sections we show that stacknumber and queuenumber are not even approtimate diagram



Figure 1: A 2-stack poset.

Figure 2: A 2-queue poset.

imvarignts in the sense that we are able to exhibit pairs of posets that share a covering graph, but one
poset has a constant stacknumber (queuenumber), while the other has a stacknumber (queuenumber)

that is arbitrarily large.

A poset P is planar if its Hasse diagram H (P) has a planér embedding in which all arcs are drawn
as straight line segments with the tail of each arc strictly below its head with respect to a Cartesglan
coordinate system. Note that H{P) may be planar even though the poset P is not. The posets shown

in Figure 1 and in Figure 2 are both planar.

Let v be a fixed topological order on ﬁ(P) Two elements u and v are adjacent in 7y if there is no
w such that u <y w <y v OF v <y w <y u. A spine arcm H(P) with respect to v is an arc (u,v)
in H(P) such that u and v are adjacent in 7. A break in H(P) with respect to v is a pair (w1, ug) of

adjacent elements such that wu; <y uz and (u, ) 18 not an arc in H(P). A connection C in H(P) with



respect to 7 is a maximal sequence of elements u; <y uz <y ... <y up such that (u;, 1) Is 2 spine
arc for all 4,1 < i < k; in other words a connection is a maximal path of spine arcs without a break.
The jumpnumber of P, denoted by JN(P), is the minimum number of breaks in any topoltogical order
on H(P).

A chain in a poset P is a sequence of elements uy,us, -- ., Up such that uy < ug < -+ < Un. The
length L{P) of a poset P is the maximum cardinality of a any chain in P. An antichan in a poset Pis
a subset of elements of S that does not contain a chain of size 2. The width W(P) of a poset P is the

maximum cardinality of any anti-chain in P.

3 Upper Bounds on Queuenumber

In this section we derive upper bounds on the queuenumber of a posef in terms of its jumpnumber, its

length, its width, and the queuenumber of its covering graph.

3.1 Jumpnumber and Queuenumber

We show that, for any poset P, JN(P)+1 is an upper bound on QN (P). This bound is tight within a

constant factor. This result is in contrast with the following result of Syslo.

Proposition 1 Syslo [13] For any posel P, with JN(P) =1, SN(P) £ 2. For every n, there ezists @
poset P such that |P|=n, JN(P) =2, but SN(P)=n).

Theorem 2 For any poset P, QN(P) < JN(P)+ 1. There exists o posel P such that |P| = 2n and
JN(P)/2 < QN(P).

Proof: For the upper bound, let P be any poset and let JN(P) = k. Let v be a topological order on
H(P) that has exactly k breaks and k + 1 connections. Lay out H(P) according to v and label these
connections Cp,C1,. - ., Cy from left to right. Let (uy, v1) and (uz, vz) be two nonspine arcs such that
w; and ug are in C; and vy and v are in Cj, where 1 << j < k. If (u1,v1) and {uz,v2) nest, then
one of (u1,v1) and (ug,va2) is & transitive arc. The fact that no two nonspine arcs between a pair of
connections nest suggests the following assignment of arcs to queues. Assign all non-spine arcs between

pairs of connections C; and Cj, where li — j| = £,1 < £ < k to quene g;. Assign all the spine arcs to a



queue go. Hence, we use k queues for non-spine arcs and one queue for spine arcs, for a total of & +1

queues.

To show a lower bound, construct the Hasse diagram of a poset P from the complete bipartite graph
Knn = (Vi Va, E) by directing all the edges from vertices in Vi to vertices in V2. Hence, JIN(P) =
2(n ~1), QN(P) = n, and

QN(P) = Qﬁm(f))_

Proposition 1 and Theorem 2 have the following corollary.
Corollary 3 There exists a class of posels P for which the ratio % s unhounded.

Theorem 10, in contrast, shows a class of posets Q for which SN(Q)/QN(Q) is unbounded.

3.2 Length and Queuenumber

In this section, we show an upper bound on the queuenumber of a poset in terms of its length and the
queuenumber of its covering graph. In order to prove the theorem we need the following lemma that gives
a bound on the queuenumber of a layout of a graph whose vertices have been rearranged in a limited

fashion.

Lemma 4 {Heath and Pemmaraju [9]) Suppose that ¢ is an order on the vertices of of an m-partile
graph G = (Vi,Va, ..., Viu, E) that yields a k-queune layout of G. Let o' be an order on the vertices of
G in which the vertices in each sel Vi, 1 < i < m appear consecutively and in the same order as in o.

Then o’ yields a 2(m — 1)k-queue lagout of 4.
Theorem 5 For any poset P,

QN(P) < 2-(L(P)~1)- QN(H(P)).
There exisls a poset P for which QN(P) =2 (L(P) — 1) - QN{H(P})).

Proof: Let QN(H(P)) = k and let H(P) = (V,E). Let o be a total order on V' that yields a k-queue
layout of H(P). The nodes of H(P) can be labeled by a function [ : V' — {1,..., L{P)} such that
I(u) < !(v) if u < vin P, as follows. Let H, = H(P). Label all the nodes with indegree 0 in Hy with



the label 1. Delete all the labeled nodes in ﬁg to obtain H;. In general, label the nodes with indegree 0
in H; with the label i + 1. Delete the labeled nodes in H; to obtain ﬁi_g_l. By an inductive proof, it can
be checked that the labeling so obtained satisfies the required conditions. Let Vi = {u € V' | I(u) = i}
for each 7, 1 < i < L(P). For any arc (u,v) € E ifue Vi, then v € V; for some 7, 1 < i < j < L{P).
Therefore I:.f(P) = (Vi, Vo, o, Vigpy, E) is an L{P)-partite dag. Construct a total order v on the nodes
of ﬁ(P) such that

1. The elements in each set V;, 1 < ¢ < L(P) occur contiguously and in the order prescribed by o.
2. The elements in V; occur before the elements in Vi, for all 4, 1 < i < L(P).

Since every arc in ff(P) is from a node in V; to a node in Vj, 1 < i< j < L(P) -1, v is a topological

order on ﬁ(P) By Lemma 4, 7 yields a layout that requires no more than 2. (L(P) — 1) - k queues.

We now show that the upper bound in the above theorem is tight. As in the proof of Theorem
theorem:jumpnumber, construct the Hasse diagram of a poset P by directing the edges of the complete
bipartite graph K, , = (V1, V3, E) from V; to V5. The length of the poset, L(P), is 2, the queuenumber
of the covering graph, QN (K ,}, is [2] (sec Heath and Rosenberg [11]), -a,nd the quenenumber of the
poset P, QN(P), is n. {1

Note that Theorem 5 holds for dags as well as for posets as its proof does not rely on the absence of

transitive arcs. An immediate corollary is the following.

Corollary 6
QN(H(P)) < QN(P) < 2-(L(P)-1)-QN(H(P)).

Consider a class of posets P. Corollary 6 implies that if there exists a constant K such that L(P)< K,
for all P € P, then QN(P) = @(QN(H{P)) for all P € P.

3.3 Width and Queuenumber

In this section, we establish an upper bound on the queuenumber of a poset in terms of its width. We

need the following result of Dilworth.

Lemma 7 (Dilworth [5]) Let P =(S,<) be a posel. Then S can be partitioned into W(P) chains.



For a poset P = (S,<), let 51, 5,... »Sw(py be a partition of S into W(P) chains. Define an i-chain
arc as an arc in ﬁ’(P), both of whose end points belong to chain S;, 1 <1< W(P). An (i, f)-eross are,

¢ # j is an arc whose tail belongs to chain S; and whose head belongs to chain Sj.

Theorem 8 The largest rainbow in any layout of a poset P is of size no grealer than W(P)?. Hence,

the quenenumber of any layout of P is af most W(pP)2.

Proof: Fix an arbitrary topological order of ff (P). For any i, no two #-chain arcs nest. Therefore, the
largest rainbow of chain arcs has size no greater than W(P). If i # j then no two (i, j)-cross arcs can nest
without one of them being a transitive arc. Therefore, the largest rainbow of cross arcs has size no greater
than W (P)(W(P)—1). The size of the largest rainbow is at most W(P)+W(P)(W(P)— 1) = W(P)".
0O

The bound established in the above theorem is not known to be tight. In fact, we believe that the

quevenumber of a poset is bounded above by its width (see Conjecture 1 in Section 7).

4 The Queuenumber of Planar Posets

~ In this section, we first show that the queuenumber of the class of planar posets is unbounded. This is in
contrast with the fact that the stacknumber of the class of planar posets is unknown. We then establish

an upper bound on the queuenumber of a planar poset in terms of its width.
4.1 A Lower Bound on the Queuenumber of Planar Posets

We construct a sequence of planar posets P, with [P} = 3n + 3 elements and QN(P,) = O(y/n). In
fact, we determine the queuenumber of P, almost exactly. To prove the theorem, we need the following

result of Erdds and Szekeres,

Lemma 9 (Erdds and Szekeres [6]) Let (2;), be a sequence of distinct elements from a set X. Lei

& be a total order on X. Then (z: Y7oy either contains a monotonically increasing subsequence of size

[V] or a monotonically decreasing subsequence of size [\/n] with respect to §.

Theorem 10 There exists a planar poset P, with 3n -+ 3 elements such that

LVr]+1 < QN(P) < [Vi] +2.



Figure 3: The planar poset P.

Proof: Define the disjoint sets 7, V, and W as follows,

U = {w|0<i<n}

v

{we {0<i<n}

i

W {w; |0 <i<a}

Let 5= U UV UW. The planar poset P, = (S, <) is given by

up < g, 1<i<n
vy < v, 0<i<n-1
Uy < wy < v, 1<i<n

Figure 3 shows the Hasse diagram of P;. Let ¢ be an arbitrary order on the elements of S. The elements
of YUV U{wy} appear in the order ty, up_1, ..., up, Wy, Vg, V1, .. ., Up i 0, and all elements of W appear

between w, and v,. Define a total order § on the elements of W by w; <5 w; if ¢ < j. Suppose

Wiy Wiy, oo, Wy,

10



1S an increasing sequence of nodes in W with respect to 6. Since Wi, appears after u; in any topological

order of H (Fr), the following sequence of nodes is a subsequence of o
u’ik! ugktl,. - ,'U,il,'f.Uiljﬂ)g'z,.. .]wg'k.
Therefore, the set {(uij,wz-j) |1<j<k}isa krainbow in o Stmilarly, if
Wiy Wiy, ..., w;,

Is a decreasing sequence of nodes in W with respect to &, then the set {(wij,vz-j) 1< j<k}isa
k-rainbow in o. By Lemma 9, in e, there is an increasing subsequence of size [Vr+1] ora decreasing
subsequence of size [\/f + 1] with respect to §. Thus there ic & rainbow of size [\/r 4+ 1] > [vn]+1
in any topological order on H(P,) and therefore QN(P.) > | /a)+ 1.

We now lay out 2, in [V7]+2 queues. Let s = ['vrl and let ¢ = 2] < [/7]. Partition W—{wy}

mto s nearly equal-sized subsets

Wy, Wy, ..., W,
such that
w. = J w115 <) 1<i<s—1
’ {wjl(s—l)tﬁjgn} PR

Construct an order & on the elements of S by first placing the elements in I/ UV 1 {wo} in the order
Un, Un—1,..., Up, Wo, to, vy, ... yUn.

Now place the elements of W — {wo} between wy and vy such that the elements belonging to each set

W; appear contiguously and the sets themselves appear in the order
W, Wy, ..., Wy

Within each set W, 1 < ¢ < s, place the elements in increasing order. The ares from I to W form s
mutually intersecting rainbows each of size at most ¢. Therefore ¢ queues suffice for these arcs. The arcg
from W to V form s nested twists each of size at most ¢. Therefore s queues suffice for these arcs. Since
no two arcs, one from 7 to W and the other from W to V nest, they can all be assigned to the same set
of s queues. An additional queue 1s required for the remaining arcs. This is a layout of P, in [vR]+1

queues (Figure 4). Thus QN (F,) < v +2. |

11



Figure 4: Layout of planar poset P,.

Figure 5: A 2-stack layout of the pianar poset Py,

We believe that the upper bound in the above proof can be tightened to exactly match the lower bound

In fact, we have been able to show that for m? Snlm(m+1), QN(P)=m+ 1= [vn]+1.

The above result contrasts with the lack of known bounds on the stacknumber of planar posets. Two
observations about P, are in order. The first observation is that SN (Pn) = 2. A 2-stack layout of }}(P4)

is shown in Figure 5. The second observation is that the stacknumber and the queuenumber of H (B, ) is

Figure 6: A 2-queue layout of the covering graph of Py.

12



2. A Z-queue layout of H(P,) is shown in Figure 6. Theorem 10 and the above observations imply the

following corollaries.
Corollary 11 There ezists a sequence of planar posets P,, n > 1, [Pl = 3n 4 3 such that

QN(P) _
sw(py = 2V

Corollary 12 There exisis a sequence of planar posels P, n > 1, | Po| = 3n+3, such that

NPy
on(a(Ry = V-

While Theorem 10 establishes a lower bound of Q(+y/n) on the queuenumber of the class of planar posets

with n elements, a matching upper bound is not known (see Conjecture 2 in Section 7).
4.2  An Upper Bound on the Queuenumber of Planar Posets

In this subsection, we show that the queuenumber of a planar poset is within a small constant factor of

its width,

Theorem 13 For any planar poset P, any topological order of I?(P) has quenenumber no greater than

3-W(P) -2

Proof: Without loss of generality, assume that I:?(P) = (V, E) is embedded in the plane such that every
arc is drawn as a straight arrow pointing upwards and no two nodes are on the same horizontal line. (If
two nodes are on the same horizontal line, a slight vertical perturbation of either of them yields another
planar embedding with the nodes on different horizontal lines). Furthermore, we may assume that 5 (P)
has a unique source (the lowest node) and a unique sink (the highest node) by the following argument. If
v 1s a source and not the lowest node, then some node u that is below v is visible from along a straight
line. If the arc (u,v) is added, then we get a Hasse diagram of a new poset with a planar embedding
in which every arc is drawn as a straight arrow pointing upwards. The width of the new poset is no
greater than W(P), and it has one fewer source than f (P). By induction we may assume that O (P)
has a unique source and 2 unique sink; call it 5. By an analogous argument we may assume that 4 (P)

has a unique sink; call it #.

By Lemma 7, V' can be partitioned into W(P) chains

I/i:"au-‘- 5VW(P)'

13



For each chain V;, there is a directed path D; from s to ¢ that contains every element of V;. We conchide

that the nodes of E(P) can be covered by W{P) directed paths, not necessarily disjoint, from s to ¢

For an arbitrary directed path D from s to ¢, there is an obvious notion of a node or an arc being on
the left of D, the right of D, or on 1. We say that a directed path D' from s to £ is {0 the left (right)
of D if every arc in [ is either to the left (right) of D or on D. Clearly, D' is to the left of D if and
only if D is to the right of D’. Write /' <g Dif D' is to the left of D. Tt is easy to verify that <z is a

partial order on paths from s to ¢,

Without loss of generality, we may assume that the paths D), Ds, ... s Dw(py covering the nodes of
H{(P) are in the order

Dy <p Do <p ... <p Dypy

by the following argument. Suppose that D; and Dj are unrelated in the partial order <t and that
¢ < j. Construct two paths DY and D} from s to ¢. Place all arcs that are on both D; and D; in both
D! and D;,-. Place all arcs in D; to the left of D; and all arcs in Dj to the left of D; in D!, Place all ares
in D; to the right of D; and all arcs in D; to the right of I; in Dj. Tt is easy to verify that D; and D]

are directed paths from s to ¢ and that Dl <y Dj. An inductive proof completes the argument.

We are now prepared to complete the proof of the theorein by an induction on W{P). In the base
case, W(F) = 1 and the entire Hasse diagram is covered by a single path D, from s to ¢, Assigning all

arcs in [ to a single queue yields the claimed bound.

To complete the induction, assume that W(P) > 1 and that the bound holds for all posets of smaller

width. Cover the nodes of ﬁ(P) with paths Dy, Dy, ..., Dy (py from s to ¢ so that
Dl <L Dg <r ...<p DW(P)-

Clearly, Dwpy is the directed path from s to ¢ along all the right most ares in the planar embedding
of H(P) There must be at least one node in Dw py that is in no other D; (otherwise, the width of P
is less than W(P), a contradiction). Let P’ be the poset derived by removing all such nodes from P.
We have that W(P') = W(P) — 1 and that the nodes of H(P') are covered by Dy, Ds, . Dy py_y.
By the inductive assumption, any topological order of H(P’) has queuenumber at most 3 - Wwr)y-2=

3-W(P)-— 5.

14



Consider any topological order of H(P). Assign the arcs of H(P') to §- W(P) — 5 queues. Any arcs
not in E(P’) fall into one of three classes: {i) on Dy (py, (il) incoming into Dy (py, or {iii} outgoing from
Dw(P). Note that an incoming arc must have its tail on Dy py_; and an outgolng arc must have its
head on Dwpy_1. Use one queue for each of these classes of arcs. By the fact that ﬁ(P) is in topological
order, no two arcs on Dw(p) can nest. Suppose {(u, v) and (x,y) are two Incoming arcs. Then u and z are
on Dw(P)_l and v and y are on Dw(_p). Suppose u precedes # on DW(P)—l and hence in the topological
order. By the planarity of the embedding of /7 (P} with arcs drawn as straight arrows pointing upwards,
v precedes y in topological order. Similarly, if = precedes u on Dw(py—1, then y precedes v on DW(p).
In either case (u,v) and (z, %) do not nest. Similarly, it can be shown that no two outgoing arcs nest.
Hence, the assignment of ares to queues described above results in a queue layout of E(P) in3-W(pP)-2

queues,

By induction, the theorem follows. ) ]

In the above theorem, we show that any topological order can be used to obtain a (BW(P)—2)-queune
layout of & (P). We believe that using a particular topological order, chosen with care, will be able to

provide a W(P)-queue layout of ff(P) (See Conjecture 1).

5 Stacknumber of Posets with Planar Covering Graphs

In this section, we construct 3m-element posets P, n > 1, such that H(P,) is planar and hence

SN(H(P,)) < 4 (see Yannakakis [18]), and yet SN(P,) = O(n).

Theorem 14 There exist posets Do, n2> 1, such that |P,| = 3n, H(P,) is planar, and

Proof: Let U, V, and W be disjoint sets

U = {wil<i<n}

=
It

{vi|1<i<n}

W o= {w|1<i<a)
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Figure 7: The covering graph of P;.

The poset P, = (U UV U W, <) is given by

U < Uit1, U<, wi<wyg, 1<i<n—1
U <wi <y, 1<i<n
un<'U1.

Figure 7 shows H(P,).

To prove the lower bound on SN {Fn), let & be any order or the elemnents of F,. The order ¢ contains
the elements of I/ UV in the order U1, U2,y ..o Un, V1,03, ..., Uy, and the elements of W in the order
Wy, Wy, ..., wy,. The elements.of W are mingled among the elements I7 U V. If W ns2| <o Un, then

(i, v1), (wa, V2)y .y ('win/Zj ) "U[nfzj)

form an |n/2|-twist. If Winj3| >o Uy, then

(uf_n/2_|+1! w[n/2J+1)a (“Ln/2J+2v wLn/2j+2): R (um wn)
form an [n/2]-twist. In either case, the layout contains an | 3] twist. Therefore, SN(FP.) > |3].

An n-stack layout of P, is obtained by laying out the elements of I/ UV in the only possible order,
and then placing each element w; immediately after w; for all i, I <i< n Figure 8 shows a 2-queue
layout of Py, but the total order shown in the figure is what we use to obtain a n-stack layout of 2,.
The assigniment of arcs to stacks is as follows. Assign each arc in the set {(u, wy), (wy, ), {w;, wig1)} to

stack s; for all ¢, 1 <i<n—1and assign each arc in the set {(u,,, wn}, (wn,v,)} to stack s,,. Note that

16



Figure 8: A 2-queue layout of Py

no two arcs assigned to the same stack intersect. The only arcs remaining to be assigned are the arcs in

the set

{(u‘i:ui+l) i 1 <t s 1} U{(visvi-l—l) I 1 SES n— I}U {(unﬂvl)}'

The ares (v;, vipr) foré, 1 <4 <71 —1 do not intersect any other arc and can be assigned to any stack.
Each arc (u;, u;1;) can be assigned to stack s;,¢ for all L1<i{<n—1and arc (n,v1) can be assigned

to stack s;. '

Two observations about the poset 7, consiructed in the above proof are in order. The first observation
is that QN (P,) = 2. A 2-queue layout of P, is shown in I igure 8. In general, the n-stack layout of
P described in the above proof yields a 2-queue layout of P,. The second observation is that the
stacknumber and the queuenumber of the & (Pn)is 2. A 2-stack layout of & (F4) is shown in Figure 9.

In general, a 2-stack layout of H(P,) can be obtained because H(P,) is a hamiltonian planar graph [2].
Theorem 14 and the above observations lead to the following corollaries.

Corollary 15 There exists a sequence of posels Py, n > 1, |Pa| = 3n, such that H{P,) is planar and

SN(P)
QN(P)

= Q(n).

Corollary 16 There czists a sequence of posets P, n > 1, [Po] = 3n, such that H(P,) is planar and

SN(P)

17



Figure 9: A 2-stack layout of the covering graph of P,.

6 NP-completeness Results

Heath and Rosenberg [11] show that the problem of recognizing a l-queue graph is NP-complete. Since
a l-stack graph is an outerplanar graph, a 1-stack graph can be recognized in linear time (Syslo and Tri
[16]). But Wigderson [17] shows that the problem of recognizin;-; a 2-stack graph is NP-complete. Barrett,
Heath and Pemmaraju 1] show that the problems of recognizing a 4-queue poset and of recoghizing a
5-stack poset are both NP-complete.

The decision problem for stack layouts of posets is POSETSN.

POSETSN

INSTANCE: A poset P.

QUESTION: Does P have a 5-stack layout?

The decision problem for quene layouts of posets is POSETQN.

POSETQN

INSTANCE: A poset P,

QUESTION: Does P have a 4-queue layout?

Theorem 17 (Barvett, Heath, Pemmaraju [1]) The decision problems POSETSN and POSETON

are both NP-complete.

Since, the Hasse diagram of a poset is a dag, this result hold for dags in general. This result is in the

spirit of the result of Yannakakis (19] that recognizing a 3-dimensional poset is NP-complete.
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7 Conclusions and Open Questions

In this paper, we have initiated the study of queue layouts of posets and have proved a lower bound result
for stack layouts of posets with planar covering graph. The upper bounds on the queuenumber of a poset
in terms of its jumpnumber, its length, its width, and the quevenumber of its covering graph, proved
in Section 3, may be useful in proving specific upper bounds on the queuenumber of various classes of
posets. We believe that the upper bound of W(P)? on the queuenumber of an arbitrary poset P, proved
in Section 3, and the upper bound of 3 W(P) — 2 on the queuenumber of any planar poset P, proved

in Section 4 are not tight. We conjecture that:
Conjecture 1 For any poset P, QN{P) < W(P).

We have established a lower bound of £{\/n) on the queuenumber of the class of planar posets. We

believe that this bound is tight and conjecture that:
Conjecture 2 For any n-clement planar poset P, QN(P) = O(y/n).

Another upper bound that we believe exists on the queuenumber of a planar poset P is given by
the length Z(P). We believe that it is possible to embed a planar poset, in a plane in an “almost”
leveled-planar fashion with L{P) levels. From such an embedding, a queue layout of P in L(P) queues

can be obtained, Therefore we conjecture:
Conjecture 3 For any planar poset P, QN(P) < L{P).

In Section 5 we show that the stacknumber of posets whose covering graph is planar is ©(n). This is

in contrast with the fact that the stacknumber of planar posets is still unresolved.
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