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Abstract

Chitra analyzes a program execution sequence (PES) collected during execution of a
program and produces a homogeneous, semi-Markov chain model fitting the PES. The PES
represents the evolution of a program state vector in time. Therefore Chitra analyzes the
time-dependent behavior of a program. The paper describes a set of transforms that map a
PES to & simplified PES. Becanse the transforms are program-independent, Chitra can be
used with any program. Chitra provides a viswalization of PES’s and transforms, to allow a
user to visually guide transform selection in an effort to generate a simple yet accurate semi-
Markov chain model. The resultant chain can predict performance at program parameters
different than those used in the input PES, and the chain structure can diagnose performance
problems.

Introduction

Formation of models of physical behavior underlies science. Yet our ability to construct behav-

ioral models of parallel and distributed programs is very limited. Fast, simple, and accurate

model construction is likely to be central to the success of parallel and distributed software de-

velopment. For example, models can predict performance metrics; suggest processor mappings;

assist in diagnosing software performance problems; and identify parameter values, such as buffer

sizes, that optimize performance.

The following definitions are used throughout the paper. A thread (or process) is a code

fragment scheduled by an operating system. A program stafe is an n-tuple providing an in-

stantaneous description of a program. A program state component is a scalar quantity with a

finite domain, such as the value of a local or global variable, the virtual address of a data ob ject



that will be referenced in the instruction which will next complete its execution in a thread,
the virtual address of the instruction which will next complete its execution in a thread, or a
function of these quantities. The decision of what to include in a program state depends on the
objective of a performance study. For each execution of a program, there corresponds a program
execution sequence (PES), representing the sequence and entrance times of program states that
a program passes through during execution. Each PES component is an ordered pair whose
components are a program state and a non-negative integer entrance time. One instruments a
program to collect an estimate of a PES, as deseribed in Section 7. The collected data is an
estimate because the presence of instrumentation alters the PES. Associated with a program is
a set of program parameters, which are data items that may be changed each time a program
is run. Program parameters include input data to the program and run-time constants, such as

the number of threads.

Example 1 Dijkstra’s dining philosophers problem is used in Section & as one case study in
this paper. The problem consists of N philosophers, numbered 0,1,. .., N — 1. Fach philosopher
alternately thinks and eats. A philosopher requires ulensils to eat, and acquires and later releases
utensils serially. The problem is represented by a graph whose vertices each represent a philoso-
pher and whose arcs each represent a utensil. An arc exisis between the vertices representing
philosophers i and j, for 0 < i,7 < N, if and only if philosophers i and j share a utensil. We
consider the case where the graph consists of @ cycle containing all vertices; thercfore there are N
ulensils, and each philosopher requires two ulensils to eal. The duration of ealing and thinking
time for all philosophers is the constant z.

Each philosopher is represented by an operating system thread (Figure 1}). Let utensils be
numbered 0,1,..., N —1. Utensils are implemented by an array of locks, L[N]. A thread acquires
a ulensil by acquiring the corresponding lock. The Think and Eat operations are implemented
as a loop that repeatedly mulliplies the same operands; @ is the number of repetitions. Macros
f and g define the order in which uiensils are acquired and released. Orienting philosopher and
utensil numbers according to a clock face, even (odd) numbered philosophers acquire and release
the clockwise (counterclockwise) utensil first.

The program state consists of N components, corresponding to N threads. Each program



#define £(i) (i is odd) ? L[i-1] : L[i]
4define g(i) (i is odd) ? L[i] : L[(i-1)%N]
extern Spinlock L[N];

while (TRUE) {

Think; /*State T*/
Lock(f(i)); /*State A1*/
Lock(g(i)); [*State A2¥/
Eat; /*State E*/
Unlock(f(i)}; /*State R1*/
Unlock(g(i)); /*State R2*/

}

Figure 1: Code of philosopher ¢, for0<i<N.

state component denotes which statement in the corresponding thread will nezt complete its
execulion, as specified in Figure 1. The siz values are thinking, ecquiring one ulensd, acquiring a
second utensil, eating, releasing one utensil, and releasing the second uiensil, denoted T', Al, A2,
E, R1, and R2, respectively. For ezample, with N = 4, in program state ETET philosophers
sero and two eat while the remainder think. The initial portion of a sample PES measured
from an implementation of Figure 1 is (A2T,1550), (ET,1560), (EAL,1570), (R1A1,1585),
(R2A1,1597), (R2A2,1601), (TA2,1607), (TE,1621), (A1E,1633), (A1R1,1651), (A2R1,1668),
(A2R2,1669), (AQT,JGS!)’), (ET,1686), (EA1,1695), (R1A1,1711), (R2A2,1723), (T'A2,1731),

(TE,1735), (A1E,1745), (A1R1,1760). The program has two parameters: N and z.

A program state with n components implies a state space size exponential in n. In parallel
and distributed programs, the value of n is often proportional to the number of threads, which
makes direct state space analysis intractable.

Usually, only a proper subset of the state space and all possible state transitions oceur in
the set of all possible PES’s for a program, called feasible program states and transitions. For
example, consider a parallel program in which each program state component points to the
next instruction to be executed in a corresponding thread. The presence of a critical section
precludes, first, occupancy of a program state in which two or more components point to an
instruction within the critical section and second, a state transition in which multiple threads
simultaneously enter the critical section. The feasible state space size is also reduced if we

only wish to characterize the program behavior for certain ranges of program parameter values.
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Finally, the feasible state space size is also diminished by functional relationships that may exist
among program state components. For example, if a program state represents the values of
n global variables (e.g., n = 2: number of full, number of empty buffers), and the program
maintains an invariant property (e.g., the sum of full and empty buffers is 100), then the state

space is limited to program states satisfying the invariant.

Example 2 In Example 1, a progrem state in which philosophers that share ulensils simultane-

ously cat (i.e., EE for N =2} is infeasible.

Success in modeling program behavior hinges on identifying feasible program states and
transitions for parameter ranges of interest. One way to discover this subset is to analyze program

cource code alone. The method works for limited classes of software (see for example [6, 15, 24]).
1.1 Problem Definition

There is an alternative to constructing a program behavior model using only source code. We
propose a system that takes as input a PES collected from execution of a program and produces
as output an empirical model in the form of a homogeneous semi-Markov chain [8], consisting
of a set of chain states, state occupahcy time distributions, and state transition probabilities,
such that a sample trajectory generated by the empirical model closely matches the input PES.
Combining the models of a set of PES’s produces the final model of program behavior. This
is the purpose of Chitrel. An advantage of constructing a model from PES’s is that it can
be applied to any program. The disadvantage is that the model is only guaranteed to fit the
observed PES’s, and thus successful modeling depends upon observing a sufficient pumber of
PES’s.

The remainder of the paper is organized as follows. The next gection introduces the program
behavior model and analysis methodology underlying Chitra. Section 3 describes the PES trans-
forms provided by Chitra. Section 4 describes the role of visualization in applying transforms.
Section 5 contains case studies, applying Chitra to one distributed and one parallel program: a
commercial TCP/IP communication protocol product and a dining philosophers program, re-

spectively. A comparison of Chitra to performance visualization tools and issues surrounding

1 Chitra is a Sanskrit word for beautiful or pleasing pictures and drawings.



collection of PES’s are presented in Sections 6 and 7, respectively. Finally Section 8 discusses

future directions for further development of Chitra.

2 Chitra

The two key design choices in Chitra are the choice of empirical program behavior model, and the
methodology used to construct a model from a set of PES’s. The program behavior model is a
homogeneous, continuous time semi-Markov chain, discussed in Section 2.1. The methodology to
build the model subjects a PES to three forms of analysis, discussed in Section 2.1: conventional
data analysis techniques, such as those used in signal processing and in post processing of simu-
lation output; conventional program visualization methods; and novel techniques to gra,phically

edit a program visualization using a pointing device to define patterns and aggregate states.
2.1 Choice of Empirical Program Behavior Model

An “ideal” program model represents each unique program state by a model state. The model
requires a transition function that maps the current model state to a subsequent model state.
The transition function must allow deterministic as well as probabilistic transition functions.
Deterministic transition functions represent the execution of program statements. For example,
program codes contain conditional branches whose target is selected based on the value of a
complex function of input data to the program and initial values of program variables. The
model transition from the state represeniing the program just before execution of the conditional
branch to the state representing the program at the branch target must be deterministic. In
conirast, probabilistic transition functions correspond to random events in the environment
in whick the program is run; examples include asynchronous events (e.g., context switches,
page faults, and other interrupt-driven events); contention for resources (e.g., processor cycles,
cache lines, memory blocks, communication media); nondeterministic programming language
constructs; asynchrony among processor clocks; and completion of program actions that are
functions of input data to the program.

No solution to the ideal model exists in the literature. However, combining deterministic and
probabilistic transition functions as the ideal model requires has been used in the literature on

mapping program source code to a model for certain classes of programs (e.g., see [15, 24]).



Chitra uses as its program behavior model a homogeneous, continucus time semi-Markov
chain. A semi-Markov process models general state occupancy time distributions, appropriate
for software. At present Chitra uses a homogeneous process, which is sufficient for the programs
modeled in Section 5. In theory, software obeys the embedded Markov chain assumption, which
requires that the state transitions be based only on the current program state. In practice, one
often simplifies the program state to reduce the state space size at the exlpense of violating the

Markov property. Chitra’s transforms, discussed next, can alleviate this tradeoff.
3 Transformations and Chain Generation

Upon initiation, Chitra can map the input PES to a semi-Markov chain model. However, this is
not normally done, because a sample trajectory generated from this mocie] will not closely match
the input PES. To produce a more closely matching model, a nser must {ransform the input PES
using the transforms described below and then generate a model of the transformed PES. The
process of PES transformation and model generation can be iterated to produce a sufficiently
good model. Transformations can be undone to allow a user to try alternate sequences of
transforms.

Chitra represents a PES as a Symbol Ereculion Sequence (SES). A SES consists of two
sequences: a symbol sequence and an occupancy time sequence. The first ocenpancy time sequence
element corresponds to the first symbol sequence element. An analogous property holds for
all other elements; therefore the two sequences have identical length. The domain of symbol
sequence elements is a set of symbols, denoted ¥. The set of all program states in the PES

input to Chitra is a subset of 3. "The domain of occupancy times is the non-negative integers.

Denote o PES as (so,€0), (51,61}, (82, €2),...,(8m—1,€m=1),(Sm,€m). Upon initiation, Chitra
represents the PES by a SES whose symbol sequence is sp, s, 89, ..., 5;—1 and whose occupancy
time sequence is e; — e€g, €3 — €1,...,€p — €m—1. The SES omits the last PES program state

because the state occupancy time cannot be computed.

Example 3 The symbol sequence representing the PES in Erample 145 A2T, ET, EA1, R1A41,
R2A1, R2A2, TA2, TE, ALE, A1R1, A2R1, A2R2, A2T, ET, EAl, R1A1, R2A2, TA2, TE,

AlE. The occupancy time sequence 15 10,10,15,12,4,6,14,12,18,17,1,16,19,16, 12,8, 4, 10, 15.



3.1 Transforms

A transform maps one symbol and one occupancy time sequence, called the input sequences,
and denoted I, and I, respectively, to another {(oufput) symbol and occupancy time sequence,
denoted O, and O,, respectively.

Chitra provides four transforms: clipping, aggregation, projection, and filtering. Clipping
deletes part of a PES from analysis. Aggregation, projection, and filtering collapse symbols or
symbol sequences into composite symbols; they differ in the criteria used to select which states

are collapsed.

Clipping: Let n; and n; denote two integers such that n; +n; does not exceed the length of
I,. The clipping transform maps n;, ny, I,, and I, to O, and O, by deleting the initial n; and

final n; elements of I, and .

Example 4 Applying a clipping transform with n; = ny = 8 to I, and I, equal to the sequences

given in Frample 3 yz'el.ds O.s = AlE, 6 AlR1, A2R1, A2R2 and O, = 18,17, 1, 16.

Aggregation: Let o denote any symbol sequence, and s denote a symbol in ¥; s denotes a
composite symbol. The aggregation transform maps o, s, Iy, and I, to O, and O, as follows.
Initially set O, = I, and O, = I,. Next, for each occurrence of ¢ in O;, do the following. Let o
denote the subsequence in O, corresponding to the occurrence of ¢ in O,. Replace o in O, by

s. Replace o in O, by the sum of the elements of o.

Example 5 Let I, and I, be the sequences in Ezample 3. Replacing the sequence o = R2A2,
TA2, TE by s = Z yields O, = A2T, ET, EA), R1Al, R241, Z, A1E, A1R1, A2R1, A2R2,
A2T, ET, EAl, R1Al, Z, ALlE and O, = 10, 10, 15, 12, 4, 32, 18, 17, 1, 16, 1, 9, 16, 12, 22,

15.

Projection: Let S denote any subset of ¥, and s denote a symbol in X; s denotes a composite
symbol. The projection transform maps S, s, I;, and I, to O; and O, as follows. Initially set
O, = I, and O, = I,. Next, replace each element of O, that is in S by s. Finally, for each

subsequence s, s, . . ., s in Q,, do the following. Let o denote the subsequence in O, corresponding



to the occurrence of s,8,...,51n Os. Replace s,8,...,5in O, by s Replace o in O, by the sum

of the elements of o.

Example 6 In the dining philosophers problem, the stale space may be simplified by project-
ing the two acquire (respectively, release) states, Al and A2 (R1 and R2), into a single ac-
quire (release) state, represented by symbol A (R). This is accomplished by a set of projection
transforms. (One example is S = {AlRl,AQRl,AQR?} and 5 = AR.) The resuli, applied
to Ezample 3, is O, = AT, ET, EA,RA,TA,TE,AE, AR, AT, ET, EA,RA,TA,TE,AE and

0, = 10,10,15,22,14,12,18,34, 1,9,16,20,4,10,15.

Filtering: Frequency filter transforms map a parameter p and input sequences I, and I, to
output sequences O, and O,. A symbol in I, will be selected by the filter according to the

following rules:

Time domain filtering: Let the sum of all times in I, be T'. For each symbol s, let h(s) denote
the sum of each occupancy time in I that corresponds to an occurrence of symbol s in I;.
‘A time domain filter selects all symbols s for which h(s)/T is less than parameter p, which

is a fraction.

Event domain filtering: An event domain filter transform selects all symbols that occur less than

p number of times in I;.

A run is a subsequence of I, such that all of the run’s symbols are selected by the filter, and
the predecessor and successor symbol (i.e., the symbols preceding and following the subsequence)
in I, are not selected by the filter.

A filter transform performs the following mapping. Initially set Os = I, and 0, =1, Let
the number of distinct runs in I be n,. Select n. unique symbols not used in I,; these are
composite symbols. Replace all runs in O, by a composite symbol such that all runs sharing the
same predecessor and successor symbol are replaced by the same composite symbol. Replace all

occupancy times in 0, that correspond to runs by the sum of the run occupancy times.

Example 7 In the SES of Ezample 3, the fraction h(s)/T for A1E and EAl is 15.7% and

14.7%, respectively. The fraction is less than 14.7% for all other symbols. Therefore applying

SRS



o time domain filler with parameter p = 14.7% to I, and L, representing Erample & creates
four runs, three of whick are distinct, and yields O, = T, EAl, T3, AlE, T3, EAl, T2,
AlE and O, = 20, 15, 48, 18, 44, 16, 34, 15. Composite symbol T'1 replaces the sequence
A2T, ET'; symbol T2 replaces one occurrence of R1Al, R2A1, R2A2,TA2,TE and one occurrence
of R1A1, R2A2, TA2, TE. Composite symbol T3 replaces ALR1, A2R1, A2R2, A2T, ET.
Subsequent application of an event domain filler with p= 2 yields O, = T4, EAL, T2, ALE,
Ts, EA1, T2, A1E, and O, = 20, 15, 48, 18, 44, 16, 34, 15. Compostte symbols T4 and T'5

replace symbols T'1 and T3, respectively.
3.2 Chain Generation

Chitra maps a SES to a semi-Markov chain model at the user’s request as follows. Let OTHER
be a symbol not in ¥. Symbol OTHER is appended to the symbol sequence, and time zero is
appended to the occupancy time sequence. Let S denote the set of symbols in the SES; S is
also the set of chain states. Chitra sets the sample mean and variance of each chain state to
the corresponding statistics for all occupancy times in the SES for the corresponding symbol.
Finally, Chitra sets the transition probabilities out of each chain state to the relative frequency
of transition from the corresponding SES symbol to all other symbol in the SES.

When Chitra generates a model, it expresses the chain in terms of program states as well
as composite symbols, and also provides a definition of each composite symbol as an acyclic

semni-Markov chain consisting of program states appearing in the PES input to Chitra.

Example 8 Generation of ¢ chain from the SES in Ezample 7 resulting from both filter trans-

forms yields the transition graph in Figure 2.

4 Visualization

SES’s and transforms have textual and visual analogs. Therefore three possible ways to decide
which and in what order to apply transforms are (1) under user guidance, based on examination
of a textual listing of a SES, (2) under user guidance, based on a visualization of a SES, and (3)
automatically based on an algorithm. Chitra uses the second approach over the first because a

single bitmapped display screen can visualize a SES requiring many sheets of paper for a textual



0.5 OTHER

T4 —w=TFAl -T2 - ATE
0.5
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Figure 2: Chain generated by SES of Example 7. Composite symbols T4 and T5 denote symbol
sequences A2T, E'T', and A1R1, A2R1, A2R2, A2T, ET', respectively.

listing. Furthermore, state transitions patterns are easier to detect visually than textually.
Approach (3) is left as an open problem, because different orders of transform application produce

different semi-Markov chains.
4.1 Visualizing a SES

Chitra represents a SES as one of the following two dimeunsional graphs: program state as a
function of fime, program state as a function of event, and power as a function of frequency.
The first two views require mapping the set S of all symbols in a SES to a single dimension.
This mapping is done when Chitra starts execution. Chitra assigns to each unique symbol in
S a unique nonnegative integer, denoted f(s), in a contiguous interval. Each infeger is the
y-coordinate value that. represents the corresponding symbol. The mapping function used is
arbitrary and does not affect the chain generated by Chitra.

In time view the point (z,%) is contained in the function if and only if symbol f~'(y) cor-
responds to entrance time # in the SES. Therefore the units of £ axis points is the time base
specified in the input file. In event view, the point (z,y) is contained in the plotted function
if and only if the #-th program state in the input file is f~!(y), for # = 0,1,2,... Therefore
in event view, each z axis point corresponds to a program state. Time view conveys the order

and occupancy times of symbols, while event view conveys only the order of symbols. Event
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Figure 3: Time domain view of PES for two dining philosophers and eat, think time of 10.

view displays a greater number of symbols with equal fidelity, compared to time view, but with
a tradeoff of a loss of occupancy time information. In time and event views graph line segments

are parallel to the z axiz because the symbol remains constant between transition times.

Example 9 Figures § and { illustrate the time and event view of the entire PES to which the

PES fragment in Ezample 1 belongs.

Frequency view plots the discrete Fourier transform of all or part of the SES currently graphed
in either time or event view. If the frequency view corresponds to time view, then the 2 axisisin
units of cycles per second; for event view the # axis is in units of occurrences in the entire log file.
Frequency view has two uses. First a concentration of energy at particular frequencies implies
that a symbol transition in the original PES is more likely to occur at certain frequencies; this
suggests some patterns of behavior may exist. The second use is that the periodogram serves as
a “footprint” for a particular observation of program execution. Multiple observations may be

quickly compared on the basis of similarity of their periodograms.
Example 10 Figure 5 contains the frequency domain view corresponding to Figure J. The peri-
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Figure 4: Event domain view of PES for two dining philosophers and eat, think time of 10.

odogram shows that almost all symbol transitions oceur with one of five frequencies. Furthermore,
the shape of the periodogram indicates that Jour of the frequencies are harmonics of the lowest
frequency. Therefore we expect that the original PES contains predominantly deterministic be-

havior, as defined in Section 4.3.

Chitra provides various functions to assist with visualization that are typical of other visu-
alization tools. These include zooming to magnify part of a graph, scrollbars to pan a window
over a graph, and display of a histogram of symbol occupancy time for any symbol. Further

information is contained in [4, 12).
4.2 Visualizing Transformations

Each time a user applies a transform, Chitra modifies the currently displayed SES to display the
result of the transform. The user may also undo a transform if the result is unsatisfactory. The

visual implication of each transform is discussed below; see [4] for further details.
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Figure 5; Frequency domain view of PES for two dining philosophers and eat, think time of 10.

Clipping transform: A user specifies a clipping transform in event or time view using a
pointing device to select opposite vertices of a bounding box. The graph portion not enclosed by
the box will be clipped. Visually, the clipped graph portions are no longer displayed and Chitra
functions as though the user deleted all symbols in the SES ezcept those corresponding to points

displayed inside the bounding box.

Aggregation transform: The user specifies an aggregation transform using the pointing de-
vice to select a fragment of a SES by drawing a bounding box arcund a graph portion. Then
Chitra pattern searches the current SES and overlays a rectangle shaded in a color not previ-
ously displayed on all graph fragments matching the selected sequence in the entire SES. Shading
serves two purposes. First, the user can observe how many times the pattern occurs and hence
what percentage of the file is accounted for by the selected pattern. Second, the use of a differ-
ent color for each pattern gives an indication of the relative frequency and ordering of patterns.
Applicatic;n of the transform generates a new composite symbol with a previously unused y

coordinate value that replaces colored rectangles.

13



Projection transform: A user specifies a projection transform textually rather visually.

Filter transform: Chitra assists selection of applying filter transforms as follows. For selecting
the time threshold in a time domain filter, Chitra displays a histogram of h(s)/T (defined in
Section 3.1) for all symbols in the SES. For selecting the number of occurrences in an event
domain filter, Chitra displays a histogram of the random variable representing the total number
of occurrences of all symbols in the SES. Each composite symbol created by filter application
is assigned a previously unused y coordinate value. The visual effect of applying a filter is to
display the output SES, which does not contain points corresponding to filtered symbols, but
does contain composite symbols. The use of a filter is illustrated in the case study in Section 5.2.2

(Figures 10 and 11).
4.3 Choice of Transforms

This section discusses the motivation behind the set of transforms included in Chitra.

The clipping transform is useful in eliminating the initial and final (transient) portions of
a SES, during which threads are being initiated and terminated. Clipping is also useful when
program execution consists of several phases, such that a different homogeneous chain model is
appropriate within each phase. In this case application of the clipping transform allows isolation
of a certain phase for further analysis.

The choice of filtering and aggregation transforms is motivated by a conjecture that underlies
Chitra. A progr.am is characterized as having predominantly deterministic (random) behavior
if its ideal model (Section 2.1) is most likely to use a deterministic (probabilistic) transition

function. The conjecture follows:

An execution of a parallel or distributed program may somnetimes appear predomi-
nantly deterministic, sometimes predominantly random, or alternate between deter-
ministic and random behavior. A program with predominantly deterministic behav-

jor may display a pattern of staie transitions, such as periodic state transitions.

An objective of Chitra is to investigate this conjecture, and explore the extent to which PES’s

contain patterns.
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Recall from Section 2.1 that an ideal program model allows both deterministic and proba-
bilistic state transition functions. A model of a program displaying predominantly deterministic
(random) behavior will most often make deterministic (random) transitions.

The aggregation transform is useful in identifying deterministic behavior and patterns of
behavior. If a PES contains a perfectly periodic pattern of state transitions, then aggregating
the symbols of the corresponding SES comprising one period produces a semi-Markov chain
consisting of a single chain state and a transition from the state back to itself.

Given a PES that alternates between deterministic and random behavior, applying aggrega-
tion transforms to the corresponding SES can replace all deterministic subsequences by compos-
ite symbols. The resultant SES is then purely random, and therefore accurately modeled by a
serni-Markov chain.

The filter transform can eliminate perturbations in a SES. For example, 2 SES may consist
of the superposition of a periodic symbol subsequences and some random subsequernces. The
filter will remove the random subsequences, revealing the periodic pattern; this is illustrated in

Section 5.2.2.

5 Case Studies

The use of Chitra to construct semi-Markov models and diagnose performance problems is illus-

trated using two examples.
5.1 TCP/IP Communication Protocol

The first example is a commercial implementation of the TCP /IP communication protocels on
IEEE 802.3 local area network connected 80386-based hosts. Details of the study are discussed
in [5]. The objective of this example is to illustrate the use of Chitra, and to diagnose a per-
formance problem. The protocol exhibits a maximum throughput of about 1 Mbit/sec over a
10 Mbit/sec Ethernet to bulk data transfer applications using the Berkeley socket interface. In
contrast, 68020-based hosts using another vendor’s TCP/IP implementation achieves about 0%
higher throughput. What accounts for the 80386-based host’s inability to use no more than 10%
of the available network bandwidth? Possible answers include an implementation detail of the

protocol software or an inherent problem in the TCP or IP protocols, such as the sliding window.
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5.1.1 Software Description

The software studied consists of a user thread that is sending a file to another host using the
Berkeley socket interface. The thread makes a sequence of wrife calls, passing 1K bytes on each
call. The 1K byte size is selected for study because the maximum throughput occurs at this write
size. The socket interface invokes TCP, which contains a 2K byte buffer. TCP copies data from
the user thread address space to its own address space, but as part of the user thread. When
the TCP thread is scheduled, according to Tules specified in the TCP protocol, the TCP thread
removes data from the 2K byte buffer to form a segment, which is passed to the IP module.
According to the rules specified in the IP protocol, the IP module creates a datagram containing
the segment and passes the segment to a device driver. The driver creates a frame containing
the datagram and transmits the frame over the network to the receiver.

Asynchronous with the sending of segments, the receiving host will periodically return ac-
knowledgements. An acknowledgement is received by the sending host’s device driver, and is
then passed to IP and from IP to TCP.

Several subtleties arise in the protocol’s functioning that a PES will exhibit. For example,
the sending host TCP tries to optimize use of the network by matching segment sizes to the
maximum data that will fit into a network frame. Hence the file is passed in 1K units to the
socket interface, but the amount of file data in network frames is only loosely related to the 1K
byte value. In addition, the rate at which data can be sent is controlled by the amount of free
buffer space at the receiver, and the rate at which the user thread can call write is controlled by
the amount of sending TCP buffer space. Therefore the user thread and sending TCP thread
may block due to lack of buffer space.

We select two components for the program state: the segment size, in bytes, that is currently
in transmission (or 0 if no segment is in transmission); and the software layer currently in
execution: (state mnemonics are listed in parentheses): user thread (USR), copy to TCP buffer
(CP), TCP protocol excluding copy to T CP buffer (TCP), IP protocol (IP), device driver (DRV),
and idle (IDL). The idle state represents both by the sender waits for an acknowledgement and

the interval during which the scheduler runs to context switch threads.
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Figure 6: Time view of PES of TCP/IP-based file transfer, which is input to Chitra,

5.1.2  Chitra Analysis

The second program state component alone is visualized in the analysis. Figure 6 shows a 48
msec. portion of a PES. The Y axis represents the six program states, and one more state
representing an unknown state (U) at the start of the PES. There are five occurrences of the
USR state, representing transfer of the first 5K of the file to the socket interface.

The first two 1K transfers at the user level occur in immediate succession, which flls the 2K
TCP buffer. The next transitions are to states TCP, IP, DRV, and represents a sequence for
sending a segment over the network. "The other program state component at this point has valne
1460; thus the occupancy in state DRV corresponds to transmission of 1460 bytes. Afterwards
the function c;exlls return to IP and then TCP, The TCP buffer now has 1460 bytes free, and a
transition to the user thread next occurs to copy the third 1K portion of the file to TCP. The
sequence TCP, IP, DRV, IP, TCP again occurs to send a 588 byte segment. The remaining PES
continues in this manner. The two long occupancies of state IDI, arise when the sender is waiting

for an acknowledgment before continuing transmission.
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Figure 7: Frequency view of PES in f"igure 6.

The next step is to apply transforms to reduce the trace. The frequency view (Figure 7)
éhows concentration of energy at one frequency, with a reduced concentration st a harmonic of
that frequency, implying that a patiern is present in the entire 1/3 second PES. The next step
is to use time view (Figure 8) to select a pattern and transform the PES. This step is repeated
until the user can recognize no further patterns. Finally, Chitra generates a semi-Markov chain

from the resultant PES Figure 9.

5.1.3 Model Properties

The following properties are evident from the model in Figure 9:

1. The protocol moves from IDLE to the segment send sequence 38% of the time, and to the
acknowledgement reception sequence 22% of the time. Therefore an acknowledgement is
sent by the receiver once for roughly every two frames received. Therefore the overhead of

acknowledgements has negligible affect on performance.
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Figure 8: Aggregation transformation through pattern selection in TCP/IP PES.

2. The program spends most of its time (60.4%) in the idle state. This implies that it is not the
protocol software, but some other factor that is limiting the throughput of the file transfer.
To identify the factor, we look in the chain to sce how often deterministic sequences of
segment; sends of different lengths are done. A single segment transmission followed by a
visit to the idle state oceurs on 40% (22% + 47% of 38% ) of the transitions outrof the idle
state, while two back-to-back sends before a return to the idle state occurs on only 11%
(29% of 38%) of the transitions out of the idle state. No more than two segment sends oeeur
without waiting for an acknowledgément. This suggests that the source of the throu.ghput
limitation is that the sliding window mechanism is limiting the number of packets that can
be sent before an acknowledgement is received. A modification to parameters associated
with the sliding window (e.g., the receiver buffer space that determines the window size)

is needed.
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5.2 Dining Philosophers

The second example is the dining philosophers program from Example 1 (Figure 1). The example
Hlustrates the use of Chitra to identify and diagnose unfair and inefficieni parallel program
behavior. Another motivation for this example is that chains similar to Chitra’s output have
been developed for the problem through simulation and provide a means to check the utility of

Chitra.[1]

5.2.1 Software Description

The program is implemented using the Presto 0.4 thread [7] package on a Sequent Symmetry
multiprocessor (Figure 1). Each philosopher is implemented by a non-preemptible Presto thread;
the mapping from thread to processor does not change during program execution. A thread busy
waits at an unavailable lock without relinquishing the processor.

PES’s analyzed here were collected with only the dining philosophers program running on the
Sequent. The empirical models presented later are based on PES’s from at least three executions
of the program at each parameter value. Repeated executions always produced differences in
the PES’s, We attribute the differences to clock interrupts and (very rare) page fanlt interrupts;
this conclusion is justified in [4]. Varying the thread starting order did not alter the stochastic

process generated by Chitra.

Study Objective: The study in this section has the following objectives. The resource acqui-
sttion time for a thread is defined as the time that the thread spends in local states A1 and A2.
The acquisition time is of interest because it is proportional to the time that a thread blocks on
“alock for a busy utensil. Program execution is defined to be efficient if the acquisition time is a
small constant at all parameter values, and execution is defined to be fair if the acquisition time
is equal for all philosophers at any value of 2 and N. A program reaches steady state if each
transition rate in the stochastic process generated by Chitra converges.
Our objectives are to formulate an empirical model of the program that predicts the PES
for N = 2,3, or 4 and 103 < z < 10%; determine if the program reaches steady state; use the

empirical model to predict the resource mean acquisition time of each resource access for each
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thread; and evaluate whether the program is efficient and fair; and, if excessive acquisition times

or unfair behavior is observed, diagnose the origin of the problem using Chitra’s output model.

5.2.2 Chitra Analysis

Figure 3 shows the time view of 7 milliseconds of a PES for N = 2 and ¢ = 10. A pattern
of behavior with occasional perturbations is evident in time view. The initial state in the PES
segment shown is TF. In the next transition, philosopher 1 begins acquiring its first utensil,
and the second state is A1 E. Then philosopher 2 releases its first utensil, and the third state is
A1R1. The rest of the PES is interpreted similarly.

There are two types of perturbations, in time and in space. Perturbations in time elongate
a state occupancy time. Perturbations in space cause a tramsition to a state that breaks the
normal cycle, such as to the lower six states in the figure (states R1A42, R2E,TR1,TAl, A1A1,
and A2A41).

Figures 10 and 11 illustrate the utility of frequency view. Figure 10 contains a four philoso-
pher PES that appears to have a great deal of irregularity. The {requency domain view shows
concentration of energy at (wo irequencies, harmonics of the lowest frequency, and some noise.
This warrants use of filter transforms to attempt to expose an underlying pattern. A single ap-
plication of an event domain filter removing states that occur less than 180 times (i.e., p=180)
yields the perfectly regular PES in Figure 11, consisting of periodic visits to states TETE and

ETET,

5.2.3 Model Properties

Chitra generates the semi-Markov chains shown in Figures 12, 13 for N = 2,3, and 4, respectively,
and ¢ ranging from 10 to 10°. For simplicity, the chains are expressed using the projection in
Example 6, which replaces program state components Al and A2 by A and Rl and B2 by R.
Each figure represents the transition rate matrix of a stochastic process as a directed, weighted
graph whose vertices each correspond to a stochastic process state and whose arcs denote all
possible transitions. Each arc label enumerates the mean transition frequency for each value

of z observed, listed in ascending order. For example, in Figure 12, upon entry to parallel
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Figure 11: Result of event filter transformation filtering states occurring less than 180 times in
the PES of Figure 10.
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aggregate state T'1, state AE is taken 100%, 100%, 84%, 77%, and 77% of the time when
z = 10,102,103 104, and 105. An are with no weight indicates that the transition was taken
100% of the time for all values of .

The stochastic processes reveal the following:

1. The program reaches steady state for all values of z and N investigated. In addition, for

each value of £ and & , all PES’s reach the same steady state cycle.

2. A single state transition graph can be used to represent all valnes of z with a given value
of N. Therefore each stochastic Process can be used to predict the program behavior at

values of z that were not ohserved,

3. In each case the steady state behavior, as represented by a stochastic process, consists of
a cycle of states. For example for N = 2 the cycle is TA TE, T1, AT, ET, and T2, where

T'1 and T2 are aggregate symbols (Figure 12).

Figure 15 contains the desired performance metric of the sample mean of resource acquisition
time per thread using all observations of states A1 and A2 in all PES’s collected for all N. Two
performance problems are evident from Figure 15 which can be diagnosed using the semi-Markov

chains:

Efficiency: The 3 philosopher case is inefficient, because its resource acquisition time grows
rapidly with z. The problem can be diagnosed with the 3 philosopher chain (Figure 13):
the program spends virtually all of its time spent in states TEA, ATE, and EAT in which
only one philosopher eats at a time, In contrast, in the two and four philosopher cases the
program spends most of its time in states TE,ET and TETE, ETET, in which half the

philosophers always eat (Figures 12,13).

Fairness: For N = 2, the program execution is not fair because philosopher always waits a
constant amount of time, while philosopher 1 waits for a time period that grows with the
resource holding time, 2. The origin of the problem is evident from the model in Figure 12.
The three states in which philosopher 0 waits (AE, AR, AT) have occupancy times that

do not tend to grow with z. In contrast, one of the states in which philosopher 1 waits,
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State Sample mean (#sec.) and variance of occupancy time

10 | 100 [ 1000 f 10000 J 100000 7
TE | 21(0.92) 183(13.59) 1807(37.3) 18237(48.98) 182491(32.32)
AE | 8(63.43) 9(41.22) 40(76.4) 47(95.79) 47(77.77)
AR | 23(1.93) 23(5.02) 22(4.03) 21(3.06) 23(4.71)
AT | 3(1.84) 3(2.07) 6(7.77) 9(8.83) 10(9.75)
ET 21(0.9) 183(10.25) 1807(25.84) 18150(1186.58) 181650(10896.05)
EA 8(64.2) | 12(66.16) 36(72.0) 158(1404.72) 1348(14109.18)
RA | 23((6.58) 23(4.77) 22(5.5) 22(3.54) 20(5.61)
TA 3(1.93) 4(3.76) 7(8.5) 8(7.82) 7{6.56)
TR 0{0) 15(7.28) 18(2.53) 10(7.56) 18(3.05)
T 0(0) 52(12.06) 50(9.18) 403(2369.5) 2025(17406.8)
RT 0(0) 17(5.29) 18(2.34) 10(8.95) 8(7.35)
Tl 0(0) 0(0) 59.74(49.59) 64.44(74.84) 63.89(31.32)
T1 0(0) 0(0) 60.55(51.6) 153.85(1217.72) | 833.92 (10949.1m

Figure-12: Empirical model of tw
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Figure 13: Empirical model of three philosophers generated by Chitra. The chain consists of
states TE A, T1,ATE, T2, EAT, and T3, whete T1,7T2, and 73 are aggregate symbols defined

as shown in the figure,
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TETE — = Tf ——ETET _j
|

State | Sample mean (nsec.) and variance of occupancy time
1000 ] 10000 [ 20000
TETE 1762(92.87) 18119(1090.54) 36427(195.57)
T1 144.7(129.4) 199.11(1088.8) 188 (287.07)
ETET 1770(88.56) 18095(1254.86) 36320(1340.36)
T2 133.31(143.53) 279.69(1522.43) | 296.03(1660.29)

Figure 14: Empirical model of four philosophers generated by Chitra. States T1 and 72 are
aggregate symbols.
E A, has an occupancy time that grows with z. Also occupancy time of state ET declines
with an increase in #. Therefore the program allows some asynchrony in philosepher 0’s
transition from states £ to R and philosopher 1’s transition from 7" to A, while the 0’s

transition from T to A and 1’s from E to R is synchronous.

6 Chitra Versus Performance Visualization Tools

Many software visualization tools have been built; their capabilities include program execution
animation [9, 26], data structure animation [27, 11], display of interprocess communication (16,
26}, program debugging [22, 17, 14], and performance evaluation f23, 19, 20, 14].

Visnalization tools suitable specifically for performance evalnation inchude Moviola [14], IPS-
2 {23}, JED [18], HyperView [19], and an unnamed tool [25]. Moviola displays the time spent in
communication as a function of time and the time spent waiting for certain activities to identify
bottlenecks. TPS-2 performs critical p:ith analysis to determine the procedures or segments of
code that must be modified to reduce program running time. IPS-2 also provides a variety of per-
formance data about parallel program execution. JED supports event trace management, event
trace display, and event query, and allows the user to extend analysis and display functionality.
HyperView allows a user to browse through a trace of system and application execution. The
unnamed and unimplemented tool {25] is the closest to Chitra, in that it also predicts the per-

formance of programs by building a model, although it uses an analytic model, whereas Chitra
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Figure 15: Sample mean of resource acquisition time per thread based on all observed PES’s

uses a stochastic process as a mode].

Chitra is unique in that it is the only tool to generate an empirical mode] as the culmination of
visualization. The novel contributions of Chitra are its transformation of PES’s, visualization of
transformation, frequency domain analysis of software, and construction of a stochastic process

from a set of PES’s.

7 Collecting PES’s
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a microsecond resolution global time base, solving the first problem.[2] The instrumented file
transfer requires about 3% more time than an uninstrumented file transfer, so that the intrusion
is limited,

In the study of Section 5.2, the Sequent multiprocessor provides a global clock with a mi-
crosecond resolution in the address space of all processors, obviating the first problem. With
respect to the second problem, measurement intrusiveness is minimized through the following
steps. The instrumentation of cach philosopher thread consists of reading the clock whenever
a state transition within the thread occurs; the clock value along with the new state is written
to an array local to the thread. The time required for the read and write sequence, when not
interrupted, is measured to be four microseconds. Each array fits on a small number of 1024 byte
memory blocks within a thread’s address space, to minimize the number of page faults. After
execution terminates, the thread arrays are written to disk to form the file input to Chitra.

For platforms without a global time base we timestamp events using local clocks, and after
program execution completes we use linear regression to estimate the offset and drift of the clocks
as described in [13]. This method works when the error of the estimates is small compared to the
time between timestamped events. This is the case for the dining philosophers on a network of
workstations; however it is not a general solution. We are currently experimenting with methods
of aligning multiple trace files with local time stamps using Chitra’s visnalization to improve the

offset and drift estimates.
8 Conclusions and Future Work

Visualization has had limited impact in analyzing software. The explanation for this, we believe,
is that visualization has a dramatic impact on fields where it leads to a discovery of unexpected
phenomena. For example, strength of materials engineers recently discovered through visualiza-
tion features of stress wave propagation that are not predicted by solutions to the wave equation.
Therefore software visualization must do more than generate interesting pictures. It must ul-
timately lead the user to construction of an empirical model of behavior, which can serve as a
target for theoreticians to derive. This is the objective of Chitra.

Chitra constructs an empirical model of program behavior through visually-guided appli-

29



cation of a sequence of transformations. Chitra provides a single, program-independent set of
transforms that are demonstrated on two disparate examples in the paper. The motivation for
constructing the semi-Markov chain model produced by Chitra is that gross measures of program
behavior can identify the presence of performance problems, although they do not explain why
the behavior is so. Section 5 illustrates the use of the chain for performance problem diagnosis.
The performance problems could be diagnosed without Chitra, but our contention is that Chitra
provides the diagnosis more rapidly.

The most important future work is to apply the tool to additional commercial software. Work
is in progress on analyzing multiple hosts running TCP/IP, parallel discrete event simulation
programs, and a commercial transaction processing system.

This paper describes Chitradl. Lessons from the case studies in Section 5 are being incorpo-

rated into Chitra92. New features include the following:

e Ability to simultaneously analyze a set of PES’s forming an ensemble; for example a
transform will be applied to all ensemble elements. Ideally, a user could simultaneously
display an ensemble of PES’s, and define aggregations and filters that are applied to all
PES’s in the ensemble. Curves representing the periodogram of all log files could be drawn
in a single frequency domain view, so that the user can see if the energy distribution
of all runs are similar. If they are not similar, then several “modes” are present which
must be analyzed separately. One possibility is for Chitra to calculate the mean energy
distribution from the distribution of each PES (and use confidence intervals), and then
display the inverse transform in the time and event domains; this signal is a stochastic
estimate of the PES. From this average signal Chitra could generate the corresponding

empirical model, which represents average behavior.

e Ability to automatically merge a set of empirical models representing program behavior
at different parameter values by fitting functions to formulate empirical formulas for occu-

pancy times and transition probabilities.

o Ability to display different views of a PES in different screens, and to extend the set of

transforms to operate on components of the state vector rather than on entire states. This
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will help with the state space explosion problem.

¢ Automatic construction of performance metric graphs (e.g., Figure 15) based on an ensem-

ble of PES’s.
¢ Addition of standard time series analysis techniques.

e Application of Chitra to PES’s representing memory reference traces, to permit both data

and code oriented analysis, as defined in [21].

Two open problems are to provide means of analyzing PES’s collected without a global time

base, and to investigate use of a non-homogeneous process as Chitra’s empirical model.
3
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