Whiggism in Computer Science:
Views of the Field

John A, N. Lee

TR 92-17

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

April 14, 1992

Whiggism in Computer Science:
Views of The Field

John A. N. Lee
1992 April 14

Abstract

The teaching of any science is not complete without the inclusion of those elements

that constitute the foundations of the field.

While the history of computing is an

element of those fundamentals in computer science, history should not be taught
merely as a diversion from the technology but as a series of case studies supporting

scholarship from ethics to virtual reality.
provides only a biased view of the technolo
understanding failures provides direction

Understanding the successes of the field
gy and hides the true nature of pioneers;
and guidance, and occasionally new

insights that were ahead of their time and whose time has come.

Introduction

Whiggism can simply be described as
the view of an event with the full
availability of hindsight. Anthony
Hyman, in his introduction of the term
to the history of computing
communityl, was concerned, for
example, that it was inappropriate to
look at the life and work of Charles
Babbage from the point of view of
modern day computing. Babbage did
not have the advantage of the
knowledge of the work of Alan M.
Turing and Johnny von Neumann, and
thus it is unfair to judge his actions in
the light of the knowledge of our
world. If one is to express opinions on
the accomplishments (or Tailures) of
Charles Babbage, then it is only

! Hyman, R. Anthony. 1990. “Whiggism
in the History of Science and the Study
of the Life and Work of Charles
Babbage”, Ann. Hist. Comp., Vol. 12, No.
1, pp. 62-67.

4/22/92

appropriate to express those opinions
on the basis of the state of knowledge
of the world as it existed in his time.
For example, Babbage has been
castigated for designing machines that
required a capability of machining
that far surpassed the capabilities of
the time. Michael Wright, curator of
the machines exhibit at the Science
Museum, showed? that precision
machining of the quality expected by
Babbage was quite commonly used in
the construction of intricate clocks and
locks. Perhaps the difference between
the precision needed in clock amd lock
mechanisms and that needed for the
components of the Difference Engine
is that the former is a basically
sequential system where there is
minimal feedback between

2 Wright, M. T. July 1991. “Building the
Difference Engine: Workshop Practice
and Capability in Babbage's Day”,
Babbage/Faraday Bicentenary
Conference, Cambridge, UK.

page 1

components, while the latter requires
multiple interconnections between
elements at all times. The construction
of the Difference Engine at the Science
Museum in 19%0-91 showed that
Babbage had overcome the need for
extreme tolerances by the inclusion of
self correcting mechanisms, even
though greater precision than was
required was possible! Similarly, in a
error brought on by Whiggism,
authors of Babbage biographies? have
made a great deal of mileage out of
Babbage’s opposition to street
musicians. A play by Maurice Wilkes?
opened with a discussion between
Babbage and his solicitor concerning
the charge of “disturbing the peace”
made against a street musician that the
judge had deemed to be invalid. The
recently discovered autopsy report on
Babbage’s bodys revealed that he
suffered from a calcification of the
carotid and vertebral arteries. His
great, great-grandson, Neville
Babbage, a general physician,
concludes that this would have
produced a “recruitment of hearing”
and thus Babbage could have been
suffering from truly painful
sympathetic vibrations when
“attacked” by particular notes included
in the repertoire of street musicians!
This lack of information about the
environment in which he lived, led
prior authors, such as MoselyG, to
misintecrpret Babbage’s sensitivities
and mislabel him as the Irascible
Genius. Understanding his problems

3 See for example, Halacy, Dan. 1970,
Charles Babbage, Father of the
Computer, Macmillan Co., New York.

4 Wilkes, Maurice V. 1991. “Pray, MTr.
Babbage ..”, A Play, Ann. Hist. Comp.,
Vol. 13, No. 2, pp. 147-154.

5 Babbage, Neville F. June 1991.
“Autopsy Report on the Body of Charles
Babbage”, Medical Journal of Australia,
Vol. 154, pp. 758-9.

6 Mosely, M. 1954. Irascible Genius,
Hutchisons, ILondon.

4/22/92

allows us to view the man very
differently. We had put his actions
down to general social dysfunction; in
fact, he was in pain. There are
numerous examples in the
interpretation of history, and
particularly the history of computing,
that suffer from Whiggism. In some,
we belittle the accomplishments of
pioneers when compared to our
present state-of-the-art, when in fact
they started from nothing 1o
accomplish the first step in a new line
of development or discovery.

Whiggism is also an error in teaching.

Whiggism in Teaching

In teaching computer science’ thirty
years ago we could start from first
principles and give the student
everything there was to know about
computing. We could show them the
best route to a solution for a problem;
there were very few alternative paths
and the wrong paths were quickly
obvious. Today, in a Newtonian phrase,
we are standing on the shoulders of
giants; and too often we fail to look
down and see what those giants had (o
go through to achieve their giant-
hood. For anyone who has been in the
field for more than a few years, the
lessons learned are the lessons, not of
documentation, but of experience.
Expericnce, that is, of having made
mistakes, having made the wrong
decisions, and occasionally of having
achieved the hoped for goal. James
Horning said of the relationship
between experience and mistakes:

Good Judgement Comes from
Experience

71t is, of course, an example of
Whiggism to talk about Computer
Science in 1960 - the concept may have
been there, but not the term!

page 2

Experience Comes from Bad
Judgement

As in most historical reporting,
teaching the history of computing is
often the teaching of successes; we fail
to learn about the failures because
they are either uninteresting or time
consuming, The baseline for
understanding our science rises each
year and as we grow older we forget
that the reasons for the support of that
currently perceived baseline are not
always obvious. We know about
something because we stubbed our toes
on that rock years ago, and we have
impatience for those who do not have
the knowledge of that injury as a
learning experience.

An examination of central concepts in
the science from birth to maturity
shows a roughly parabolic complexity
curve. In the beginning the initial
idea is often expressed in such complex
terms that it is overlooked by the
majority of readers. The one or two
who can see through the veil of
complexity simplify the concept and
express it in understandable terms that
in tarn can lead to implementation and
application. As the system is used and
explored, it is again modified and
angmented to achieve a new zenith of
complexity in that the level of
applicability is high while the degree
of understanding (seen as the
complement of complexity) has
dropped once again to a low setting.
Three examples of the mid 1960’s come
to mind: LR parsing as initially
presented by Knuth®, the basic
concepts of well-formed programs

expressed by Boehm and Jacopinig, and

8 Knuth, Donald E. 1968. “Semantics of
Context-Free Languages”, Math.
Systems Theory Journal, Vol. 2, pp. 127-
145.

9 Boehm, Corrado and Giuseppi
Jacopini. 1966. “Flow Diagrams, Turing

4/22/92

the concept of unification described by
Robinsonl0, Each missed the mark
initially but was re-interpreted by
scholars and reduced to a meaningful
implementation system before being
supplemented and magnified again to
create a highly wuseful but less
understood application.

One of the arcas in which Whiggism is
most prevalent is in the teaching of
programming. The art of
programming (t0 wuse Don Knuth’s
phrase) did not evolve full blown. K
developed over a long period in which
the errors of process produced the
codes of practice of the next
generation. The development of
Fortran 9X from (Whiggishly called)
Foriran I does not imply that
newcomers need only be taught about
the additions to the language on the
assumption that the present
gencration of computer science
students have the basics of the
language embedded in their gemes. We
teach languages such as BASIC and
Pascal, in an incremental manner,
starting from * an understanding of
identifiers: and imperatives, and
progressively adding frameworks of
control until the student can achieve
some level of independence. In the
process we probably (and most oftenly)
emphasize iteration as a fundamental
methodology of control, and introduce
recursion as an anomaly in passing.
Later, we attempt to build on the
knowledge of recursion only to find
that since it did not appear on the main
path, it has been forgotten, or had
never really been learned.

Machines, and Languages with only
Two Transformation Rules”,
Communications of the ACM, Vol. 9, No.
5, pp. 366-71,

10 Robinson, J. A. 1965. “A Machine-
Oriented Logic Based on the Resolution
Principle”, Journal of the ACM, Vol. 12,
pp. 23-41.

page 3

Over the years we have seen frequent
emerging fads and passions for
improvements in the techniques of

programming - from the use of high
level programming languages,
through disciplined, structured
programming systems to object

oriented systems; we have gone from
programming in the small to
programming in the large; we have
gone from a subject area that was
familiar to most participants, to a
multi-faceted profession that supports
specialists who are unable to converse
with colieagues in disjoint arcas.
While only a few decades old, we get
the impression that we teach
computing as if certain c¢lements are
registered in the genes of our students.
BASIC comes built-in and thus we can
begin our explanation of a topic by
jumping in halfway through its
development cycle and ignoring the
prehistory, thereby denying students
the simple concepts that have simple
everyday applications. Actually we do
not always want to go back “all the
way”.

Michael Mahoney]1 retells a story,
perhaps apocryphal, about Jean Piaget.
The child psychologist was standing
outside one evening with a group of
11- year-olds and called their attention
to the newly risen moon, pointing out
that it was appreciably higher in the
sky than it had been at the same time
the night before and wondering out
loud why that was. The children were
also puzzled, though in their case
genuinely so. In his practiced way,
Piaget led them to discover the relative
motions of the earth, moon, and sun
and thus to arrive at their own
explanation. A month or two later, the
same group was together under similar
circumstances, and Piaget again posed
his question. "That's easy to explain,”
said one boy, who proceeded to sketch

11 Mahoney, Michael. 1991. “What
Makes History?”, unpublished
manuscript.

4/22/92

out the motions that accounted for the
phenomenon. "That's remarkable”,
said Piaget, "How did you know that?"
"Oh," the boy replied, "we've always
known that!" Not only children, but
people in general, and scientists in
particular, quickly forget what it was
like mot to know what they now know.
That 1is, once you have solved a
problem, especially when the solution
involves a new approach, it's difficult
to think about the problem in the old
way. What was once unknown has
become obvious. What once tested the
ingenuity of the skilled practitioner is
now "an exercise left to the student".
Graduate teaching assistants and senior
faculty are not immune to the error of
Whiggism.

In fact, we need to lead students and
learners through the possibly
winnowed steps of development to
understand where they are going and
from whence the concepts and axioms
have emerged. Winnowed, that is, not
to rewrite history as if it were one long
trail of triumph, but a trail that shows
the major approaches, and the
overtaking technologies, glued
together with the rationale for not
straying too far from the trail. If one
wants to have students to have
negative experiences then the simple
solution is to let them blunder along
devoid of supervision and hopefully to
have them explore the same tarpits of
extinction as did their teachers!2. We
simply seem not to have the time for
that, and yet we simply cannot afford
not to look in the tarpits occasionally to
at least view bad experiences. Just
because one iechniqgue has now been
accepted as the “best” or the “norm”
does not imply that we should not look
at the alternatives (such as recursion)
or on the path of operating systems
(such as MS-DOS and VMS!) The process

12 Brooks, Frederick P., Jr. 1975. The
Mythical Man-Month: FEssavs on

Software FEngineering, Addison-Wesley
Publ. Co., Reading MA.

page 4

of problem solving includes the
process of distinguishing between
alternatives, and making judgements
about the capabilities and
shortcomings of those options,
However, if we initially place students
too far along the trail, then they have
not been privy to the myriad paths
which led to that peculiar route and do
not have a complete knowledge on
which to base their future decisions.

A simple example was given to me by
one of the early reviewers of this
paper. His daughter, 2 computer
science graduate following in her
father’s shoes, had joined a small
company in the North East alongside
graduates from three other
institutions. One of their first tasks
was to develop what amounted to a
lexical analyzer, but not having access
to a Unix system containing LEX, the
other three were stumped! Having
access to an cducation that included
studies of compiler technology prior to
the implementation of YACC and LEX,
my friend’s daughter was able to solve
her employer’s problem. An extreme
example perhaps, but like other
sciences, computer science cducation
requires studies of the fundamentals of
our field in which to build and deduce
additional concepts. David Griesm, for
example, working from the first
principles of program development
through the axiomatic formalisms of
algebraic semantics, was able to derive
an algorithm for computing maximal
subvectors that is an improvement
over the previously best known
technique. Going back to
fundamentals and ecliminating some of
the basic assumptions may enable us to
demonstrate different approaches to
old problems.

Going even further back in history we
discover that both John von Neumann

13 Gries, David. 1989. Lecture during
the “Year of Programming”,
University of Texas, Austin.

4/22/92

and Alan Turing were not satisfied
with simply devising programs; they
accompanied their programs with
proofs of correctness - somechow we
have forgotten how to do this. After

all, do not computers operate
flawlessly? Anyone who was taught
simple accounting prior to the

introduction of the spreadsheet was
coached in the necessities of cross-
footings as a means of validating the
correctness of the mental
computations. Yet very few computer
programs use redundant algorithms to
verify the correctness of the system.

When Fortran was implemented in
1957, it was a purely commercial
enterprise, not highly touted in the
scholarly journals. The techniques of
compilation were not presented as the
long lasting primary achievement of
the Fortran project, rather the
language and the open prairie of
applications were the covenant.
Sheridanl4 presented a scientific view
of the compilation process but the
Greeck characters and the mathematics
hid simplistic solutions that were later
shown to be optimal. The follow-up
compiler for Foriransit was unable to
follow this line of illumination and was
forced to reinvent the techniques of
translation. But then these were once
again lost for the lack of
documentation and lack of scholarly
publication, Yet this compiler
contained one of the most simple of
arithmetic statement scanning
techniques ever devised. Only a study
of the Thistory of programming
languages revealed that system. Last
week, while teaching my compilers
class and while discussing
optimization, a student asked why the
Fortran group placed the minimization
of memory accesses at the top of their

14" Sheridan, Peter B. February 1959,
“The Arithmetic Translator-Compiler
of the IBM Fortran Automatic Coding
System”, Communications of the ACM,
Vol. 2, No. 2, pp. 9-21.

page 5

priority list. He was unaware that the
IBM 704 in use at the time the Fortran
project started used Williams Tube
memory in that the access time was
several orders of magnitude different
from that of the access time of “high
speed” registers.

John von Neumann has been blamed
by John Backus, creator of Fortran, for
the “bottleneck” in computing and the
restrictions of the so-called von
Neumann machine. Early von
Neumann recognized the advantages of
parallel computation, but he also
recognized in his time that the
technology of architectural design was
not sufficient to support truly parallel
systems, that programming had not
developed the techniques of multi-
programming, and thus to solve the
problems of the day he accepted serial
or sequential computation - the very
technology for which he is now
blamed! On the other hand, von
Neumann accepted the credit for the
concept of the stored program; the
EDVAC report was never completed and
the first draft, which only ascribed
authorship to von Neumann, was taken
to be the original source of the idea.
Over the years, von Neumann never
took the time to dissuade his creditors
of the actual genesis of the stored
program concept. Similarly, Grace
Murray Hopper has been credited by
many writers of her several obituaries
with the “development of COBOL”.
History clearly shows that she would
better be credited as the grandmother -
as the originator of FLOWMATIC, as the
midwife - as a member of the
organizing committee that
recommended the evolution of a
business oriented programming
language, or as the mentor - in her
capacity as onme who promulgated the
language and possibly instigated the
writing of the first two compilers.
Over the years, Dr. Hopper never took
any steps to dissuade believers of this
misplaced credit, but neither did she

personally claim the credit for the
langunage. John Mauchly claimed
4/22/92

credit for the invention of the

compuier, and for its consiruction in
conjunction with J. Presper Eckert.
Yet in 1973, the patents were
invalidated by the Minnecapolis District
Court and “one, John Vincent
Atanasoff” was, by law, given the
credit for the invention of the

computer - at least in the US. Clark

Mullenhoff15 went so far as to accuse
Mauchly of perjury on the witness
stand. Mauchly’s widow, Kay Mauchly,
has, subsequent to the trial, discovered
pieces of early electronic devices that
her husband built prior to his visit to
Atanasoff’s home in 1941, But we are
now aware that there was similar work
going on in England by Alan Turing
and in Germany by Konrad Zuse. After
the wunveiling of the ENIAC, the
University of Pennsylvania asked 7.
Presper Eckert and John Mauchly to
sign over their intellectual property
rights to the university. The resulting
disagreement led to the departure of
Eckert and Mauchly from the
university and the subsequent creation
of the first electronic computer

company. Harvard University never
challenged Howard Aiken (o give up
his rights to the Mark T concepts;
Aiken never questioned the

university’s rights and never formed a

commercial organization to market his
inventions. These are all topics from
our history that are well documented
and that can form case studies for
students in so-called computer ethics
courses.

Business and sociological studies of
computer enterprises can reveal
practices and procedures that had an

effect on the cultivation and extension
of the industry. John Hendry of the
Cranficld Institute of Technology,
England, investigated the impact of
government policy on the fledgling
computer industry in the United

15 Mullenhoff, Clark R. 1988. Atanasoff:
Forgotten Father of the Computer, Iowa
State University Press.

page 6

Kingdom following World War II when
the state of the exploration of the field
was on a par with that in the United
States. He entitled his book Innovating
for Faijlurel6 This study contains
Iessons that have applicability to the
current vogue in state government to
channel and encourage university
research in the names of technology
transfer and economic development.
Several CEO’s have recently wriiten
their memoirs in which they attempt to
justify their decisions in managing
their respective corporations but
unfortunately their views are tainted
by their perceived successes more than
by their failures from which we might
learn much more. Shane Greenstein,
University of 1Illinois, has been
investigating the methods and
techniques of vendor lock-in that were
used by computer purveyors in the
1970’s and that can be a highly

successful corporate strategy. The
delivery of wupward compatibility
through successive machines and

deliberate incompatibility with
competitor’s systems, coupled with the
excessive costs of change-over, tended
to sustain a virtual monopoly within
government agencies that emanated
from the initial computer system sale.
A sgimilar situation exists today with the
need to replace personal computers
and workstations, though the evolution
of open systems standards has
diminished this impact to some extent:
Greenstein’s studies! 7 have an
applicability that is worthy of
consideration.

Whiggism also prevents us from
recognizing artifacts that were

16 Hendry, John. 1990. Innovating for
Eailure, MIT Press, Cambridge.

17 Greenstein, Shane. 1990. “Did
Installed Base give an Incumbent any
{Measurable) Advantages in Federal
Computer Procurement?”, Faculty
Working Paper 90-1718, Political
Economy Series #42, Univ. of Ilinois.

4/22/92

originally given some other name but
which preceded the classic
introduction of the same item. For
example, index registers, that many
believe were introduced with the IBM
704, in fact appeared in the University
of Manchester in the Mark I under the
name “B-lines™. Conversely, Grace
Hopper introduced the concept of a
compiler in 1952 and so we give her
the credit for the introduction of a
whole set of compiler components that
apparently were not in her mind at the
time! Charles Babbage described a
computer-like device that contained a
“mill”, and a “store”; instead of control,
Babbage speaks of “government”, and
for programs he used ‘“variable cards”
and “operation cards”. A Whiggish
look at history prevents us from seeing
innovations that may well have
present-day applications but that are
not couched in present day terms.

Perhaps one of the most difficult of
determinations is the identification of
“firsts”, As we just discussed, one
problem 1is recognizing the “first”
under some other name. So often
throughout the history of computing,
elements of the technology have
“condensed” out of the cloud of
postulates that have emerged warm
from the sea of perceptions. The
question of who first invented the
compuier can be answered several
ways. John Atanasoff, in the US,
generated the idea of a special purpose
electronic system while Konrad Zuse,
in Germany, was wrestling with the
problem of a general purpose relay
driven system similar to that of Howard
Aiken at Harvard University.
Simultaneously Alan Turing, in Great
Britain, was applying a more abstract
techniques to conceptualize the
Universal Machine that cventually
bore his mame. Not one of them termed
his system a “computer” and thus if we
were to perform a contextual search to
locate contemporary documents we
would not locate references to their
work. The term “computer” still
referred to a human operator.

page 7

Atanasoff’s drum memory had many of
the eclements of later memory devices
both as a rotating contrivance and as a
regenerative system; those same
concepts were independently
discovered and reintroduced in 1950’s
systems - without contravening the
patent or copyright laws.

Technology,
Science?

Engineering or

The progression of understanding and
application of computing has moved
from empirical, ad hoc, skill-based
activities, through increasing
comprehension to a triumvirate
position in which there simultaneously
exist technologists, engineers and
scientists. Distinct from a “true”
science, such as physics, the ability to
“engineer” a product has preceded the
full scientific understanding of at least
the software process. Paul Cohen from
the University of Massachusetts
undertook to surveyl8 of the gist of a
year’s worth of published articles in
artificial intelligence, mainly to
support his thesis that not enough was
being done to develop the theoretical
underpinnings of the science. His
results, I believe, mirror the state of
the understanding of certain aspects of
engineering a hundred years ago. This
may indicate that we are “on track” in
the (ransmogrification of computer
technology into a science and thence
into engineering. However, our
acceptance as an engineering
discipline has been thwarted, in my
mind, by the lack of concrete artifacts
that can be subjected to external
examination by investigators. Perhaps
Thomas J. Watson, Sr. was not all wrong
when he steadfastly resisted the
introduction of electronics into the
data processing business because he

18 Cohen, Paul. 1991. “A Survey of the
Eighth National Conference on
Artificial Intelligence: Pulling
Together or Pulling Apart?”, A7
Magazine, Vol. 11, No. 4.

4/22/92

felt that maintenance of the
components could not be achieved
readily. He believed that what you
could not see could not be fixed! Thus
the field of computing, though named
“computer science” since the mid
1960°s, still has a foot in the domain of
technology. It is our responsibility to
develop the science so as to understand
the artifacts and their properties, and
then to g¢ngineer reproducible
products which have a reliability
comparable to that that we expect in
products from other enginecring
disciplines. [However, the word
engineering carries less than an
envious position in the scale of social
graces. Nick Metropolis, developer of
the MANIAC system for the Los Alamos
Laboratory, and author of some of the
early programs for the understanding
of the processes of nuclear detonation,

tells the storyl® of a “distinguished
lady ... extolling her admiration for
Professor §. “And what department at
MIT does he belong’ she finally asked.
‘Mechanical Engineering’ Meiropolis
responded as a look of horror crossed
the lady’s face. ‘Why I thought he was
a scientist’ she blurted out”.

Our current scientific understanding
of the field of computing is incomplete;
our ability to engineer reliable
products is also incomplete. Like a
canoeist, we sit bobbing on the edge of
an eddy, on the onc hand, ready to be
swept downstream to continue the
fight against the flow of nature, and on
the other hand, siraining to achieve
the chance to collect our thoughts in
the still waters of understanding. This
oscillation between pure and applied
science swirls us around, the most
effective progression downstream
being accomplished by conserving our
energy and analyzing the last descent,
before we tackle the next obstacle.

19 Metropolis, N. 1991. “The Age of
Computing: A Personal Memoir”,
American Academy of Arts and
Sciences.

page 8

There is a certain amount of technolust
in our profession today that discards
the immediate past in favor of the
latest toy; we do not pause long enough
either to enjoy the tranquility or to
understand what we have
accomplished. A well mounted hype
that builds desire for glossy new
artifacts has begun to win over reason
and planning. As the amount of data
left behind increases our ability to
analyze the ongoing experiment grows
more and more difficult. What really
did work and what not? Is speed taking
the place of ingenuity? Is faster so
much better? The announcement of a
new system in one of the glossy
personal computer magazines suggests
that all prior models are now to be
viewed with contempt and to be
regarded as being superfluous. 0ld
systems become museum picces or are
handed down to the “less fortunate”
to the biologists and the educators.

The acceptability of historians of
modern and contemporary technology
in universities is at a low ebb.
Metropolis20 has pointed out that
histories of long obsolete discoveries,
such as the steam engine, are much
more acceptable. As the reviewer from
a mathematical joumal pointed out in
rejecting a manuscript on -algorithms
(while recommending it’s forwarding
to the Annals of the History of
Computing), the programming
language Pascal is by no means as
permanent as formulae written in
Greek or Latin! Had the same paper
included algorithmic expositions in
terms of the programming language
APL, perhaps it would have been more
acceptable!

Too often institutions look upon
historians as non-technical humanists
who tumn to the study of history in the
face of their inability to handle the
current theories of the field they
study. Like the study of ethics or

20 1bid.

4/22/92

educational applications in our
computer science curriculum,
contemporary history is thought to be
the hiding place for professors
approaching senility. There is a place
for historians in computer science and
the study of historical elements of the
field by students, at all levels, is
legitimate. The historian cries out to
the fleeing back of a scientist “pausc to
smell the flowers”!

Conclusion

Does this mean that 1 advocate that
every course should include some
history? Not necessarily, but I do
advocate that some of the historical
venues should be visited. T believe that
we do students an injustice when we
start from a point at which we presume
that everything else is just irrelevant
prolog.

Does this mean that I advocate teaching
the negatives? To a certain extent
there is learning in examining
negative or complementary aspects of
a subject; in fact, the negative
approach, as in proof by contradiction,
can reinforce the acceptance of the
positive. In almost every subject we
teach, there was a period of
development in which alternatives
were tried and rejected. Not all
alternatives failed; they were simply
superseded. Some alternatives were
ahead of their time and now have
applications.

Dos this mean that I advocate teaching
only the successes? To merely teach
the successful algorithms should not
suggest that there is no merit in those
that are no longer used. In some cases,
a quick and dirty solution to a problem
(now-a-days called rapid prototyping)
can more easily be achieved with

~simple tools, that are, unfortunately,

no longer taught.
I would propose a compromise solution

between teaching basic history and
only dealing with the state-of-the-art:

page 9

each course could “tithe” 10% of its
syllabus to looking backward to Iearn
about what led up to the state-of-the-
art - 5 minutes per class, 3 class periods
out of 30. The state-of-the-art in
Columbus’ time was the theory that the
world was flat, and so long as one
limited travel to within sight of land,
that worked within acceptable (or
perhaps unobserved) tolerances. Had
not Columbus being willing to
challenge the underlying assumptions
we might not be here; or at the very
least someonc else would have crossed
the Atlantic. To solve many everyday
problems we can accept a flat earth
theory; to progress we need to
understand the limitations of
simplifying assumptions and o
overcome them to find the “new
world”.

Richard Hamming once observed about
one of the supportive systems of
computing that

“one should know enough about
{it] to protect one’s self against
it!”

We and our intellectual offspring need
to know enough about the tarpits on
either side (and even under) the path
Lo protect ourselves against them,

The 1990°s has been labelled as the
decade in which we get “back to
basics”, an era when we look at our
cducational process and lift the
country into an upper percentile of
nations with Ssuperior
accomplishments in science,
mathematics, and social studies. I am
convinced that walking that extra mile
in our educational system starts with
the first step - puiting the best foot
forward by teaching the elements of
the subject in a clear, understandable,
lucid, intelligible manner. Starting
right sets the pace for later
understanding and establishes the

4/22/92

level of the shoulders on which our
students are going to stand. Tony
Hoare is reported to have said that in
every large problem there is a small
problem trying to get out! Small
problems need small solutions, and
solutions that are not complicated by
the Whiggish views of extended
scientific development. Too often
simple solutions get lost in the rush to
the sophistication of scientific method
and we find ourselves using a steam
hammer to break open a peanut.

page 10

