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Abstract

We describe a tool called Chitra, which serves two purposes. First, Chitra visnalizes
program execntion sequences (PES’s) collected by monitoring parallel and distributed pro-
gram execution in the time, cvent, and frequency domains. Second, Chitra produces an
empirical model of a PES. Using a mouse, a user edits a visnalization of a PES to transform
the PES to a simpler represeatation in terms of fewer states. The user can interactively
define aggregations and filters of program states, Chitra uses the edited PES to construct
a homogenecus, semi-Markov stochastic process to fit the PES. A single program state is
tepresented by one or more stochastic process states so that Chitra can embed history into a
stochastic process state. This allows the assumption of an embedded Markov chain without
a penalty in model accuracy, even though software generally violates the assumption. A
case study applies Chitra to predict and evaluate the efficiency and fairness of a resource
sharing algorithm at a range of parameter values, given observations of a few parameter val-
ues, Inefficient behavior is explained by examining the states that constitute the stochastic
process model constructed by Chitra.

1 Introduction

Computer visualization is the process of investigating and modeling a physical system though

graphical images. Visualization capitalizes on the perceptive capabilities of human vision, facil-

itating discoveries about a system that would be unlikely using only textual data or theory,
Software visualization can be used both to understand program behavior and to improve

prograin performance. Understanding program behavior assesses the effect of changes in pro-




gram parameters on the sequence in which operations are performed during program execution.
Improving program performance requires identifying prograin modifications that wili improve a
performance metric, such as reducing the time required for execntion.

Many software visualization tools have been built; their capabilities include program exe-
cution animation [3, 15], data structure animation (16, 5], display of interprocess communica-
tion [7, 15], program debugging [12, 8, 6], and performance evaluation (13, 10, 11, 6]. Never-
theless, visualization has had limited impact in analyzing software. The explanation for this,
we believe, is that visualization dramaticaily impacts fields where it leads to a discover of un-
expected phenomena. For example, strength of materials engineers recently discovered through
visualization features of stress wave propagation that are not predicted by solutions to the wave
equation. Therefore software visualization must do more than generate interesting pictures. It
must ultimately lead the user to comstruction of an empirical model of behavior, which can serve
as a target for theoreticians to derive. That is the objective of Chitra®, the visualization system

described here.
1.1 Program Execution Sequences

Chitra uses a program execution sequence (PES) as its basie representation of data collected by
monitoring program execution. A PES is defined as follows.

A parallel or distributed program consists of a (possibly empty) set of global variables, a
(possibly empty) set of channels between brocesses, and a set of processes, each of which ig
associated with a (possibly empty) set of local variables. A process {or thread) is a piece of code
that is scheduled by an operating system. A program stafe is an instantaneous description of
the values of all local and global variables, the sequence of data in each channel, and a pointer

to the instruction which will next complete its execution in each process.

1Chitra is a sanskrit word for beantifil or Ppleasing pictures and drawings.




For each execution of a program, there corresponds a program ezeculion sequence (PES),
which represents the sequence and occupancy times of program states though which a program
passes during execution.

In practice program monitors generally have insufficient bandwidth to obtain the entire PES.
In addition, for the purpose of program performance analysis, only a subset of each program
state is needed. Hence we will assume that the PES output by a program monitor will produce
a time dependent sequence, each element of which is a subset of a program state. Henceforth
we use the term program state to refer to the subset of interest,

For example, a PES for communication protocol software implementing TCP /IP might rep-
resent the sequence of advised window sizes for a connection. A PES for a synchronous, parallel
discrete event simulation program might contain, as program states, a record of how many pro-
cesses are waiting for the next synchronization barrier. Each program state in a PES for a
program solving Dijkstra’s dining philosophers problem might represent whether each philoso-

pher is thinking, waiting for utensils, eating, or releasing utensils.
1.2 Conjecture Underlying Chitra

Each invocation of a synchronization or interprocess communication primitive in a parallel or
distributed program introduces a microscopic rule governing the interaction of processes. Our
interest is in examining how the set of microscopic rules defined by the programmer together
produce a macroscopic behavior. It is then up the the theoretician to derive the macroscopic
behavior given a description of the microscopic rules. At the basis of Chitra lies the following

conjecture:

Execution of a parallel or distributed program is governed by the interaction of

two behaviors: random and deterministic. Sometimes random behavior dominates,



and sometimes deterministic prevails. Therefore the macroscopic program behavior,
expressed as a PES, spans a continuum from purely random to purely deterministic

behaviar.

Randomness arises from sources such as contention of multiprogrammed processes for re-
sources (e.g., processor cycles, cache lines, memory blocks, communication media), nondeter-
ministic programming language construets, asynchrony among processor clocks, and interrupts
due to asynchronous sources outside the computer system. Determinism arises from activities
that require a constant wall clock time and a process synchronization structure that produces
feedback. Randomness could prevail in a paralle] processor executing several unrelated paraliel
programs. In contrast, as will be shown in Section 3, in a parallel processor executing a single
parallel program whose non-branching activities chiefly require constant time and whose syn-
chronization structure produces feedback, determinism could prevail. We note that the tendency

of 2 PES to be random or deterministic is also dependent on the programi inputs.
1.3 Dynamic System View of Software

Much engineering analysis is based on dynamic systems theory. This theory treats a system as a
“black box,” perhaps characterized by certain parameters, and given observations of certain input
signals and their corresponding output signals, provides 2 means to predict the system response
to an arbitrary input signal. Can parallel programs be analyzed using this paradigm? Can any
analysis techniques from dynamic systems be directly applied to parallel prograin analysis?
Chitra attempts to answer both of these questions. Therefore Chitra views a parallel program
as a black box. At present Chitra assumes that the system representing a program has parameters
that may assume various values, but no input function. The output signal is the PES. Our

problem is to predict the output signal (PES) as a function of the parameter values, based on



observation of a finite number of output signals.

that program behavior, expressed as a PES, spans a continuum from purely deterministic to
purely random, has a dual in dynamic systems theory, where a signal may be deterministic
(in which case there exists a function that generates the signal) or random (and hence there
exists a stochastic process that predicts the signal). Second, the concept of noise in a signal is
analogous to random perturbations in the normal PES that a program generates, for example
due to the execution of an interrupt handler that suspends a process or servicing of page faults.
Third, signal analysis techniques may be applied to the PES to analyze program behavior. In
particular, the signal can be viewed not only in the time domain, but also in the frequency
domain. Viewing a PES in the frequency domain helps reveal the existence of repeated state
transition sequences. Filters in the frequency domain can be defined for PES’s; for example
periodic clock interrupts can sometimes be filtered out of a PES. Finally, the dynamic system
viewpoint may suggest new avenues of research to theore.ticians. For example, the superposition
property of linear systems aids in their analysis. Can a superposition property be defined for a
class of programs, so that we can predict from theory how a PES will be modified by addition

of a new synchronization point or process?
1.4 Chitra Versus Other Performance Visualization Tools

Visualization of data from program monitors is not a new idea. Visualization tools suitable for
performance evaluation that are listed above include Moviola (6], IPS-2 [13], JED [9], Hyper-
View [10], and an unmamed too} (14]. Moviola displays the time spent in communicatjon as a
function of time and the time spent waiting for certain activities to identify bottlenecks. IPS-2

performs critical path analysis to determine the procedures or segments of code that must be



modified to reduce program running time. IPS-2 also provides a variety of performance data
about parallel program execution. JED supports event trace Imanagement, event trace display,
and event query, and allows the user to extend analysis and display functionality. HyperView
allows a user to browse through a trace of system and application execution. Sarukkai’s tool [14]
is the closest to Chitra, in that it also predicts the performance of programs by building a model,
although it uses an analytic model, whereas Chitra uses a stochastic process as a model.

Chitra is unique in that it is the only tool to generate an empirical model as the culmination
of visnalization. To support this objective, Chitra provides several Innovations in visual analysis
of monitor data. First, Chitra supports three views of a PES: in the time, event, and frequency
domain. The frequency domain view is novel. Chitra provides filtering to reduce perturbations in
a PES (corresponding to noise in a signal) that reveal patterns that underly a PES; the filtering
can be done in the time, event, or frequency domain. Chitra guides the user in defining filters
by providing statistical Information about the PES displayed. Given our definition of program
state, the state space of a program grows exponentially with the number of processes. Therefore
Chitra provides several means of aggregating states to reducing the state space to a manageable
size. Chitra provides a static aggregation method, in which the user applies knowledge about the
program gained without examining any PES, and dynarmic aggregation, which the user defines
based on examining individual PES’s. When the user has filtered and aggregated a PES to reduce
it to a sufficiently compact form for the analyst, Chitra generates a discrete state, continuous
time semi-Markov process model of the PES.

When we began designing Chitra, we envisioned a visualization tool that presents a PES in
the time and event domains, and which allows reduction of a PES through dynamic aggregation.
The other features listed in the preceding paragraph were gradually incorporated into Chitra as

a result of analyzing many PES’s.



The remainder of the paper is organized as follows. The next section describes the features of
Chitra. Section 3 contains a case study, applying Chitra to a parallel program. Finally Section 4

discusses directions for further development of Chitra.
2 Visualization with Chitra

Chitra has two objectives:

L. to provide a means to view and transform a PES to reveal any underlying patterns or

structure that distinguishs deterministic from random behavior, and
2. to generate an empirical model that fits the set of observed PES’s.

First the choice of empirical model is discussed in Section 2.1. Then Section 2.9 describes the
views and transformations comprising objective 1. Then we describe in Section 2.3 our approach
to objective 2, which is to replace repeatedly each deterministic pattern as well as each random
alternation of program states in a PES by an aggregate state, and then model the resulting PES
as a stochastic process.

Chitra is invoked with a file name as an argument. This file is called the input file, and it
describes a PES. In particular it contains a sequence of program states in ascending time stamp
order, along with ancillary information such as a character string name identifying each program
state and the time base of the time stamps. If the time base is microseconds, then a time stamp

of 1000 represents a millisecond.
2.1 Choice of Empirical Model

The conjecture from Section 1.2 requires the empirical model of program behavior that Chitra
constructs to be capable of modeling both programs in which randommness and in which deter-

minism prevails. The model chosen is a eontinuous time semi-Markov process with a discrete



state space. At Present we yse g homogeneous process, which is sufficient for the case stndy in

Section 3.

the state space is an aggregate state. An aggregate state ig recursively defined as either 1) a
Program state, (2) a random selection of two or more aggregate states, or (3) a sequence of two
Of more aggregate states. This definition is a key to why we can assume that software has an
embedded Markov chain. Section 2.3.3 defines how the rates out of a stochastic process state are
calculated based on what program states are aggregated to form the stochastic process state,

A semi-Markoy process permits general state occupancy times. However it also Tequires an
assumption of an embedded Markov chain. Program codes contain conditional branches whose
target is selected hased on the value of a complex function of input data to the program and
initial vahies of program variables. In contrast the embedded Markov chain assumption bases
all transitions in the stochastic process on a random choice based only on the current state. Can
we limit history to the current state?

We argue in the affirmative, but our argument arises because we construct the chain in a
manner that implicitly encodes history into each stochastic process state. For example, let a, b,
and ¢ denote brogram states, and let b, and by denote stochastic Process states. If in a PES
under study the only transitions into or out of state b are @, b,a and ¢, b, ¢, then program state

b can be rtepresented by two stochastic Process states, denoted by and b1. State by always has



of &.

Using Chitra, one can visually identify deterministic state transition sequences that occur
throughout a PES; Chitra combines each sequence into an aggregate state, and modifies the PES
to use the aggregate states. In addition, if the state sequences between any pair of aggregate
states appears random, then Chitra will automatically generate one aggregate state representing
an acychc stochastic process, Each path through the process corresponds to one sequence of
states occurring between a pair of aggregates observed in a PES. The final PES one obtains
with Chitra is a set of aggregate states that forms a random process. Each aggregate state in
turn represents either a random process whose states are aggregates or program states, or a
deterministic sequence of aggregate and program states, Thus we have a random process with
some deterministic history embedded through mapping of program states to mualtiple stochastic

process states,
2.2 Time, Event, and Frequency Views
2.2.1 Representing a PES in Time, Event, and Frequency Views

Chitra represents a PES in one of the following two dimensional graphs: program state as a
function of time, program state as a function of event, and power as a function of frequency.
The first two views require mapping the program state space to a single dimension. This mapping
is done when Chitra starts execution. Chitra assigns to each program state s in the input file
a unique nonnegative integer, denoted f(s), in a contiguous interval. Each integer is the y-
coordinate value that represents the corresponding program state. The mapping function used
is arbitrary and does not affect the empirical model generated by Chitra. The function essentially
collapses a multidimensional space into a single dimension to allow plotting on the y axis. The

need to collapse the space does fimit Chitra’s ability to generate the simplest possible empirical



model, which is a point discussed further in the conclusions.

In time view, the point (z,y) is plotted if and only if program state f ~y) occurs with time

stamp y in the input file. Therefore the units of » axis points is the time base specified in the

“input file. In event view, the point (z,y) is contained in the plotted function if and ouly if the
z-th program state in the input file is f~1(y), for ¢ = 0,1,2,.... Therefore in event view, each z
axis point corresponds to a program state. Time view conveys the order and occupancy times of
states, while event view conveys only the order of states. Event view displays a greater number
of states with equal fidelity, compared to time view, but with a tradeoff of a loss of cccupancy
time information.

For convenience the user can request by a menu that Chitra connect the plotted states using
line segments whose endpoints are states. Note that the PES in the input file indicates at what
times the program state changes. Hence in time view the line segments are parailel to the x
axis because the program state remains constant between transition times. In event view each
line segment connects the points representing two adjacent program states. Connecting lines
in the event view only provides visual cues that assist in interpreting the function, because
non-endpoints of each line segment do not correspond to states.

"The frequency view of a PES plots the discrete Fourier transform of all or part of the PES
as graphed in either time or event view, If the frequency view corresponds to time view, then
the x axis is in units of cycles per second; for event view the 2 axis is in units of occurrences in

the entire log file.

2.2.2 Screen Appearance When Chitra Starts

Upon invoking Chitra, the user sces a menn bar and two windows. The menu bar is used

to change the views, invoke transformations described later, generate a model, and perform
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Figure 1: Initial appearance of Chitra, displaying time domain. The PES illustrated corresponds
to N =2, z = 10 for the dining ph:losophers program of Section 3.

miscellaneous functions. One window displays the entire PES in either time or event view; the
view initially used is set according to a user preferences file, which can be modified by a menu
item. The second window displays the frequency domain view of the entire PES. Figure 1 and
Figure 2 show the initial display with time and event domains selected as the user preference,

respectively.

2.2.3 Features of Time and Event Views

Time and event views represent windows into the PES graph. A user can adjust a shider with a

mouse to control the zo0m factor. As stated earlier, it starts at 100%. This can be reduced to
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to N =2, z = 10 for the dining philosophers program of Section 3.
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Z0Om In on or magnify a portion of the graph. The lower bound on the zoom factor is determined
by the virtual address space limit of the machine running Chitra. In an X-windows (X11R4)
implementation of Chitra on a DECstation 5000/200 running X windows with 65M of swap space
the limit is about 14% for log files of under 20,000 events.

The user can use the mouse with a scrollbar to pan the window over the graph. As the
user moves the scrollbar, the time or event window content is continuously updated to smoothly
seroll.

The combination of zooming and scrolling gives the user a way to browse through the collected
data. Chitra starts by displaying 100% of the graph (Figures 1 and 2). Then the user can zoom
in on part of the graph, then smoothly scroll forward or backward, up or down, to look for
features of interest, and then zoom out or in.

The user can optionally display the names of each state along the y-axis. If the user selects
any state with the mouse in a PES, a window will open that contains that name of the state
along with a histogram of the occupancy time of the state for all occurrences in the clipped input

log file.

2.2.4 Features of Frequency View

The frequency view has two modes: auto-update and manual update. In auto-update mode,
whenever the user serolls through a portion of the time or event window, the frequency view
automatically computes the discrete Fourier transform of the PES visible in the time or event
window when the user releases the mouse button to stop scrolling. Mannal update is provided as
a practical matter. Computing the transform of the event view window is faster than computing
the transform of the time view. This is because all points visible in event view are passed to the

FFT algorithm, whereas the user must select a sampling rate (typically one microsecond) for
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the tirne view. An input file representing several seconds of program execution generates severa)
orders of magnitude more points input to the FFT algorithm than inputing the event view data.
Hence the user can deactivate aute-update, and the frequency view will only be updated when
the user selects the appropriate button.

Frequency view has two uses. First a concentration of energy at particular frequencies means
that a state transition is more likely to occur at certain frequencies; this suggests some patterns
of behavior may exist. The second use is that the periodogram serves as a “footprint” for a
particular observation of program execution. Multiple observations may be quickly compared
on the basis of similarity of their periodograms.

For example, the frequency domain views in Figures 1 and 2 show that the PES consists
almost exclusively of a repeated pattern of behavior. In Figure 1 the energy is concentrated in
the first bin, corresponding to 98-435 Hz, and in F igure 2 the energy is concentrated between
1.4 and 24.4 cycles per 1000 tramsitions. The remaining bins with non-zero energies represent

harmonics of the fundamental frequency.
2.3 Transformations
2.3.1 Clipping

Typically one wishes to analyze only a certain segment of a PES. For example, one might
only want to examine the portion of the PES during which all processes are active, thereby
eliminating a startup and shutdown interval. Or, a program might pass through phases that
can be distinguished based on some visual feature, and the user wants to analyze only a certain
phase. In these cases, the user can use the mouse to select a point and then, while pressing
& mouse button, move the mouse to another point on the screen. A rubber band rectangle is

drawn with opposite vertices at the selected points. The user can then select the CLIP memy
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item. Chitra will then function as though the user deleted alt program states in the input file

except those corresponding to points displayed inside the selected rectangle,

2.3.2 Filtering

A filter eliminates certain states in a PES, which can eliminate nojse (perturbations). When the
user defines and activates a filter, the effect is as though the nser deleted all program states in the
input file that are selected by the filter. Therefore the filtered states are no longer displayed in
time or event view, and the frequency of a filtered siate is no longer represented in the frequency
view.

A user can define a filter in Chitra based on either the time, event, or frequency domains.

An unlimited number of filiers can be applied to the input file.

Time domain filter: Consider a random variable representing the total occupancy time of
all occurrences of a program state in the input file expressed as a fraction of the total time
interval represented by the input file. (For example, if the random variable has value 0.1, then
the program spent 10% of the period represented by the PES in each state.) When the user
selects a menu item to define a time domain filter, Chitra pops up a window showing a histogram
of this random variable. The user then selects a fraction of log file time to serve as a threshold;
Chitra then appears to eliminate from the PES all states whose total occupancy time expressed
as a fraction of the total time interval represented by the input file is less than this threshold.
For example, if the user sclects a threshold of 0.3, then only states which each account for at

least 30% of the time interval represented by the input file will appear be displayed in the PES.

Event domain filter: Consider a random variable representing the total number of occur-

rences of a state in the input file. When the user selects a menu item to define an event domain

15
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Figure 3: Ilustration of event domain filtering (Part 1). Histogram overlaying original, random
appearing PES in event view indicates two clusters of states,
filter, Chitra pops up a window showing a histogiam of this random variable (Figure 3). The user
then selects a number of occurrences to serve as a threshold. Chitra then appears to eliminate
from the PES all states whose total number of occurrences is less than this threshold (Figure 4).
The graph of Figure 3 appears to be highly irregular. Selecting a threshold of 180 and deacti-
vating the connection of states by line segments turns Figure 3 into the perfectly regular graph
of Figure 4. Figure 4 displays purely deterministic behavior underlying Figure 3.

the Figures 3 and 4, the user selects a threshold of 180, after which only states which occur

greater than 180 times in the input file will appear be displayed in the PES.
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Frequency domain filter: When a user selects a menu item to define a frequency domain

filter, the user specifies an interva) of frequencies to filter. Chitra then appears to eliminate

measured by the clipped log file. As an another example, Suppose an interrupt ocenrs every 10
milliseconds, Thep the frequency domain view will show a harmonic at 100 Hy. Filtering out

the 100 Hz frequency can eliminate the effect of interrupts.

2.3.3 Aggregation

Aggregation is the process of replacing two or more program states in the input file by a new,
aggregate program state. Aggregation is usefy] to reducing the size of the Program state space.

There are three forms of aggregation: static, dynamic—sequence, and dynamic-parallel.

Static Aggregation: “Static” means that the user specifies a rule of how to transform the
brogram state space based on knowledge about the program without examining the execution
dynamics. Each ryle contains a lisi of Program states followed by an aggregate state. Chitra
will scan the PES and replace each occurrence of any state in the list by the corresponding
aggregate. For example, if the pbrogram state comprising a PES is an integer denoting the

number of processes that are waiting at a barrier, with state of ZCro representing the situation

18



of all processes at the barrier, then two static aggregation rules could define states “At_Barrier”
and “Not_AthBarrier,” which replace Program state zero and ajj positive integer Program states,

respectively.

Dynamic Aggregation: “Dynamic” means that the user identifies an aggregation rule based
on examining one or more PES’s. The rule may not be one which the user would have thought
of by just looking at the source code of the program being analyzed. There are two varieties of

dynamic aggregation:

Sequence tggregation: The user specifies an aggregation graphically using the mouse to select a
fragment of a PES by drawing a rectangle around a sequence of states in the same manner as
described above for clipping. When the mouse button is released, Chitra pattern searches
the entire log file for state sequences (but not occupancy times) matching the state sequence
in the rectangle. Chitra then overlays a, rectangle shaded in a color not previously displayed
on all state sequences matching the selected sequence in the entire PES. This shading serves
two purposes. First, the user can observe how many times the pattern occurs and hence
what percentage of the file ig accounted for by the selected pattern. Second, the use of
different color for each pattern gives an indication of the relatjve frequency and ordering

of patterns.

by a y-axis coordinate that is not used for any existing state op aggregate state. A PES

19



The user can also select an UNAGGREGATE menu item to undo the affect of aggregation,
This feature is useful because the user is faced with choices in how to aggregate states,
and may want to try one way and then undo the effect. For example, if A, B, C, and
D are states and a PES contains the state sequence AABAACAABAAD, then the user
might aggregate AA (call the resulting aggregate state Y) and get YBYCYBYD, or the

user might aggregate AAB (call the result state Z) and get ZAACZAAD.

aggregate states,

Parallel aggregation: For any two states sq and 51 in a PES, a parallel aggregate state may be
defined. The paralle] aggregate state denotes an acyclic stochastic process whose state
transition matrix Tepresents all possible paths between sy and s1 that occur in the PES.
The occupancy time of the aggregate state is the mean of the sojourn time through each

path of the process.

Section 2.3.9 described filters bhased on the time, event, and frequency domain. When
a user activates a filter, filtered states are no longer visible on the screen. Chitra will
automatically create a set of one or more parallel aggregate states that incorporates all
filtered states; therefore filtered states are represented as aggregate states in the empirical

model generated by Chitra.



aggregate) states that seems to be selected at random; following each of these M states is
a1 aggregate state that recurs. A parallel aggregate state represents a set of alternative

states, exactly one of which is reached on each return to the state.

2.4 Output Mode]

¢ statistics on each program and aggregate stage remaining in final, filtered PES.

3 Case Study

problem, a set of philosophers each forever cycle through four local states: thinking, acquiring
utensils, eating, and releasing utensils, denoted T, A E, and R. Philosophers must contend for
utensils. Let philosophers be numbered 0,1,... N _ 1 A program state is an ordered N. -tuple,
where the th tomponent is the local state of philosopher i. For example in program state ETET
philosophers zero and two are eating, and philosophers one and three are thinking.

The sharing of utensils is represented by a graph whose vertices each represent a philosopher
and whose arcs each Tepresent a utensil. An arc exists between the vertices representing philoso-
phers i and Jy for 0 < 4, J <N, if and only if philosophers ; and j share a utensil, We consider

the case where the graph consists of a cyele containing all vertices and the duration of eatling
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and thinking time for all philosophers is the constant z. The program has two parameters: the

number of philosophers, & » and the duration of the eating and thinking times, .

for N =2 3 or 4 and 108 < < 104, determine if the program reaches steady state, and use the
empirical model to predict the resource mean acquisition time of each resource access for each

thread, and evaluate whether the program is efficient and fair,

3.1 Program Implementation

plies the same operands; z is the number of repetitions. Let utensils be numbered 0,1,..., N—1.
Each philosopher is implemented by a non-preemptible Presto thread; the mapping from thread
to processor does not change during Program execution. Bach utensi] js mmplemented by a Presto
spinlock; Ulensilfi]is a spinlock implementing utensil 4. A thread busy waits at an unavailable
spin lock without relinquishing the processor.  Figure 5 contains the code for philosopher 4.
Primitives Lock and Unlock are operations on g spinlock. Functions 9o through gs define the

order in which utensils are acquired and released. Fop the results presented in this section,
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while (TRUE) {

Think; _ //State T
Lock({gq(4)); //State A
Lock(g, (3)); //State A
Eat; //State E
Unlock(g,(3)); //State R
}Unlock(g3(z')); //State R

Figure 5: Code of philosopher 7, for 1 <i< N,

wli) = {i—l if i is odd

i otherwise
G < [i i i is odd
N - ({~1)mod N otherwise

92(8) = go(i)

The PES’s analyzed in this section were collected when the dining philosophers program
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least three times and observe the PES. In this case study, repeated observations always produce

3.2 Analysis of PES’s

We examined PES’s from dining philosopher Programs with N = 2,3, and 4 philosophers for
z = 10,102, 103, and 104 microsecond eaf and think times. The empirical model generated by

Chitra is shown for N=23and4ip Figures 6, 7, and 8, respectively, Each figure represents

of observed, listed in ascending order. For example, in Figure 6, upon entry to paralle)
aggregate state T1, state AF i taken 100%, 100%, 84%, 77%, and 77% of the time when
z = 10,102 103, 10% and 105, Ap arc with no weight indicates that the transition was taken
100% of the time for all values of z, The table in each figure contains the sample mean and, in
Paranetheses, the standard deviation of the observed state occupancy time, in microseconds,

The stochastic Processes reveal the following:

1. The program reaches steady state for all values of z and ¥ invesiigated.

2. In each case the steady state behavior, as represented by a stochastic process, consists of

a cycle of states. For example the cycle ig TA TE, T1, AT, BT, and T2 for N = 2, where
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0,0..16,.23,.23
1.0,1.0,.84,.77,.77 J‘\

TL : A 0,,0,22 L
m: L/J'/‘Lo.o,to,.?s,m
1]1 Ali/
) -
0,.04,.19,.36,.48
Ei 1.0,.96,.81,.64,.5
A RT
0,0,0,.21,.55
, 1:/”
L[ 10 T 100 [ 1000 | 10000 | 106000
TE | 21(0.92) | 183(13.59) | 1807(37.3) | 18237(48.98) 182491(32.32)
AE | 8(63.43) | 9(41.22) 40(76.4) 47(95.79) 47(71.77)
AR | 23(4.93) | 23(5.02) 22(4.03) 21(3.06) 23(4.71)
AT | 3(1.84) | 3(2.07) 6(7.77) 9(8.83) 10(9.75)
ET | 21(0.9) | 183(10.25) | 1807(25.84) | 18150(1186.58) 181650(10896.05)
EA | 8(64.2) | 12(66.16) | 36(72.0) 158(1404.72) | 1348(14109.18)
RA | 23((6.58) | 23(4.77) 22(5.5) 22(3.54) 20(5.61)
TA | 3(1.93) | 4(3.76) 7(8.5) 8(7.82) 7(6.56)
TR|  0(0) 15(7.28) 18(2.53) 10(7.56) . 18(3.05)
TT | 0(0) 52(12.06) | 50(9.18) | 403(2369.5) 2025(17406.8)
RT | 0(0) 17(5.29) 18(2.34) 10(8.95) 8(7.35)
T1 | " 0(0) 0(0) 59.74(49.59) | 64.44(74.84) 63.89(31.32)
T1 ] 0o0) 0(0) 60.55(51.6) | 153.85(1217.72) | 833.92 (10949.15)

Figure 6: Empirical model of two philosophers generated by Chitra,
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T
1 T1:
AIE
sz
TIA
Tla 'T2 :
T3:

[T 00 | 10000 | Zod00 ]

[ ATE | 1816(22.53) 18239(34.21) |~ 36482(26.08)
T1

50(68.57) | 53(69.36) 51(67.55)
EAT | 1808(20.04) | 18238(37.06) 36476(25.15)
T2 | 51(6883) | sa(71.02) 73(64.87)

TEA | 1810(51.63) 18245(34.74) | 36338(1767.08)
13 | 55(66.9T) | 55(65.86) 190(1623.61)

Figure 7: Empirical model of three philosophers generated by Chitra.
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TdTE

o
—

ETET

[
N

[ [ 1000 | 10000 | 20000
TETE | 1762(92.87) | 18119(1080.54) 36427(195.57)
T1 | 144.7(1294) | 199.11(1083.8) | 188 (287.07)
ETET | 1770(83.56) | 18095{1254.86) 36320(1340.36)
T2 | 133.31(143.53) | 279.69(1522.43) 296.03(1660.29)

Figure 8: Empirical model of four philosophers generated by Chitra.
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T'1 and T2 are parallel aggregate states for N = 9 (Figure 6).
3. The program reaches the same steady state cyele for all values of 2 for a given value of ¥V,

4. With an even number of philosophers, at steady state the Program spends most of its time
In a state in which one philosopher is thinking, while the other is eating. With an odd
number of philosophers, the program spends most of its time in a state where exactly one

thread is eating, one is thinking, and the other is acquiring utensils.

5. A single state transition graph can be used to represent all values of z with a given value
of N. Therefore each stochastic process can be used to predict the program behavior at

values of & that were not observed.

The desired performance metric of resource acquisition time per thread is plotted in Figures 9
and 10. The graphs were constructed by applying a static flter to all PES’s which mapped all
program states all program states into Just two states in which a particular philosopher either
Was or was not acquiring utensils.

For N = 2, the Program execution is not fair because philosopher 1 always waits a constant
amount of time, while philosopher 2 waits for time period that grows with the resource holding
time, 2. The cases of N = 3 and 4 are fair. The program becomes less efficient with a growth
in resource holding time for all parameter values. However it is most mefficient for ¥ = 3
philosophers. The explanation for thig illustrates the value of generating an empirical model
for the program: Figure 7 shows that in all stochastic process states, there is never more than
one philosopher eating at a time. This explanation would be difficult to deduce without the

empirical model.
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Mean Resource Acquisition Time (mlcroseconds)

20000 -

——&—  Philosopher 1 {(N=2)
—— Philosopher 2 (N=2)
——#—  Philosopher 1 (N=3)
&=~ Philosopher 2 {(N=3)
& Philosopher 3 {(N=23)

~ 10000 A

¥

e T Y Y T ? 1 =
0 20000 40000 60000 80000 100000

Duration of Eats and Thinks, x

Figure 9: Prediction of resource acquisition time per thread as a function of 2, for N = 9 and 3,
based on empirical models in Figures ¢ through 7.
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Mean Resource Acqulsit_lon Time (mlcroseeonds)

140 -

120 +
Philosopher 1 (N = 4)
Philosopher 2 (N = 4)
Philosopher 3 (N = 4)

100 « Phifosopher 4 (N = 4)

80 -
80 -
40 , —

0 10000 20000

Duration of Eats and Thinks, x

Figure 10: Prediction of resource acquisition time per thread as a function of z, for N = 4, based
on empirical model in Figures 8.
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3.3 Analysis of Perturbations

The stochastic processes in the previous subsection reveal that, for a given value of N, the
program always reaches the same steady state cycle for all observations of any value of . A

perturbation in @ PES is defined as one of the following:

Type 1. a state transition that is taken with a frequency of less than a certain value,

Type 2: a state occupancy time observation that is separated from the sample mean by more

than a certain percentage of the sample mean, or

Type 3: a state whose number of occurrences in a PES is less than a certain percentage of the

total number of state occurrences in the PES.

The stochastic processes in Figures 6 through 8 would be simplified by eliminating pertur-
bations from the PES’s analyzed. A type 1 perturbation manifests itself through a parallel
aggregate state. A type 2 perturbation results in large variances in state occupancy times. A
type 3 perturbation manifests itself by inereasing the number of states in the stochastic process.

Two questions arise with respect to perturbations. First, what is responsible for perturba-
tions: something external to the program, or are they an inherent characteristic of the program
itself? Second, if perturbations are removed from a PES, will the simpler stochastic process
that Chitra generates be sufficient to predict program measures of interest? These questions are

addressed below.

3.3.1 Source of Perturbations

Perturbations due to Interrupts: The time domain view of all PES’s reveals a perturbed

state transition in each thread every 15 milliseconds; the perturbation lasts for about 800 mi-
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Time Damain
Applicaton Name: Dining Philasophers

Frogram Nase: /FO/2_a_10_200 1
Total Duraton: 19572 Screen Duraton: . 2864
# Total States: 1333 Screen States: 1383

[Fievoptions| [Statistics) [scateoptions] [¥rorme [Fileviews) [Fr]

Figure 11: Mlustration of perturbations in PES in time view. An interval of 2864 microseconds is

represented. The two long horizontal lines are approximately of length 800 and 100 microseconds,
and represent perturbations in the normal state transition sequence, probably due to clock and
page fault interrupts, respectively,

croseconds (see Figure 11). Perturbations among processors are not synchronized. We attribute
these perturbations to the Sequent’s clock interrupts.

Measurement, shows that the program occasionally experiences zero to two perturbations of
duration 100 microseconds between every to clock interrupt perturbations (see Figure 11). There
1s no pattern to these perturbations. Our hypothesis is that these perturbations correspond to
page faults. We confirmed this hypothesis by constructing a test program of a single thread

that just executed a loop whose body is a loop of multiplies and records the time required to
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execute the inner loop in a large array. Note that the program touched each array element
exactly once, so that it traversed a sequence of pages in the virtual address space and hence
would periodically produce page faults. The program manifested frequent 100 microsecond
perturbations. We then modified the program to eliminate the large array and just keep track of
the minimum and maximum loop times. This program displayed virtually no 100 microsecond
perturbations; therefore it rarely manifested the interrupt. Running five copies of the program
on five processors produced the same results.

An interrupt perturbs either no threads, some threads, or all threads. Generally the design
of a parallel program will limit the set of threads affected by the interrupt. Zero threads are
affected if only a processor running an idle thread is mnterrupted, however this is not the case for
timer interrupts on the Sequent,

Interrupts can have two domains of influence in the dining philosophers, corresponding to
whether the interrupt occurs to a thread that does or does not hold resources. A thread does
hold resources in most of the acquire state, all of the eat state, and most of the release state. An
interrupt in these states causes two utensils to be “frozen,” with neighbors waiting for an extra
time due to the interrupt service time. This will make 2 noticeable perturbation in the observed
PES. On the other hand, a thread does not hold resources in the end of release, all of think,
and the start of acquire. Here the interrupting thread will not to hold one or more utensils for a
period of time that is clongated by the interrupt service time. This can also affect neighboring
threads, because they might be able to eat one or more extra times while the interrupted thread
is delayed due to the interrapt. This case is particularly sensitive to the relative frequencies of

the eat-think cycle and interrupts.
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Artificial Perturbations: Another source of perturbations is introduced by the faci that
Chitra uses a discrete state space in its empirica! model. Suppose that in a certain segment
of time, two processes are each traversing through a sequence of I, local states that contain no
synchronization points. This implies that there are 1.2 possible global states representing all
possible relative speeds of execution of the two processes. Even if the prograin execution reaches
a cyclic steady state, different PES’s wil] contain different subsets of the L2 states. Many states
will occur with low frequency in the set of all observations and hence be perturbations, even
though the actual program execution is highly regular.

As an example, in Figure 7 there are always three successors to each states THA, ATE,
and TEA4, and the three successors correspond to a different one of the three threads transiting
out of its current state first. For example, in TEA either philosopher 1 finishes thinking first,
philosopher 2 finishes eating first, or philosopher 3 finishes acquiring first. This race condition
results in the three parallel paths that follow state TEA. This problem causes an exponential
growth in the size of the stochastic process which is purely due to the choice of a discrete state
space, even though the underlying program may be highly regular.

An open problem is how to better expose a regular underlying program behavior. One
possibility is to use a continuous state space visualized in a multidimensional space, which is
the solution explored in [1]. The disadvantage of a continuous space is that It needs to be hand

tailored to the program under study. Chitra, in contrast, works for any parallel program.

3.3.2 Impact of Eliminating Perturbations

If our hypothesis that the 100 and 800 microsecond perturbations are due to clock and page fanlt
interrupts is correct, then they should be eliminated from PES’s because they have nothing to

do with the inherent structure of the program under study.
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Number of Eat and think time, z
Philosophers, N 10 | 100 [ 1600 [ 10000 | 20000 | 100000

e 2 031% | 7.86% [ 9.48% | 2.7% R 8.1%
3 - C 10.4% | 7.64% | 7.86% -
4 - - 4.6% | 86.18% | 5.24% -

Table 1: Thresholds of filtering in the event view in Figures 6 through 8.

The fact that each processor receives clock interrupts independently from other processors
implies that the number of perturbations is proportional to the number of processors. Therefore
a cyclic steady state behavior in a program such as the dining philosophers tends to become
masked by growing numbers of perturbations as the number of processors used increases.

As discussed in Section 2.3, Chitra has the ability to filter type 2 and 3 perturbations from a
PES from view, and then, as discussed in section 2.3.3 automatically represent the filtered states
by one or more aggregate states. In fact, the stochastic processes in Figures 6 through 8 model

PES’s with type 3 perturbations excluded at the thresholds shown in Table 1.

4 Conclusions and Future Directions

Visualization provides a graphical window to the execution of a program. Visnally-guided con-
struction of an empirical model of program behavior is helpful in understanding the execution
behavior and performance of parallel programs. Although gross measures of program behavior
can identify the presence of performance problems, they do not explain why the behavior is so.
For example, the gross level measure of mean resource acquisition time of cach resource access
in Figure 9 reveals inefficient performance for ¥, but the stochastic process in Figure 7 shows
that the behavior arises because no more than one philosopher can eat at a time.

Chitra is unique among performance visualization tools in that it is the only tool to generate
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behavior in the frequency domain as well as the use of pattern matching and filtering to define
aggregate states. Chitra permits aggregation until we get a single aggregate state in stochastic
brocess; therefore one can reduce the model until it is acceptably small for abjective of study.
Finally, Chitra can generate a realistic semi-Markov model of program behavior, even though
software generally does not obey a Markovian property, by mapping individual program states
to multiple stochastic process states in a way that embeds history of a state. For example, the
program state TT in the dining philosophers problem is represented by two states, TTyand TTy,
in the stochastic process of Figure 6, This mapping is determined as a by-product of the visual
aggregation done by a user,

Conclusions from the case study in Section 3 are summarized helow.

® The dining philosopher program analyzed always reaches a cyclic steady state behavior.
One stochastic brocess can be used to represent the behavior for ail observed resource

holding times, which allow the model to be used to predict program behavior,

¢ Perturbations evident in the case study do not appear to be primarily due to inherent
properties of the Program. Rather, they arise are due to clock interrupts, page faults, and

the use of a discrete state space

e As discussed earlier, a discrete state Space can represent regular program behavior by
what appears to be many perturbed states. Ap open problem is to find alternate models

of program behavior that reveal the regular program behavior.

Besides the dining philosophers program, we have applied Chitra to another problem, a
commercial TCP/IP product.[1] The most important future work will be to apply the tool to

additional commercial-size software. The empirical model generated by Chitra will probably
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need to be changed to a non-homogeneous process, because a program may pass through phases
during execution. A non-homogeneous process could capture the behavior of a program as it
moves from one state of execution to another,

At present Chitra analyzes a single PES from a single program execution. In the future we
would like Chitra to analyze a set of PES’s forming an ensemble and representing maltiple runs
of a program with the same parameter set. This would eliminate some tedions data reduction
that was done outside of Chitra in the case study of Section 3 to reduce a minimum of three
observations of the program for each parameter value to a single stochastic process.

Ideally, a user could stmultaneously display an ensemble of PES’s, and define aggregations
and filters that are applied to all PES’s in the ensemble. Curves representing the periodogram
of all log files could be drawn in a single frequency domain view, so that the user can sece if
the energy distribution of all runs are similar. If they are not similar, then several “modes” are
present which must he analyzed separately. One possibility is for Chitra to calculate the mean
energy distribution from the distribution of each PES (and use confidence intervals), and then
display the inverse transform in the time and event domains; this signal is a stochastic estimate
of the PES. From this average signal Chitra could generate the corresponding empirical model,
which represents average behavior.

An open problem for theoretical modeling is to explore the superposition of parallel programes.
In the case study of Section 3 the dining philosophers program is preempted by clock and page
fault interrupts. Can a model be developed to predict how a stochastic process representing
interrnpts alone be superimposed with a stochastic process representing the parallel program
behavior in the absence of interrupts? This is superficially analogous to superposition in linear
systems theory.

A design philosophy behind Chitra has been to make the tool as interactive as possible.
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However, computing the frequency domain view of a PES from the time domain view can require
several minutes. At present we can achieve this on a moderately fast RISC architecture color
workstation because we analyze a single PES representing no more than a few seconds of program
execution. However, analyzing an ensemble PES’s, each representing several minutes of program
execution will be impossible on a workstation. In the future we would like to run Chitra on g
Supercomputer and use the workstation as an X terminal.

Another direction for enhancement of Chitra is to explore alternate methods of displaying
PES’s. Currently Chitra maps the program state space to a two dimensional Cartesian space.
One alternate display maps each process to a separate axis in an N + 1 dimensional Cartesian
space, and gives the user the ability to display arbitrary two or three dimensional views into the
Cartesian space and to let the user rotate or navigate through the space. Mapping each process
to a dimension in Cartesian space has been used to develop algorithms for deadlock detection [5]
and to derive the governing equations for some parallel programs [2). Again a supercomputer

would probably be neeessary, to support rotations and navigation.
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Figure 6; Empirical model of two philosophers generated by Chitra.
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Figure 8: Empirical model of four philosophers generated by Chitra.
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Figure 9: Prediction of resource acquisition time

per thread as a function of z,for N =2 and 3,

based on empirical models in Figures 6 through 7.
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