Analysis of the Worst Case
Space Complexity of a PR Quadtree

Srivam V. Pemmaraju and Clifford A. Shaffer

TR 92-09

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

April 1, 1992

Analysis of the worst case space complexity of a PR quadtree

Sriram V. Pemmaraju and Clifford A. Shaffer
Department of Computer Science
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061

April 1, 1992

Abstraet

We demonstrate that a resolution-r PR quadtree containing n points has, in the worst case, at

most 8n(r — [log, 27} 4 2 — % nodes. This captures the fact that as n tends towards 47, the number

of nodes in a PR quadtree quickly approaches O(n). This is a more precise estimation of the worst
case space requirement of a PR guadtree then has been attempted before.

1 Introduction

Hierarchical data structures, and the quadtree in particular are coming into widespread use in applications
requiring the organization of large amounts of spatial data. Samet [7, 8] provides a large survey of these
data structures and their applications. Examples of applications are geographic information systems,
computer graphics, image processing, fluid dynamics, star cluster simulations, and robotics. However,
despite the popularity of these data structures and the large number of algorithms that involve them,
their time and space analysis has proved notoriously difficult. A few theoretical results that have been
obtained for quadtrees do make them attractive. Hunter and Steiglitz [2] show that the space requirement
for a region quadtree is O(P) where P is the total perimeter length for the region represented. Samet
and Shaffer [5, 6] show that the amortized cost of neighbor finding in any quadtree is O(1). Webber [10],
Shaffer and Stout [9], and Lattanzi and Shaffer [4] have used these results to show that several algorithms
involving these data structures run in linear time. However, for most applications, non-trivial space and

tirme bounds are difficult to obtain.

In this paper we present an analysis of the worst case space requirements for a data structure known
as the PR quadiree. The PR quadtree is of particular theoretical interest as it is gaining widespread use
for efficient fluid dynamics and star cluster simulations [1, 3]. We believe that this analysis will also be

applicable to other quadtree data structures,

The PR quadirecis a hierarchical, variable resolution data structure based on the recursive partition-
ing of a bounded planar region into equal-sized quadrants. More precisely, consider a unit square with
n points in it. If n > 2, split the square into 4 equal squares by drawing a vertical line and a horizontal
line through the center. Each square so obtained is recursively split into 4 equal-sized squares if and
only if it contains more than one pomnt. This process terminates when every square that has not been
further split contains at most 1 point. Therefore, at the termination of this process, among the squares
that have not been split, there are some that contain no points and some that contain one point. Call
a square that contain no points an empty square and call a square that contains one point a full square.
The recursive decomposition of the unijt square described above can be represented by a PR quadtree.
A PR quadtree is a rooted tree in which each node represents a square created during the course of
recursively decomposing the unit square. The root of the PR quadtree represents the unit square. If
a node v represents a square S that contains two or more points, then v has four children, where each

child represents a distinet square that was obtained by splitting 5.

Note that each node in the PR, quadtree has exactly 4 children or no children. Those nodes that have
no children (leaves) represent full Squares or empty squares. A node that represents a full square is called
a full node, while a node that represents an empty square is called an empty node. The rest of the nodes
of the PR quadtree are called internal nodes and they represent squares that contain two or more points
and have been recursively split. The depth of the PR, quadtree is the same as the depth of the recursion
used to decompose the unit square. The depth of a PR quadtree is called its resolution and we cail a PR
quadtree of depth r, a resolution-r PR quadtree. This is typical of the use of PR, quadtrees since data

points usually have coordinates of fixed resolution. Note that a resolution-r PR quadtree can have at

4TH g
3

most nodes and the resolution of a PR, quadtree places a lower bound of 2-" on the side length
of squares obtained during the course of the recursive decomposition. Also note that a PR, guadtree of

resolution-r contains at most 4" points.

The space requirement of a resolution-r PR quadtree is simply the number of nodes in it. But, the
number of nodes in a resolution-r PR quadiree depends on the arrangement of the n points in the unit
square. For example, if n = 2, the nurnber of nodes in a resolution-r PR quadtree could be as small as
5, if the two points were placed far apart, or could be as large as 47 + 1, if the two points are placed
as close to each other as possible. In the former case, the PR quadtree contains one internal node, two
empty nodes, and two full nodes, while in the latter case the PR quadtree contains r internal nodes,
two full nodes, and 3r — 1 empty nodes. Qur goal then, is to determine a tight worst case upper bound
on the space requirement of a resolution-r PR quadtree, that stores n points. We achieve this goal by
constructing a worst case resolution-r PR quadtiree storing n points i.c., a resolution-r PR quadtree

storing n points whose size is the largest among all such PR quadtrees.

The analysis in the next section shows that the worst case space requirement of a resolution-r PR

quadtiree storing n points is

(e fon (3)]) + 321

While a worst case space requirement analysis of a PR quadtree does not exist in literature, it has
been generally stated without qualification that the worst case space requirement of a resolution-r PR,
quadtree storing n points is O(rn), where r is at least logsn. This statement is imprecise, especially in
the light of the fact that as n tends to 47, the space requirement of the PR quadtree must become linear.
From our result, it is easy to determine how the worst case space requirement of a PR quadtree varies,

as n varies with respect to r.

2 Analysis

The analysis is in two parts. In the first part, a procedure called create_tree is presented. This procedure
constructs a worst case resolution-r PR, quadtree. In the second part, the number of nodes in the tree
constructed by create_tree is determined. Let the number of points inserted into T by create_tree
be n. First, we assume that n — 2. 4% This assumption simplifies technical details in the analysis,
while keeping the concepts intact. Subsequently, we drop this assumption and extend our analysis to an

arbitrary n.

Having established the correspondence between nodes in the PR quadtree and the squares obtained
by the recursive decomposition of the unit square, we shall use the two interchangeably. In particular,
we shall talk about inserting a point into a node, while actually meaning that a point is being inserted
into the square that the node corresponds to. A node in the PR quadtree is at level { if its distance from

the root is /. Note that a node at leve] / represents square of side length 2.

create_tree

T is initialized to an empty node;

Repeat 4% times
Insert two new points as close to each other as possible
into an empty node at the smallest level in T
Recursively decompose the node until the new nodes

obtained contain at most one point;

The intuition behind the above procedure is that a node at the smallest level, when recursively
decomposed, can generate the most number of new nodes. Points are placed as close to each other as
possible so as to ensure that the depth of the recursive decomposition is as large as possible. Clearly, for
any PR quadtree that stores n points, there exists a PR quadiree, at least as large, that stores n points

and all its full nodes appear at level r. Thus we need to consider ouly those trees with all full nodes at

level r. It is also easy to check that the PR quadtree constructed by create_tree is a largest quadiree
among all those that store n points and have all their full nodes at level ». These two observations lead
too the fact that T is a worst case, resolution-r PR quadtree that stores n points. The next two lemmas

establish properties of 7" that will be used in counting the number of nodes in 7.
Lemma 1 For each 1, 0 < 1 < k, there are 4' internal nodes in T af level 1.

Proof: The proof is by induction on the number of levels. Assume that for some [, 0 <U<k, 2-4 points
have been inserted into T according to create_tree. The induction hypothesis is that, at this stage, for
all j, 0 < 7 <1 there are 47 internal nodes in T at level 7. The claim is trivially true for I = 0. Assume
that the claim is true for some I, 0 <1 < k. Consider the nodes at level 1. Each of these nodes contains
two points as close to each other as possible. Hence, each of these nodes has 4 children, 3 of them empty,
and one internal. So there are a total of § . 4¢ empty nodes at level I 4+ 1 and the subsequent 3 - 4'
pairs of points that are inserted by create_tree are devoted to forcing these empty nodes to recursively
decompose. Therefore with the insertion of 2 - 34! additional points all the empty nodes in level {4 1
are converted into internal nodes. Therefore after inserfing a total of 2.4/ +2.3.4 = 2. 41+ points

according to create_tree procedure there are 4+! internal nodes in level I + 1. a

Lemma 2 Fach node at level k is the roof of a subiree that contains 4(r — k) + 1 nodes.

Proof: Consider a node v at level k. The subtree rooted at v has height » — k and cach level I, k < { < 7
there are three empty nodes and one internal node. At level r there are two empty nodes and two full
nodes. Therefore v has 4 - (r — k) descendents yeilding a total of 4(r — k) + 1 nodes in the subtree rooted

ab v. (]

Theorem 3 Suppose n = 2. 4% for some k, 0<k<r. Let T be a resolution-r PR quadiree that stores

n poinis and has the mazimum number of nodes. Then the number of nodes tn T is

5n 1
-1 ol
2n(r — log, n) + 3 73

Proof: According to Lemma 1 the number of nodes in T at level & or less is Zf:o 4", According to
Lemma, 2 the number of nodes in 7" at level k + 1 or more is 4% -4(r — k). Therefore the total number of
nodes is
&
= Y 4ty
=0
4k+1 -

1
= _-*3 + 4k+1(1" — k)

Substituting n = 2. 4% and f = log, (%) we gel
2 1
= Qn(rwlog4 (—g)) +§-— 3
1
3

2n(r — log, n) + %E -~

We now drop the assumption that n = 2-4* and extend Theorem 3.

Theorem 4 4 resolution-r PR quadtree that stores n points, contains at mosi

= [(]) -

nodes,

Proof: There exists a k, 1<k < r, such that 2 . 46~1 <n <2 4% From the proof of Theorem 3, it
follows that the number of nodes in the PR quadtree T created by procedure create_tree is at most

L |
4Ly

Using £ = [log, (2)] and 2 - 4%-1 < n we obtain that 7" contains at most
n 8n 1
s (= floes (3)]) + F -3
nodes, 0

For practical applications, we are interested in the worst case space complexity of the PR quadtree as

n varies with respect to r. The following two corollaries are immediate from the above theorem.
Corollary 5 Ifn=c¢c- 47, where 0 < e < 1 then, T has at most

(3 foss 3)]) -

nodes in if.

Corollary 6 Ifn = (47)°, where 0 < e < 1 then, T' has at most

8n(r(1—c)+§~)—%

nodes in i,

The first corollary confirms the fact that if n is a constant fraction of 47, then the worst case space
requirement of a PR quadtree is O(n). The second corollary shows that if n is a fractional power of 47

then the worst case space requirement of a PR quadtree can be as bad as O(nlogn).

Finally, note that the above analysis can be easily extended to PR trees of higher dimensions.

Corollary 7 4 PR {ree of dimension d, resolution r, and storing n points has ai most

24+, 1

3 3

2%y (r—~ [logzd g]) +
nodes.

Acknowledgements

We thank Lenwood S. Heath for his helpful comments.

References

[1] L.F. Greengard, The rapid evaluation of potential fields in particle systems, Ph.D. Dissertation,

Department of Computer Science, Yale University, April 1987,

[2] G. Hunter and K. Steiglitz, Operations on images using quadtrees, JEEE Transactions on Pattern

Analysis and Machine Intelligence 1, 2(April 1979), 145-153.

[3] P. Hut and S. McMillin (eds), The Use of Supercomputers in Stellar Dynamics, Proceedings of a

workshop held at the Institute for Advanced Study, Princeton, NJ , June 1984,

[4] M. Lattanzi and C.A. Shaffer, An optimal boundary to quadtree conversion algorithm, Computer

Vision, Graphics, and Image Processing 53, 3(May 1991), 303-311.

[5] H. Samet, Neighbor finding techniques for images represented by quadtrees, Computer Graphics and

fmage Processing 18, 1(January 1982), 37-57.

[6] H. Samet and C.A. Shaffer, A model for the analysis of neighbor finding in pointer-based quadtrees,

IEEE Transactions on Pallern Analysis and Machine Intelligence 7, 6(November 1985}, 717-720.

[7] H. Samet, Applications of Spatial Data Structures; Computer Graphics, Image Processing, and GIS,

Addison-Wesley, Reading MA, 1989,
(8] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading MA, 1990.

[9] C.A. Shaffer and Q.F. Stous, Linear time distance transforms for quadtrees, Computer Vision,

Graphics, and Image Processing: Image Understanding 54, 2(Sep 1991), 215-223,

{10] R.E. Webber, Analysis of quadtree algorithms, Ph.D. dissertation, TR-1376, Computer Science

Department, University of Maryland, College Park, MDD, March 1984.

