Analysis of the Worst Case
Space Complexity of a PR Quadtree

Sriram V. Pemmaraju and Clifford A. Shaffer

TR 92-09

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

April 1, 1992
Analysis of the worst case space complexity of a PR quadtree

Sriram V. Pemmaraju and Clifford A. Shaffer
Department of Computer Science
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061

April 1, 1992

Abstract

We demonstrate that a resolution-r PR quadtree containing n points has, in the worst case, at most $8n(r - \lfloor \log_2 r \rfloor) + \frac{8n}{3} - \frac{1}{2}$ nodes. This captures the fact that as n tends towards 4^r, the number of nodes in a PR quadtree quickly approaches $O(n)$. This is a more precise estimation of the worst case space requirement of a PR quadtree than has been attempted before.

1 Introduction

Hierarchical data structures, and the quadtree in particular are coming into widespread use in applications requiring the organization of large amounts of spatial data. Samet [7, 8] provides a large survey of these data structures and their applications. Examples of applications are geographic information systems, computer graphics, image processing, fluid dynamics, star cluster simulations, and robotics. However, despite the popularity of these data structures and the large number of algorithms that involve them, their time and space analysis has proved notoriously difficult. A few theoretical results that have been obtained for quadtrees do make them attractive. Hunter and Steiglitz [2] show that the space requirement for a region quadtree is $O(P)$ where P is the total perimeter length for the region represented. Samet and Shaffer [5, 6] show that the amortized cost of neighbor finding in any quadtree is $O(1)$. Webber [10], Shaffer and Stout [9], and Lattanzi and Shaffer [4] have used these results to show that several algorithms involving these data structures run in linear time. However, for most applications, non-trivial space and time bounds are difficult to obtain.
In this paper we present an analysis of the worst case space requirements for a data structure known as the PR quadtree. The PR quadtree is of particular theoretical interest as it is gaining widespread use for efficient fluid dynamics and star cluster simulations [1, 3]. We believe that this analysis will also be applicable to other quadtree data structures.

The PR quadtree is a hierarchical, variable resolution data structure based on the recursive partitioning of a bounded planar region into equal-sized quadrants. More precisely, consider a unit square with \(n \) points in it. If \(n \geq 2 \), split the square into 4 equal squares by drawing a vertical line and a horizontal line through the center. Each square so obtained is recursively split into 4 equal-sized squares if and only if it contains more than one point. This process terminates when every square that has not been further split contains at most 1 point. Therefore, at the termination of this process, among the squares that have not been split, there are some that contain no points and some that contain one point. Call a square that contains no points an empty square and call a square that contains one point a full square. The recursive decomposition of the unit square described above can be represented by a PR quadtree.

A PR quadtree is a rooted tree in which each node represents a square created during the course of recursively decomposing the unit square. The root of the PR quadtree represents the unit square. If a node \(v \) represents a square \(S \) that contains two or more points, then \(v \) has four children, where each child represents a distinct square that was obtained by splitting \(S \).

Note that each node in the PR quadtree has exactly 4 children or no children. Those nodes that have no children (leaves) represent full squares or empty squares. A node that represents a full square is called a full node, while a node that represents an empty square is called an empty node. The rest of the nodes of the PR quadtree are called internal nodes and they represent squares that contain two or more points and have been recursively split. The depth of the PR quadtree is the same as the depth of the recursion used to decompose the unit square. The depth of a PR quadtree is called its resolution and we call a PR quadtree of depth \(r \), a resolution-\(r \) PR quadtree. This is typical of the use of PR quadtrees since data points usually have coordinates of fixed resolution. Note that a resolution-\(r \) PR quadtree can have at
most $\frac{4^{r+1} - 1}{3}$ nodes and the resolution of a PR quadtree places a lower bound of 2^{-r} on the side length of squares obtained during the course of the recursive decomposition. Also note that a PR quadtree of resolution-r contains at most 4^r points.

The space requirement of a resolution-r PR quadtree is simply the number of nodes in it. But, the number of nodes in a resolution-r PR quadtree depends on the arrangement of the n points in the unit square. For example, if $n = 2$, the number of nodes in a resolution-r PR quadtree could be as small as 5, if the two points were placed far apart, or could be as large as $4r + 1$, if the two points are placed as close to each other as possible. In the former case, the PR quadtree contains one internal node, two empty nodes, and two full nodes, while in the latter case the PR quadtree contains r internal nodes, two full nodes, and $3r - 1$ empty nodes. Our goal then, is to determine a tight worst case upper bound on the space requirement of a resolution-r PR quadtree, that stores n points. We achieve this goal by constructing a worst case resolution-r PR quadtree storing n points i.e., a resolution-r PR quadtree storing n points whose size is the largest among all such PR quadtrees.

The analysis in the next section shows that the worst case space requirement of a resolution-r PR quadtree storing n points is

$$8n \left(r - \left[\log_4 \left(\frac{n}{2} \right) \right] \right) + \frac{8n}{3} - \frac{1}{3}.$$

While a worst case space requirement analysis of a PR quadtree does not exist in literature, it has been generally stated without qualification that the worst case space requirement of a resolution-r PR quadtree storing n points is $O(n)$, where r is at least $\log_4 n$. This statement is imprecise, especially in the light of the fact that as n tends to 4^r, the space requirement of the PR quadtree must become linear.

From our result, it is easy to determine how the worst case space requirement of a PR quadtree varies, as n varies with respect to r.

3
2 Analysis

The analysis is in two parts. In the first part, a procedure called create_tree is presented. This procedure constructs a worst case resolution-\(r \) PR quadtree. In the second part, the number of nodes in the tree constructed by create_tree is determined. Let the number of points inserted into \(T \) by create_tree be \(n \). First, we assume that \(n = 2 \cdot 4^k \). This assumption simplifies technical details in the analysis, while keeping the concepts intact. Subsequently, we drop this assumption and extend our analysis to an arbitrary \(n \).

Having established the correspondence between nodes in the PR quadtree and the squares obtained by the recursive decomposition of the unit square, we shall use the two interchangeably. In particular, we shall talk about inserting a point into a node, while actually meaning that a point is being inserted into the square that the node corresponds to. A node in the PR quadtree is at level \(l \) if its distance from the root is \(l \). Note that a node at level \(l \) represents square of side length \(2^{-l} \).

create_tree

\(T \) is initialized to an empty node;

Repeat \(4^k \) times

Insert two new points as close to each other as possible
into an empty node at the smallest level in \(T \);
Recursively decompose the node until the new nodes obtained contain at most one point;

The intuition behind the above procedure is that a node at the smallest level, when recursively decomposed, can generate the most number of new nodes. Points are placed as close to each other as possible so as to ensure that the depth of the recursive decomposition is as large as possible. Clearly, for any PR quadtree that stores \(n \) points, there exists a PR quadtree, at least as large, that stores \(n \) points and all its full nodes appear at level \(r \). Thus we need to consider only those trees with all full nodes at
level \(r \). It is also easy to check that the \(PR \) quadtree constructed by \texttt{create_tree} is a largest quadtree among all those that store \(n \) points and have all their full nodes at level \(r \). These two observations lead too the fact that \(T \) is a worst case, resolution-\(r \) \(PR \) quadtree that stores \(n \) points. The next two lemmas establish properties of \(T \) that will be used in counting the number of nodes in \(T \).

Lemma 1 For each \(l \), \(0 \leq l \leq k \), there are \(4^l \) internal nodes in \(T \) at level \(l \).

Proof: The proof is by induction on the number of levels. Assume that for some \(l \), \(0 \leq l \leq k \), \(2 \cdot 4^l \) points have been inserted into \(T \) according to \texttt{create_tree}. The induction hypothesis is that, at this stage, for all \(j \), \(0 \leq j \leq l \) there are \(4^j \) internal nodes in \(T \) at level \(j \). The claim is trivially true for \(l = 0 \). Assume that the claim is true for some \(l \), \(0 \leq l < k \). Consider the nodes at level \(l \). Each of these nodes contains two points as close to each other as possible. Hence, each of these nodes has 4 children, 3 of them empty, and one internal. So there are a total of \(3 \cdot 4^l \) empty nodes at level \(l + 1 \) and the subsequent \(3 \cdot 4^l \) pairs of points that are inserted by \texttt{create_tree} are devoted to forcing these empty nodes to recursively decompose. Therefore with the insertion of \(2 \cdot 3 \cdot 4^l \) additional points all the empty nodes in level \(l + 1 \) are converted into internal nodes. Therefore after inserting a total of \(2 \cdot 4^l + 2 \cdot 3 \cdot 4^l = 2 \cdot 4^{l+1} \) points according to \texttt{create_tree} procedure there are \(4^{l+1} \) internal nodes in level \(l + 1 \).

Lemma 2 Each node at level \(k \) is the root of a subtree that contains \(4(r - k) + 1 \) nodes.

Proof: Consider a node \(v \) at level \(k \). The subtree rooted at \(v \) has height \(r - k \) and each level \(l \), \(k < l < r \), there are three empty nodes and one internal node. At level \(r \) there are two empty nodes and two full nodes. Therefore \(v \) has \(4 \cdot (r - k) \) descendents yeilding a total of \(4(r - k) + 1 \) nodes in the subtree rooted at \(v \).
Theorem 3 Suppose \(n = 2 \cdot 4^k \), for some \(k \), \(0 \leq k < r \). Let \(T \) be a resolution-\(r \) PR quadtree that stores \(n \) points and has the maximum number of nodes. Then the number of nodes in \(T \) is

\[
2n(r - \log_4 n) + \frac{5n}{3} - \frac{1}{3}
\]

Proof: According to Lemma 1 the number of nodes in \(T \) at level \(k \) or less is \(\sum_{i=0}^{k} 4^i \). According to Lemma 2 the number of nodes in \(T \) at level \(k + 1 \) or more is \(4^k \cdot 4(r - k) \). Therefore the total number of nodes is

\[
\sum_{i=0}^{k} 4^i + 4^k \cdot 4(r - k) = \frac{4^{k+1} - 1}{3} + 4^{k+1}(r - k)
\]

Substituting \(n = 2 \cdot 4^k \) and \(k = \log_4 \left(\frac{n}{2} \right) \) we get

\[
= 2n \left(r - \log_4 \left(\frac{n}{2} \right) \right) + \frac{2n}{3} - \frac{1}{3}
= 2n(r - \log_4 n) + \frac{5n}{3} - \frac{1}{3}
\]

\(\square \)

We now drop the assumption that \(n = 2 \cdot 4^k \) and extend Theorem 3.

Theorem 4 A resolution-\(r \) PR quadtree that stores \(n \) points, contains at most

\[
8n \left(r - \lfloor \log_4 \left(\frac{n}{2} \right) \rfloor \right) + \frac{8n}{3} - \frac{1}{3}
\]

nodes.

Proof: There exists a \(k \), \(1 \leq k \leq r \), such that \(2 \cdot 4^{k-1} \leq n \leq 2 \cdot 4^k \). From the proof of Theorem 3, it follows that the number of nodes in the PR quadtree \(T \) created by procedure \texttt{create_tree} is at most

\[
4^{k+1}(r - k) + \frac{4^{k+1}}{3} - \frac{1}{3}
\]
Using \(k = \lceil \log_4 \left(\frac{r}{2} \right) \rceil \) and \(2 \cdot 4^{k-1} \leq n \) we obtain that \(T' \) contains at most

\[
8n \left(r - \left\lfloor \log_4 \left(\frac{n}{2} \right) \right\rfloor \right) + \frac{8n}{3} - \frac{1}{3}
\]

nodes.

For practical applications, we are interested in the worst case space complexity of the PR quadtree as \(n \) varies with respect to \(r \). The following two corollaries are immediate from the above theorem.

Corollary 5 If \(n = c \cdot 4^r \), where \(0 < c \leq 1 \) then, \(T' \) has at most

\[
8n \left(\frac{1}{3} - \left\lfloor \log_4 \left(\frac{c}{2} \right) \right\rfloor \right) - \frac{1}{3}
\]

nodes in it.

Corollary 6 If \(n = (4^r)^c \), where \(0 \leq c \leq 1 \) then, \(T' \) has at most

\[
8n \left(r(1 - c) + \frac{4}{3} \right) - \frac{1}{3}
\]

nodes in it.

The first corollary confirms the fact that if \(n \) is a constant fraction of \(4^r \), then the worst case space requirement of a PR quadtree is \(O(n) \). The second corollary shows that if \(n \) is a fractional power of \(4^r \) then the worst case space requirement of a PR quadtree can be as bad as \(O(n \log n) \).

Finally, note that the above analysis can be easily extended to PR trees of higher dimensions.

Corollary 7 A PR tree of dimension \(d \), resolution \(r \), and storing \(n \) points has at most

\[
2^{d+1}n \left(r - \left\lfloor \log_2 \left(\frac{n}{2} \right) \right\rfloor \right) + \frac{2^{d+1}n}{3} - \frac{1}{3}
\]

nodes.

Acknowledgements

We thank Lenwood S. Heath for his helpful comments.
References

