Steady Viscous Flow in a Triangular Cavity

Calvin J. Ribbens, Layne T. Watson,
and C.-Y. Wang

TR 92-21

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

May 8, 1992



STEADY VISCOUS FLOW IN A TRIANGULAR CAVITY

CALvIN J. RisBENS,! LAYNE T. Warson® and C.-Y. Wang?

]‘Depa.rtment of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg,
VA 24061, U.S.A.

2Depa.rtments of Mathematics and Mechanical Engineering, Michigan State University, East Lansing,
MI 48324, U.5.A.

Abstract—Steady recirculating viscous flow inside an equilateral triangular cavity is generated by trans-
lating one side. The Navier-Stokes equations are solved numerically using finite differences on a trans-
formed geometry. The results show a primary eddy and a series of secondary eddies at the stagnant
corner. For high Reynolds numbers the interior of the primary eddy has constant vorticity, but its value

can not be predicted by the meszn-squared law.

1. INTRODUCTION

Steady recirculating flow is a basic phenomenon in fluid mechanics. Such flows occur in the near
wake of moving bluff bodies, in channel flows with abrupt constrictions, or inside cavities partially
bounded by solid surfaces. The most studied case in the literature is the cavity flow, a viscous
fluid enclosed by solid boundaries except for a translating segment which drives the recirculation
through shear stress. This type of flow is important not only in its own tight as a basic physical
model, but due to its simple geometry, also serves as a test problem for numerical algorithms.

Not surprisingly, the most widely used geometry for recirculating cavity flow in the literatureis
a two dimensional square enclosure with one side translating with uniform velocity. Experimental
observations of the streamlines were recorded by Mills [1] and Pan and Acrivos [2] for Reynolds
number, defined as (translation velocity) - width/(kinematic viscosity), up to order of 1000. Due
to the extreme nonlinearity of the Navier-Stokes equations, little analytic work can be done. In
the limit of infinite Reynolds number, Batchelor [3] predicted analytically that the interior would
attain constant vorticity given by a mean squared law, A variety of methods are used to solve the
problem numerically—finite differences, false transients, multi-grid methods, etc. (e.g., Burggraf
[4], Tuann and Olson [5], Ghia et al. [6], Schreiber and Keller [7]). It is generally agreed that there
is a dominant recirculation whose center is closer to the moving wall. As the Reynolds number is
increased, this center first moves downstream, then moves towards the middle of the square. There
are two small counter recirculating eddies at the stagnant corners. The vorticity is most intense
near the moving boundary. For high Reynolds numbers the vorticity is confined to a boundary
layer and the interior vorticity is approximately constant.

However, there are also some differences in the numerical results. The existence of a third
small counter rotating eddy upstream of the moving plate has not been accepted by all numerical
researchers, nor was it observed experimentally. The numerical scheme of Benjamin and Denny
[8] showed enlargement of the small eddies as the Reynolds number is increased, opposite to the
conclusion of others. There is also extreme difficulty in increasing the Reynolds number to the
extent that Batchelor’s theoretical mean-square law [3] can be convineingly confirmed. Finally
Schreiber and Keller [9] showed that a computational mesh not sufficiently small would lead to
spurious solutions, implicating many earlier numerical calculations may be erroneous.

Instead of proposing yet another method to treat the square cavity problem, the present paper
studies numerically the triangular cavity, which has not been done before. A triangular groove is
more common than a square groove on surfaces which have been roughened by scoring. Our aim
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is to determine the structure of the recirculating low and the numerical difficulties peculiar to the
triangular geometry.

2. FORMULATION

Let Q be the equilateral triangle with corners (~v/3a,4), (v3a,a), and (0,—2a), and let IQ
be the boundary of Q. The two-dimensional steady Navier-Stokes equations are

1
wluly + vy, = wl—}p'x, v (g + U ) » (1)

' 1
’I‘J!-"U:ct + ’U’"U;l —;p;r + v (T)i..rm: + Tc’;ryf) N (2)

'U;: "I" 'U.Ll = 0. (3)

Here u/, v' are velocity components in the Cartesian z', y' directions, p is the density, p' is the
pressure, and v is the kinematic viscosity. The boundary conditions are no slip on sides of the
triangle moving with a velocity of constant magnitude U, on fixed sides the velocity is zero, and
velocities are bounded inside Q. We normalize all velocities by U, the pressure by pU 2, the lengths
by a, and drop primes. Define a stream function 3 by

u = Py, v = —Pg. (4)
The governing equations in {2 become
V4'€[’ =R ('ﬁbyvz'ﬂbz - '¢'mvz¢y) ’ (5)

. where V? is the Laplacian operator and R is the Reynolds number Ua/v. The boundary conditions

become
% = 0 on all three sides of £, (6)

and
1, for the top side, 0

(g =¥2) T = {0, for the other two sides,

where T is a unit vector tangent to the boundary pointing in the direction of motion (clockwise).
Equation (7) determines the magnitude of the velocity vector (ty, —¥z). The direction of the
velocity is already determined (up to sign) by (6), since ¢ = 0 on 9% implies Voo = (g, %) is
normal to a side; and thus the velocity, which is normal to Vi, must be tangent to the boundary.
For the equilateral triangle  considered here, equation (6) can be written

¥, = 1, on the top side,
/3, — 1, = 0, on the right side, (8)
V3, + ¥y = 0, on the left side.

3. NUMERICAL METHODS

We apply a Newton-like iteration to equation (5). It is well known that if Newton’s method
converges to the root of a nonlinear equation, it does so rapidly. However, a good initial guess
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is usually needed for convergence to occur. We use a very simple initial guess, namely a cubic
polynomial constructed to be zero on 0f). For the equilateral triangle we choose

¥O(z,9) = ~(y - )(V3z +y + 2)(V3z -y - 2), (9)
while for the right triangle discussed in Section 3.1 below we use
O (z,y) = zy(z +y — 2v3). (10)

Rapid convergence is achieved for R = 1in all cases with sufficiently fine grids. Solutions for higher
Reynolds number in a given case are computed by using as initial guess a solution for a slightly
smaller B for the same case.

A Newton-like linearization of the nonlinear operator in Equation (5) results in the following
linear fourth order PDE to be solved at each iteration:

VB (Ve + V30, — 90V, = V) = - (4P -0V, (1)

where (% is the approximate solution from the previous step. See Ribbens et al. [10}for a more
detailed derivation of (11). At each step of the outer iteration we must solve the linear problem
defined by Equations (6), (8), and (11). Notice that linearization precedes discretization. Oune
could also discretize first and then deal with the resulting system of nonlinear equations, but the
two approaches are essentially equivalent.

3.1 Finite differences on original problem

An efficient numerical technique for solving the related driven cavity problem is described by
Schreiber and Keller [7]. The classical driven cavity problem describes steady viscous incompress-
ible flow in the unit square, with one side moving. The technique employed in [7] is based on central
differences and a uniform rectangular grid, yielding a discretization with second order accuracy.
The difference formulas used to approximate the derivative terms in both the PDE and the bound-
ary conditions are centered. A 13 point stencil is required for the fourth-order derivatives. In order
to impose the PDE at grid points just inside the region, “fictional” grid points just exterior to
the boundary are required, but the unknown 1 values at these exterior grid points are determined
by imposing the normal derivative boundary condition at nearby boundary grid points. The tech-
nique in [7] also includes continuation in the Reynolds number, a special sparse direct factorization
scheme for the resulting linear systems, and Richardson extrapolation for improved accuracy.

We considered modifying the approach of Schreiber and Keller for the triangle problem. Unfor-
tunately, the equilateral triangle presents considerable difficulties under such an approach. Figure 1
shows a typical case. As in Ref. [7], we introduce grid points just external to the region. Fach
external point above the top edge is eliminated by hand by imposing the derivative boundary
condition (8) at the boundary grid point directly beneath it. The unknown value at an external
grid point along the left or right side is determined by imposing the derivative boundary condition
at the boundary grid point immediately above that point. Centered formulas are used for the
derivatives in these boundary conditions for all but two points. Notice that no external points are
defined just above or below the upper left and right corners. The reason is that introducing such
points would immediately lead to a singular system, since there is only one nearby boundary point
(the corner itself) at which to enforce boundary conditions, but we would have two new fictional
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Fig. 1. Equations and unknowns for the e:iuila.teral triangle 2.

points. Furthermore, the derivative boundary conditions are not well defined at the corners, so
imposing them in an arbitrary direction seems dangerous. Similarly, we do not have an external
grid point beneath the bottom corner because the derivative boundary condition is not defined at
the corner. The immediate result of this special treatment near the corners is that we must use
nonsymmetric stencils for the z derivatives at the boundary grid points nearest the two upper cor-
ners, and we must use nonsymmetric 18 point stencils for the PDE at the interior points nearest all
three corners. For the remaining interior grid points the standard 13 point finite difference stencil
suffices.

Despite our relatively straightforward generalization of the technique of Schreiber and Keller,
the linear systems generated by the method just described are so ill conditioned that accurate
numerical solutions are virtually impossible. In fact, for moderately fine grids (e.g., 49 vertical grid
lines and 25 horizontal grid lines) the systems are numerically singular, with condition numbers
in excess of 10'%, The problem is related to the special treatment required in the corners and
to the overlapping stencils needed for the derivative boundary equations along the left and right
sides. On a test problem, if we assume the external solution values are known, so that neither the
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one-sided stencils nor the derivative boundary equations are needed, the linear systems become
quite well conditioned (e.g., 10° for the case mentioned above). We did not pursue further the
causes of the ill conditioning or seek remedies, as the approach described in the next section proved
successful. However, it is interesting to note the significant problems that arise in modifying the
straightforward difference method of Schreiber and Keller for the triangle.

3.2 Other approaches

In a previous paper [10] we described a numerical technique for solving the related problem of
flow induced in an elliptic region by the boundary moving at constant velocity. In that work our
numerical approach was based on collocation with Hermite cubic basis functions, and we defined
the problem as a coupled system of two second order equations in two unknowns (stream function
and vorticity). This strategy proved quite successful and yielded accurate solutions for Reynolds
number up to 1000 and for ellipses with aspect ratio up to 5.

An analogous strategy for the present problem is not successful, however. As in the finite
difference method described above, special problems near the corners lead to nearly singular linear
systems, and in fact to exactly singular systems if the collocation points are not chosen carefully.
Qur experience is that this extreme ill conditioning causes inaccuracies in the approximate solution,
and prevents the Newton iteration from converging for ail but the smallest Reynolds numbers. Nei-
ther collocation nor centered finite differences applied to the system of two second order equations
was successful.

3.3. Finite differences on transformed problem

Returning to a direct finite difference treatment of the fourth order problem, a more successful
numerical treatment is possible. The key step is to transform the problem to an equivalent problem
posed on a right triangle. In particular, we introduced a change of variables

§=2+(y+2)/v3and n=2(1—y)/V3,

so that our computational region is a right triangle { with corners (0,0), (2v/3,0), and (0,2v/3).
The transformed PDE operator in £,n is a very general one indeed, since the chain rule produces
terms of up to total (derivative) degree 4 with coefficients depending on the coefficients of the
original problem and on the transformation. Deriving the transformed coefficients and new dif-
ference formulas for all of these derivative terms by hand would be extremely tedious. We found
the process reasonably straightforward, however, using the symbolic computational facilities of
Mathematica [11].

The most important benefit of transforming the problem to a right triangle is that the trans-
formed derivative boundary conditions are still simply normal derivative conditions on {L“, the
unknown in Q (i.e., a Neumann condition). This is precisely true only for an equilateral triangle
transformed to an isosceles right triangle. The original problem posed on a scalene triangle might
be uravoidably ill conditioned—this remains a topic for future work. This Neumann boundary
condition is extremely important for the numerical scheme because it allows us to use centered
difference formulas to approximate these derivative conditions, and because these formulas do not
overlap (as they do on the equilateral triangle). As can be seen in Fig. 2, we again introduce
unknowns exterior to the region and eliminate them by hand by imposing the derivative boundary
condition at the nearest point on the boundary. Note that along the hypotenuse of the triangle
we impose the derivative boundary condition at the midpoint of a grid square rather than on a
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Fig. 2. Equations and unknowns for the right triangle Q.

grid point. There are several possibilities for second order accurate finite difference stencils in
the interior of the region. As can be seen in Fig. 3, the stencil we use is skewed so that it “fits”
the geometry. Thus, we are able to use the same difference equations to approximate the PDE
at all interior points, including those closest to the corners. This is another important benefit of
the transformed problem approach. Figure 3 shows the stencil for the PDE applied at the inte-
rior grid point closest to the top corner. Other second order accurate stencils require an extra
diagonal of fictional points along the hypotenuse. The coefficients for the various finite difference
approximations based on this skewed stencil are given in the Appendix.

4. RESULTS

Figure 4 shows the streamline patierns as the Reynolds number is increased. The top boundary
is translating to the right, driving the recirculation eddy through viscous shear. For B < 1 the
streamlines are almost symmetric with respect to the y axis. The clockwise primary eddy is about
4/5 from the bottom vertex and moves downstream (to the right) as R is increased. There are
several secondary eddies alternating in sign and rapidly decreasing in strength towards the stagnant
corner. According to Moffatt’s analysis, the size ratio of the eddies for a 60° stagnant corner is
about 4.8, which is consistent with our results.
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Fig. 3. Stencil for approximating derivatives of up to degree 4 on the right triangle 2. The difference
equations for the center point involve unknowns at each of the solid circles.

Figure 5 shows the corresponding vorticity distribution, defined as { = A%y, In general
vorticity is large and positive near the top, and at large Reynolds numbers, is convected to the
right side. Finally at R = 500, the vorticity changes become more restricted to the boundaries.
Figure 6 shows the vorticity distributions for B = 500 along two different directions across the
cavity. It is seen that the “interior” of the primary eddy has almost constant vorticity. We define
the center {z.,y.) of the primary eddy as the location of maximum 4 value in the cavity. Table
1 shows that as R increases to 500, the location of the center (z.,¥.), its stream function value
., and its vorticity ¢, all seem to have converged. Similar to the case of the square, the primary
eddy center first moves toward the right side, then towards the center of the triangle. Now the fact
that R = 500 does not seem to be large is due to our definition of R. If a side of the triangular
cavity is used as the length scale, the actual Reynolds number would be 2+/3 fold, so our R = 500
is equivalent to a conventional Reynolds number of 1732.

5. DISCUSSION AND CONCLUSIONS -

Physically the flow in a triangular cavity is similar to the flow in a square cavity. There is,
however, only a single stagnant corner where we find a series of small eddies. This phenomena is
also shown experimentally for a triangular cavity with a small opening angle (Van Dyke [12]).

Now let us compute the interior constant vorticity predicted by Batchelor [3]. The analytic
solution for inviscid rotational flow with constant vorticity inside an equilateral triangle is given
by equation (9). Using the mean-square law on the boundary velocity we find the interior vorticity
for large R is v/10/3 = 1.054. This is much lower than our numerical value of 1.250. We conclude
Batchelor’s theory does not apply to the triangular cavity. There are several reasons. First, the
mean-square law agsumes zero pressure gradient along the boundary. The inviscid flow of equation
(9), however, shows that pressure rises at the three stagnant corners. Secondly, the assumption
of a thin boundary layer enclosing the primary eddy is violated for the triangle. Figure 5e shows
secondary eddies occupying large areas. As Figs. ba—be show, these secondary eddies seem to get
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Fig. 5. Vorticity distribution for £ = 1 (a), R = 50 (b), R = 100 (c), R = 200 (d), and R = 500 (e)-
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Table 1. Properties of the center of the primary eddy, located
at (¢, Yc) with streamfunction value 9, and vorticity (..

R Te Ye e Cc
1 0.0169 460 233 1.363
50 0.346 445 237 1.464
100 0.329 355 .247 1.373
200 0.208 .280 260 1.272
350 0.173 .265 .268 1.232
500 0.173 .265 269 1.250

)

Y,

Fig. 6. Vorticity values for £ = 500 along y = 0.265 (left) and along 2 = 0,173 (right).

Fig. 7. A spurious solution (left) and the correct solution (right) for £ = 275.

larger as R is increased (also concluded by Benjamin and Denny [1]). Thus the mean-square law
is found to be approximately valid for circular or elliptic boundaries (Ribbens et al. [10]), may
be valid for the square cavity if corner eddies are small, but is not valid for the triangular cavity.
An interesting experiment for future work would be to test the mean-square law for trapezoidal
shaped cavities (of which the square and triangle are limiting cases), with both one side moving

and all sides moving.

Another difference between the triangular cavity and the square cavity is in the numerical
method. Due to the geometry, especially at the corners, problems arise if standard algorithms are
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applied directly. We finally transformed the geomeiry to an isosceles right triangle and successfully
applied a finite difference method, although new formulas had to be derived for the asymmetric
stencil in Fig. 3. Care must be taken to use a grid size large enough to be efficiently computationally
and small enough such that spurious solutions are not obtained. An example of a spurious solution
is shown in Fig. 7.
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Appendix
The (7,7) entry in the templates below is the coefficient oij of U(z + ih,y + jh) in the finite
difference approximation Ei j=—2 ¥(z +1h,y+ jh) to a particular partial derivative of ¥ af (z,9).

0 0 F00
o0 00 L1000 1 0
Teigp|0 =1 010, w:olo0 0 oo,
0 00 0 0 -1 0 0
0 0 i 0 0
0 0 -0 0 .
oo o o Lo -1 0 1
Uooigg |01 =2 10, Wu:=-|0 0 0 o of,
h 0 0 ¢ 0 4h 1 0 -1 ¢
0 0 ] 0 o0
0 0 r00 .
Lo o 0 L]0 00 0
Tyizz [0 0 =2 0 0], Voo iz (-1 2 0 -2 1],
0 1 00 60 0 0
0 0 0 o0
0 0 0 0
L1 =2 1 Lo -1 0 1
Upoyios (0 6 0 0 o0f, owiss (0 2 0 -2 0f,
2h ~1 2 —1 0 2h 10 1 0
0 0 0 0
0 1 0 0
L Joo 2 0 1o 0 0 o
Tog gz |00 0 0 0),  Vpororw (1 —4 6 —4 1],
0 2 0 0 0 0 0 o0
-1 0 0 0
0 0 . 0 0
P B B S o1 o2
weoigpr [ 1 =4 6 —4 1|, w,iolo 2 o4 22 g,
1 -3 3§ -1 1 -2 1 0
0 0 I 0 0
-1 1 [ 0 1
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1 —4 3 ¢ 0 -4 0 0
1 -1 | i 1 0
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