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Abstract

This paper presents a guideline of a partial state matching approach for
time-parallel simulation. Two algorithms nsing this approach to simulate FCFS
G/G/1/K and G/D/1/K quenes in which arriving customers that find the queue
full are lost are proposed. Experiments with M/M/1/K and M/D/1/K models
show that the performance of the algorithms in terms of convergence speed and
accuracy is good in general cases. The worst performance of the algorithms oc-
cur when traffic intensity approaches one. An argument is made to explain this
phenomenon.

1 Introduction

Computer simulation is a process of computing a sample path, or trajectory, of a target
simulation model, consisting of the time evolution of the states of the model over a pe-
riod of simulation time. The state space and time domain of a simulation mode} form
a space-ime region [1]. The state space is typically defined as the set of components,
processes (in the process-oriented world view), or state variables comprising a simula-
tion model. For parallel distributed simulations, parallelism can be obtained through
decomposing the state space (space-parallel) or the time domain (time-parallel}. Space
decomposition will be briefly reviewed in the following sections, while this paper will
concentrate on time-paralle! simulations.

Space-Parallel Simulation

Many space-parallel algorithms have been proposed [2]. These algorithms decompose
the target simulation model into a number of components based on its state space.




Each component is modeled by a logical process. Logical processes communicate with
cach other by sending messages [5] or through sharing some state variables [6]. In this
approach, speed-up is bounded by the number of logical processes. For example, in a
queueing network model, each queue is usually modeled by a logical process. When
the network consists of fewer queues than available processors, speed-up 1is limited
to the number of queues. In addition, speed-up is further limited by the overhead
involved in coordinating multiple processors and by the structural dependencies that
exist within some models {12].

Time-Parallel Simulation

Time-parallel approaches exploit parallelism by partitioning the trajectory into a num-
ber of sub-trajectories, or batches, along the time domain. Each bateh is assigned to
one or more processors that simulate the batch independently {and possibly asyn-
chronously) of other batches. Thus, multiple processors simulate the system at dif-
ferent points in simulation time concurrently. The simulation proceeds in an iterative
manner. Initially, each process is assigned a guessed initial state. After simulation of
one or more batches complete, the initial states of the completed batches are updated
based on the previous results and then the batches with updated initial states are
again simulated. The process is repeated until no changes occur in any initial states,
at which point the simulation converges or reaches a fix point. In this paper, the terms
estimated trajectory and true trajectory are used to refer to an intermediate trajectory
before convergence and the final trajectory at convergence, respectively.

The efficiency of time-parallel simulations rests on the ability to select the initial
states of each batch to minimize the number of iterations required for convergence.
A poor selection can make a time-parallel simulation take longer to execute than a
sequential simulation. For many simulation models, however, predicting future system
states is difficult.

In this paper we study a pariial state matching approach for time-parallel simula-
tion. Simulations using this approach are approzimate in the sense that they may not
generate the same results as sequential simulation runs using the same sequence of
random numbers. The approach sacrifices simulation accuracy in exchange for higher
parallelism. In this paper, two time-parallel algorithms using the partial state match-
ing approach are introduced. One is for FCF3 G/G/1/K queues and the other is for
FCFS G/D/1/K queues with losses. In both cases, arriving customers that find the
queue full are lost rather than block.

Our motivation for studying finite storage queues with losses is that they model
switching nodes in packet-switching data communication networks which lose packets
due to buffer overflow. If the packets are served in order of their arriving times, a node
of such a packet switching network can be modeled by an FCFS G/G/1/K queue.
In fact, combining the algorithms presented here with the time-parallel simulation
method for other queueing systems devised by Greenberg, Lubachevsky, and Mitrani



[3] could allow simulation of datagram service in data communication networks with
far more nodes than is possible using sequential simulation or space-parallel simulation.

The rest of this paper is organized as follows. In section 2, we review two related
time-parallel simulation algorithms. Section 3 introduces the proposed partial state
matching simulation. Two time-parallel algorithms using the partial state matching
approach for FCFS G/G/1/K and G /D/1/K queues with losses are presented in sec-
tion 4 an 5. Conclusions are given in section 6.

2 Related Work in Time-Parallel Simulation

For some time-parallel algorithms, correct initial states can be predicted in a determin-
istic number of iterations. Two examples are Greenberg, Lubachevsky, and Mitrani’s
(GLM) parallel prefix algorithm [3] and Lin and Lazowska’s regeneration state match-
ing algorithm [10]. For others, convergence time may be non-deterministic [9]. In this
section, we review the GLM and Lin and Lazowska algorithms. The GLM algorithm
is discussed with more detail because it forms the basis of one of our partial state
matching simulations,

2.1 The GLM Algorithm

The GLM algorithm provides an efficient way to simulate a class of queueing network
models which can be expressed as recurrence relations and transformed into a parallel
prefix problem. Let D be a domain and o be any associative operator on that domain.
Let N be any positive integer. A prefix problem is to compute each of the products
agoayo...0a5,l<k<N [4,8]. We first review how the GLM algorithm is applied
to an FCFS G/G/1/oc model.

For an FCFS G/G/1/co model, let A; and D; denote the arrival time and the
departure time, respectively, of job i for i=1,2,...N. Let oy denote the interarrival
time between job i and job i+ 1, and & denote the service time of job #. Tf Aj,
the arrival time of the first job, is given, the arrival and departure time sequences
(A1, Az, ..., An) and (Dy, Dy,...,Dn) are the solution of the following recurrence
relations [11]:

Ai= Ajqtar 1<i<N, (1)
] At i =1,
Di= { mam(D£“1,Ai) +6 1l<i<N. (2)

It is assumed that job interarrival and service times are random variables whose
values can be pre-sampled; therefore sequences (01,09, .., 0n) and (81,62,...,6n)
are known in advance.

Define an event to be a job arrival or a departure. The event sequence is the result
of merging sequences A; and I in time order and is denoted (E1, 2, .. ., Eyn). The
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queue length trajectory is the sequence (L],Lg,...,LgN), where L;j ,for 1 <j < 2N,
is the queue length immediately after event E;. Sequence (Lj) is the solution of the
following recurrence relation:

0 i=0,
L;j=% Lj—1+1 1<j<2N and E; is an arrival, (3)
Lisi—1 1<j<2N and Ejisa departure.

Therefore, the computation of sequence (L;) is again a prefix problem. To solve
the prefix problem in parallel, the GLM algorithm performs the following steps:

1. Partition the sequence of ag,a1,...aN into P batches of same length, where P
is the number of processors available. Assume that P divides N evenly. Then

batch 7 contains a(;_1)«N/P)41: - - s xN/P-

9 Assume that there exist an ¢ € D), such that ¢ o a; = @i, for 1 < i< N. Let ¢ be
the initial state of all batches and start the computation. If f; denotes the final
state of batch i, then f; = @((i—1)=N/P)41 © -+ - © GixN/P-

3. Compute the correct initial states. Since operator o is associative, the correct
initial state of batch 7, denoted by b;, 18 f1o0...0 fioq, for 1 < i< Pand b =1t

4. Correct the batches based on the updated initial states. For any batch 7, the

product of sequence a((i—1)=N/P}+1s: -1 Gk denoted by si, should be corrected
to b;osi forall (i— 1)« N/P)+1<k < ix N/P.

The GLM algorithm requires O(N/P +logN + logP) of time to compute a queue
length trajectory with NV jobs [3).

2.2 Lin and Lazowska’s State Matching Algorithm

Lin and Lazowska’s algorithm [10] partitions the time domain at a set of regeneration
points. Regeneration points are time points such that the system behavior between a
pair of two successive regeneration points is a statistical replica of the process between
any other such pair of regeneration points. For example, a regeneration point occurs
in a G/G/1 model when the server becomes idle. A batch is a sub-trajectory between
two neighboring regeneration points. Without knowing the simulation time of each
regeneration point, each batch can be simulated independently with its initial simula-
tion times sot to zero. Following simulation of each batch, the simulation time of each
batch is corrected by simply adding to the time of each event the final simulation time
of the preceding batch. For example, consider two processors, pi and pg, that both
simulate a batch with initial simulation time, zero. If py finishes first and the final
simulation time of its batch is #, then ¢ is added to the time of each event in the batch
computed by pz, and py can initiate another batch whose correct initial time can be
decided when ps finishes.



3 Partial State Matching Simulation

The GLM algorithm and Lin and Lazowska’s regeneration state matching approach
both provide a way to correct initial states quickly. However, to apply the GLM
algorithm, recurrence relations solvable as a prefix problem must be identified. For Lin
and Lazowska’s algorithm, regeneration points must exist in the trajectory. Simulation
models may not fit these assumptions. The partial state matching simulation proposed
in this paper extends the class of models to which time-paraliel simulation can be
applied.

3.1 Terminology

Before discussing the partial state matching simulation, some definitions are required.
Let § = {v;li = 1,...,M} be the state space of a simulation model which contains
A state variables. Let v; ;(t) denote the value of state variable »; at simulation time
t after j iterations (for j = 0,1,...) where 0 <t < 7 for some 7 > (. Then the
system state at time t after iteration 7 and before iteration j + 1 is represented by an
M-tuple S;(t) = (v1,5(2), v2,5(t), ...var,5(1)}. For discrete event simulation, the system
state changes only in some discrete points lo,11,.. . - The trajectory of the simulation
after j iterations is represented by the sequence: (S;(to), ..., S;(tw)), whereto = 0 and
ty < 7 < iyg1. Let P be a positive integer. The interval [0,7] is partitioned into P
intervals: [bo, b1), [b1, b2), - ., [bP—1,bp], where bp = 0 and bp = 7. The sub-trajectory
in the interval [b;—1,b;) for 0 < i < P, and [b;—1,b;] for i = P is referred to as batch
i. The initial state of batch i + 1 at iteration j is Sj_1(b;) for j = 1. The state of
batch 7 - 1 has converged after j iterations if Sj_1(b;) = Sj(b;). The simulation is
said to be ezactly completed after T iterations for T > 0, if Sr—1{h:i} = Sr(b;}, for all
1 < i< P. Let Thin be the smallest T that the simulation exactly completes after

T iterations. Then the sequence (ST, (10); - -+, STmin (tx)) is a true trajectory and
(Si(to), ..., Si(tw)) for 0 < j < Tomin is an estimated trajectory. In the worst case,
a simulation requires P iterations to complete. If all state variables vy, ..., var are

recomputed at all iterations, each iteration requires a constant amount of wall clock
time to execute. To gain any speed-up, T, must be smaller than P.

For a simulation model, if there exists a set U; € S, such that Yv; € Uy, vij (t) =
v (1) for all ' > j and & > 0, the simulation is said to have partially converged on
subset U; after j iterations. We call {S~U;} the unmatched set of the simulation alter
§ iterations, where — is the set difference operator. The number of state variables in
the unmatched set is called the degree of freedom of the simulation. Therefore, the
degree of freedom defines the number of states that must converge for the simulation
to be exactly completed.

The idea of partial state matching simulation is to artificially fizr some state vari-
ables in the unmatched set with some approximated values so that these state variables
can be removed from the unmatched set. Therefore, the simulation converges on fewer
variables. If these approximate values can be computed efficiently and are relatively



close to the true values, the simulation may require less time to converge and still
obtain accurate simulation results. In the following sections we dizcuss two examples
of this partial state matching approach.

4 FCFS G/G/1/K Queues with Losses

In this section we discuss an algorithm using the partial state matching approach for
an FCFS G/G/1/K model with losses in which the arriving jobs that find the queue
full are lost., For a G/G/1/K model, we assume that job interarrival times and service
times can be modeled by some independent, identically distributed random variables.
Unless mentioned otherwise, in the rest of this paper a G/G/1/K queue refers to one
with an FCFS queueing discipline.

Recall that the GLM method described in section 2 provides an efficient algorithm
for the G/G/1/co model. However, it presents a problem when applying the GLM
method to a G/G/1/K model with losses. Let L; denote the queue length when job
i arrives. If a job is lost, its departure time will be defined to be co. Also, let Df
denote the departure time of the last job that is not lost before job 7. Then we have
the following relation:

o max{D., A;) + & Li < K,
Dz_{ o Li= K. (4)

Job departure times depend on queue lengths. However, to compute queue lengths,
knowledge about previous departures is necessary. Departure times and queue lengths
form a circular dependency. The GLM algorithm is not directly applicable here.

A trajectory of the G/G/1/K model can be represented by a compound of a job
arrival time sequence, a job departure time sequence, and a queue length sequence.
Qur first partial state matching algorithm consists of two phases. In the first phase,
the buffer space constraint is relaxed. That is, a G/G/1/o0 model is simulated. If
the queue length never exceeds K, the resulting trajectory is then correct and further
computation is not required. Qtherwise, a second phase is required in which the
estimated trajectory computed in phase one is {ransformed into an approximate true
trajectory. The degree of freedom of the second phase computation is two since the job
arrival sequence is pre-determined in phase one. The unmatched set contains departure
times and queue lengths. The proposed partial state matching simulations artificially
fixes the departure times so that the state variable associated with departure times
can be removed from the unmatched set. As a result, the simulation needs to match
only on queue lengths and the degree of freedom of the simulation is reduced to one.
The proposed algorithm is shown in Figure 1.

4.1 Algorithm



1. simulate the G/G/1F° queue using the GLM algorithm
{Phase 1 computation}

2. If queue_length at any simulation time > K then
{Start phase 2 computation}
begin

3. batch length = floor(2N/P)

q, for all batch i do_par

5. lowi = {i-1)}*(batch_length)+l {lowi defines the low-end boundary of batch i}

g. h%ghi = i*{batch length) {highi defines the high-end boundary of batch 1}
. if (i=P)

8. highi= 2N

9, bi1,0) = min{queue length{lowi-1]1,X}

{Set the initial queue length for batch i}
10. end for

11, 4 =0 {3 is an iteration counter)
12, repeat

13. =19+ 1

14, for all batch i do_par

15, for m = lowl to highi do

16, if{event{m] is an arrival event)

17. queue length[m] = min(queue length{m-1]+1,K)

{The current event is an arrival event}
{If queue_ lengthimj=queue length[m-1], a loss occurs}

1la, alse
19, queue_length[m] = max(gueue length[m-1]-1,0)
{The current event is a departure event)
{If queue_length[m]=queue_length[m-1}, )
{this departure corresponds to a lost job}
20, endif
21. end_for
22. bti, it = queue_lengthl (i-1) *batch length)
{Update the initial state for batch i}
23, par_end
24, B = (ba,dnbezd, ... ,be,D)
25. gntil(fﬁ = Bij=1) {Convergence check}
en

Figure 1: The first partial state matching algorithm for the FCFS G/G/1/K model.



In phase one, the G/G/1/00 model is simulated using the GLM algorithm of section
2.1 to produce a job arrival time sequence, an estimated job departure time sequence,
and an estimated queue length sequence. Phase two computes an approximate true
queue length sequence. Let N be the number of total arrivals. Then 2N events are
simulated in phase one, since each job introduces an arrival and a departure event.
Phase two partitions the trajectory into P batches. Each batch contains [2N/P]
events, except the last one which receives whatever is left over (line 5 - line 8). The
initial queue length of each batch is obtained from the corresponding estimated queue
length resulted from phase one computation. If the corresponding estimated queue
length is greater than K then K is used (line 9). If the current event is an arrival
and the queue is not full then the queue length is increased by one. Otherwise, the
job is lost and the queue length is not changed (line 17). If the current event is a
departure and the queue is not empty then the queue length is decreased by one.
Otherwise (the queue is empty), the departure event, which corresponds to a lost job,
is ignored and the queue length is not changed (line 19). In phase two, the estimated
departure time sequence computed in phase one is not re-computed. In other words,
_the estimated departure time sequence is used to compute an approximate true queue
length sequence in phased two. The approximate true departure time sequence can be
obtained by simply excluding those departures corresponding to some lost jobs from
the estimated departure time sequence.
Some properties of the algorithm follow:

1. At any simulation time ¢, when an arrival event occurs in the G/G/1/cc model,
there is an arrival event in the corresponding G/G/1/K model at t. If a job
arrival occurs when the G/G/1/K queue is full, the job is dropped.

2. At any simulation time ¢, when a departure event occurs in the G/G/1/c0 model,
a departure event will also occur in the corresponding G/G/1/K model at ¢, If
a job departure occurs when the G/G/1/K queue is empty, the departure is
ignored.

3. At any iteration during the simulation, the queue length of the G/G/1/co model
at any simulation time ¢ is no less than the queue length of the G/G/1/K model.
That is, the queue length of the G/G/1/K model as a function of time is a lower
bound on the queue length of the G/G/1/00 model.

Properties 1 and 2 correspond to line 17 and line 19 of the algorithm, respectively.
Property 2 is an assumption made by the algorithm. Property 3 follows properties
1 and 2. Obviously, property 2 is a false assumption because after the first loss,
the estimated trajectory and the true trajectory would no longer be synchronous on
departure times. Nevertheless, the use of such an approximate departure tirne sequence
is justified if phase two completes quickly and the results are close to the results of an
exact simulation. The approximation technique used for the departure time sequence
is explained below.
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Figure 2: The departure event at ¢ corresponds to job 3 in the G/G/1foc model, and
job 4 in the G/G/1/K model because job 3 is lost in the G/G/1/K model. Thus,
C(4)=3.
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Figure 3: An example of case 1. Here, f(m) = m+ 2. The service time of job m +1,
which is lost, is re-assigned to job m +2. No approximation error is introduced in this
case.

4.2 Approximation Technique

Let f(¢) denote the next job which enters the queue after job ¢ (i.e. jobsi+1,..., f({)—
1 are lost.). Also, let C(i) denote the corresponding job in the G/G/1/oo model that
departs at the same time as job i in the G/G/1/K model. Figure 2 shows an example
in which C(4) = 3. Now, assume that a prefix of m jobs of a true trajectory has been
computed. To compute Dy (), there are four cases:

Case 1: When job f(m) arrives, both the G/G/l/cc queue and the
G/G/1/K queue are not empty.

In this case (Figure 3), when job m departs, job f{m) has already joined the queue.
Then, D) should be equal to Dy, -+ 8(m). From property 3, we know that at time
Dim, when job C(m) departs in the G/G/1/co queue, the G/G/1/oco queue must not
be empty. That is, job C(m) + 1 must have entered the G/G/1/cc queue by Dy,
Thus, the algorithm will assign D + 8g(m)41 0 Dym); 28 opposed to Dy + &5y
That is, the service time of job C(m)+1 is re-assigned to job f{m). Since it is assumed
that the job service times are identical, independently distributed random variables,
such re-association of service times will not affect the stochastic characteristics of the
service time process. By so doing, re-computation of Dy, is avoided.
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Figure 4: An example of case 2. Here, f(m) = m+2 and Dy, 42 is given as App2+8mt2.
No approximation error is introduced in this case.
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Figure 5: An example of case 3. Here, f(m) = m + 2. The approximate service time
of job m + 2 is given as &,,42. An expected approximation error € = Ag(,) — Dpy 18
introduced.

Case 2: When job f(m) arrives, both the G/G/1/cc queue and the
G/G/1/K queue are empty.

In this case (Figure 4), job f(m) job arrives at a point when the server of the G/G/1/00
model is idle. Thus C(m) = m. The algorithm will assign Ac () + ¢(m) = Am + 6m
to Dy(yy, which 1s correct.

Case 3: When job f(m) arrives, the G/G/1/K queue is empty but the
G/G/1] 0 queue is not empty.

In this case (Figure 5), the algorithm will assign Dy, + 8,41 to Dy(m). However, the
true value of Dy(m) is Af(m) + 67(m). The expected error of Dy(m) in this case can
be given by:

B(eD, ) = El(Agim) + 61m)) = (D) + 8u)1 = El(Agimy = D)) (5)

Case 4: When job f(m) arrives, the G/G/1/K queue is not empty but
the G/G/1/c queue is empty.

From property 3, we know that this case is impossible.
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Figure 6: The first loss occurs at tp. An Ep occurs at {g and t; and an Eg occurs at
t9. Sub-trajectories from %3 to ¢ and from t; to tp are two propagation segments.

In these cases, case 3 causes an error hence makes the proposed algorithm approx-
imate. Using this approximation technique, the simulation needs to converge only on
queue lengths rather than on both departure times and queue lengths. The execution
time required by phase two is at most O(N) because correct initial batch states propa-
gate at least one batch per iteration. Therefore, if the convergence takes T iterations,
the execution time spent by phase two is O[T x (N/P}], 0 < 1" < P. This yields a
total simulation time of O{(N/P +logP + logN)}+ 1"« (N/P)], where the first term is
the time required by phase one using the GLM algorithm.

4.3 Experiment Results and Analysis

An experiment of the algorithm described above is carried out for an M/M /1 /K model.
Table 1 shows some results of the experiment. In general, it takes only a few iterations
to converge. Many iterations are required only when the {raffic intensily (ratio of A
to ) is close to 1 and the buffer size is large. We discuss this phenomenon next.
Recall that phase two of the algorithm is a process of transforming an initial
estimated trajectory into a true trajectory. It is obvious that when there is no job
being lost, an estimated trajectory is the same as a true trajectory. However, when
losses do occur, the trajectory after the first loss has to be modified. This is illustrated
in Figure 6. At ¢ where the G/G/1/K queue is full and a job is lost. A change in
queue length at g has to be made and the change needs to be propagated along the
queue length trajectory. At time t; the queue becomes full again. By property 3,
the queue length at time #; will be changed to K in the first iteration in phase two
regardless of the initial queue length of batch ¢ which contains t;. Therefore, no
matter how many iterations it takes for a change to propagate from tg to 4, it is
guaranteed that the propagation segment between t; to {3 would start with a correct
initial queue length, namely K. Similarly, at 2, where the G/G/1/o0 queues become
idle, the estimated gueue length at any iteration will always be zero as well. Thus,
the propagation starting from #; will not pass beyond 3. A time point at which the
estimated and true trajectory coincide, such as t; and t2, is called a synchronization

11



k wp |loss rat p=4 p=16 P=64 P=256 p=1024
e.1| ©.082 (1.2,0.2} (1.7,0.3) (2.0,0,0) (2.0,0.0) (2.0,0.0)
0.3 0.232 {1.9,0.2) {2.0,0.0} (2.0,0.0) (2.0,0.0) (2.9,C.0}
0.5 0.334 (2.0,0.0) {2.0,0.0) (2.0,0.0) (2.0,0.0% (2.0,0.0)
0.7 ] 0.413 (2.0,0.0) (2.0,0,0) {2.0,0.0) (2.0,0.0) (2.0,0.0)
1 0.91 0,475 {2.0,0.0} {2.¢,0.0) {2.0,0,0) {2.0,0.0) (2.0,0.0)
0.95] 0.487 (2.0,0.¢} (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0)
1.0 | o0.500 (2.0,0.0) {2.0,0.0} {2.0,0.0) (2.0,0.0) (2.0,0.0}
1.05| 0.5%2 (2.0,0.0) {2.0,0.0} (2.0,0.0) {2.0,0.0) (2.0,0.0)
1.1 | 0.524 {2,0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0} (2.0,0.0)
1.3 | 0.585 {2.0,6.0) (2.€,0.0} {2.0,0.0} (2.0,0.0} {2.0,0.0)
1.5 0.3328 | (2.0,0.0) (2.0,0.0) (2.0,0.0} (2.0,0.0 (2.0,0.0)
0.1 0 {0.0,0.0} {06.0,0.0} {0.0,0.0} {€.0,0,0} (0.0,0.C}
g.31¢0 (0.0,9.0} {0.0,0.0} (0.0,0.0) {0.0,0.0} {0.0,0.0)
0.5 | o.000¢ | (1.0,0.0) (1.0,0.0) {1.2,0.2) (1.6,0.3) (2.0,0.0)
0.7 | 0.008 {1,1,0.2}) (1.6,0.3} (2.0,0.0} (2.0,0.0) (2.0,0.0)
0.9 | 0,05 {1.9,0.2) (2.0,0.0) (2.0,0.0) (2.0,0.0} (2.2,0.2)
10 | 0.95} 0.069 (1.9,6.2} {2.0,0.0} {2,0,0.0) {2.0,0.0) (2.3,0.3}
1.0 | 0.091 (2.0,0.0) {2.0,0.0) (2.0,0,0% {2.0,0.0) {2.7,0.3)
1.05| 0.115 (2.0,0.0) (2.0,0.0) {2.0,0.0) (2.0,0.0) (2.6,0.3)
1.1} 0.14 {2.0,0.0} (2,0,0.0} (2.0,0.0} {2.0,0.0) (2.6,0.3)
1.3 | 0.245 {2.0,0.0) (2.0,0.0) (2.0,0.0} (2.0,0.0} {(2.1,0.2}
2.5 | 0.3328 | (2.0,0.0) (2.0,0.0} (2.0,G6.0) {2.0,0.0} {2.0,0.0}
0.1 0 {0.0,0.0) {0.0,0.0} {0.0,0.0) (€.0,0.0) {0.0,0.0}
0.3] 0 {0.0,0.0) {0.0,0.0} (0.0,0.0) {0.C,0.0} {0.0,0.0)
6.51 0O (¢.0,0.0} (0.0,0.0) (C.0,0.C) (0.0,0.0} (0.0,0.0}
0.7] 0 (0.0,0.0) (0.0,0.0) {0.0,0.0) (9.0,0.0) (0.0,0.0)
50 c.o | o.o006 | (1.0,0.0) (1.4,0.3) (2.0,0.0} (2.6,0.3) (7.7,1.1)
0.95] 0.004 (1.6,0.3) (2.0,0.0} ¢2.1,0.2) {4.7,0.5) (i5.8,2.1)
1.0 | 0.02 (2.0,0.0) {2.0,0.0} (2.5,0.3) {6.3,0.4) {21.1,1.5}
1,05} 0.052 (2.0,0.0} (2.0,0.0) {(2.1,0.2) (5.1,0.5) (18.2,1.2)
1.1] 0.092 (2.0,0.0) (2.0,0.0) {2.0,0.0) (4.1,0.4) (13.3,1.8)
1.3 | 0.231 (2.0,0.0) {2.0,0.0) (2.0,0.0} (2.0,0.0) (3.8,0.4}
1.5 0.2328 { (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.4,0.3}
0.1 | o0 (0.0,0.0) (0.0,0.0) (0.¢,0,0} (0.0,0.0) (0.0,0.0;
0.3} 0 {0.0,0.0} {0.0,0.0} (0.C,0.00 {0.0,0.0) (0.9,0.0}
0.5 | o {0.0,0.0) {0.0,0.0} (0.0,0.0) {0.0,0.0} (0.0,0.0)
0.7 | © {0.0,0.0) (0.0,0.0} {0.6,0.0) (0.0,0.0} {0.0,0.0}
6.9 | 0.000027% {0.1,0.2) (0.1,0.2) (0.2,0.4) {0.3,0.%) {1.0,1.8
w0l o gs| o.o0os | (1.1,0.3) (1.3,0.4) (2.1,0.5} (4.8, 1.6 (17.0,6.3)
1.0 | 0.0106 (2.0,0.0) (2.2,0.2} {4.8,0.6) (17.3,1.7}(66.6,6.6}
1.05] 0.0488 { (2.0,0.0; {(2.0,0.0} (3.2,0.5) {5.1,0.5 (36.5,4.9)
1.1 | o.081 (2.0,0.0) (2.0,0.0) {2.0,0.0) (9.%,1.1} (16.5,1.5)
1.3 j 0.231 {2.0,0.0) (2.0,0.0} {2.0,0.0) (4.9,0.5) {3.8,0.4)
1.5 | 0.3328 | (z.0,0.0) (2.0,0.0) (2.0,0.0} (2.0,C.0) (2.4,0.3)

Table 1: Numbers of iterations for an M/M/1/K model using the first partial state
matching algorithm. Each data point is an average of 10 runs. Each run simulates
10°® jobs which are divided into 910 hatches. For each entry (a,b), o is the average
iteration number and (& — b, a + b) is the 90-percent confidence interval for a.
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point. Formally,  is a synchronization point of state v; if ;;(t) = v;;(2), for all
§' > j > 0. An event which leads to a synchronization point is called a synchronization
event. Therefore, if we let Ep denote a (job arrival) event immediately after whose
occurrence the G/G/1/K queue becomes full, and let Eg denote a (job departure)
event immediately after whose occurrence the G/G/1/oc queue becomes empty, Ep
and Eg are synchronization events.

It becomes evident that the number of iterations required for convergence, de-
noted by T, is bounded by the number of batches spanned by the longest propagation
segment. Therefore we have:

maz[d(Er, Eg), d(Er, ET)]
. £ (6)

where (EF, Eg) and (Ep, ER) are any pair of neighboring synchronization events, I
is the batch length, and d(E;, E;) is the number of events between the occurrence of
E; and Ej.

Therefore, when some losses occur, if the traffic intensity is low or is very high, £g
and Ep tend to occur more frequently, respectively, and hence the maximum propa-
gation length is shorter. As a result, the number of iterations required for convergence
becomes small. When the traffic intensity s neither high or low both synchronization
events occur more sparsely and the longest propagation length increases. Thus, the
number of iterations increases. Once the propagation length becomes longer than a
batch size, adding more processors becomes unfruitful because the number of itera-
tions will grow linearly with the number of processors used. This situation can be seen
when K is 50 and 100, and A/u is close to 1 in Table 1.

In Table 1, the worst M/M/1/K simulation performance always occurs when A /u =
1, regardless of the number of processors and the buffer capacity. Actually, when
Mp = 1, it is least likely that the queue will become empty or full. This can be
derived as follows.

Let p = A/p. If Py is the probability that the M/M/1/co queue is idle (when an
Eg occurs) and Pk is the probability that the M/M/1/K queue is full {when an Er
occurs),then:

1T

Po=(1-p) 0<p<l], (7)
and iy K+1 K
P - I4
Pre = [I){-i—l - =K p=>20,p#1 (8)
I-p i=0 F*

[7]. Because when the M/M/1/co queue is empty, the corresponding M/M/1/K queue
must algo be empty, the joint probability of Fx and Er occurrence can be given as:

Po+Pr 0<p<li,
Py(p, K) x{ AR (9)

Assume that Py(1, K) = lim,_1Ps(p, K). It can be shown that P; has a minimum at
p = 1. A proof is given in the Appendix.
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k M 0.1 0.3 0.5 0.7 0.9 1.0 1.1 1.3 1.5
1 -0.03 0.29 0.11 -0.24 0.67 -0.29 0.46 0.43 0.28
5 0.0 -0.07 0.01 0.06 D.83 0.39 0.56 0.38 D.62
10 0.0 0.0 ~0.06 -0.03 -0.14 0.08 0.38 0.23 0.192
20 .0 0.0 0.0 0.07 -0.35 1.35 -0.29 0.08 0.31
40 .0 0.0 0.0 0.0 -0.37 -0.68 ~0.03 0.30 0.12
60 .0 Q.G 0.0 0.0 0.10 .95 0.50 0.26 0.06
80 0.0 0.0 0.0 0.0 0.0 0.32 0.03 G0.1le c.ov

100 0.0 0.¢ 0.0 0.0 0.0 0.49 0.14 .16 .07

Table 2: Normalized approximation errors of the M/M/1/K model using the first
partial state matching algorithm. Each entry is the value of 100% (E{L)— A(L))/E(L),
where E(L) and A(L) are the average queue lengths of 10 runs obtained f{rom a
sequential simulation and the partial state matching simulation, respectively.

kﬁfp 0.1 0.3 0.5 0.1 0.9 0.55 1.0 1.08 1.1 1.3

1 0.88 4.11 9.41 15.92 23.15 24,95 26.64 25.9%94 25.16 22.35

5 0.¢ 0.0 0.8 .94 4.66 6.36 8.00 6.51 4.97 1.13
10 0.¢ 0.0 0.0 0.03 1.3e 2.73 4.42 2.76 1.54 0.1%
20 0.0 c.0 c.0 0.0 0.17 0.81 2,22 0.7¢ 0.18 g.02
50 0.¢ 0.0 .0 0.0 c.0 0.04 G.85 0.02 o.c1 .01
100 0.0 c.0 0.0 0.0 g.0 0.0 0.36 0.002 0.005 0.003

Table 3: Normalized approximation errors of the M/D/1/K model using the first
partial state matching algorithm. Each entry is the value of 100+ (E(L) - A(L))/E(L),
where E(L) and A{L) are the average queue lengths of 10 runs obtained from a
sequential simulation and the partial state matching simulation, respectively.
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The results of the partial state matching simulation in average queue length are
compared with a sequential simulation (Table 2). For a fair comparison, both sim-
ulations use the same sequence of random numbers. The results suggest that the
approximation of the service times has little impact on the simulation outcome. How-
ever, the approximation is biased, because whenever case 3 occurs, the approximate
service time is always decreased by some amount. If the service time process has a
small variance, it is likely that the approximate service time is smaller than the ex-
pected service time (i.e. 1/x). When the buffer size is small, case 3 occurs more often,
and this error will be more significant. An extreme case is an M/D/1/1 queue, where
the service time has a zero variance. Results of simulating an M/D/1/K queue using
this algorithm are shown in Table 3. It shows that approximation errors are significant
when the buffer size is less than 5. For this case, an alternative algorithm is proposed
in the following section.

5 FCFS G/D/1/K Queues with Losses

For a G/D/1/K queue, in which each job has a fixed service time, a trajectory can
be represented by a sequence of the first job remaining service time (FRST), a queue
length sequence, and a job arrival time sequence. Let N be the number of arrivals, F
be the number of processors, Sy be the job service time, and 3; be the initial queue
length of batch i. A partial state matching algorithm is described by the following
steps:

1. Compute the arrival time sequence using the GLM parallel prefix algorithm.

9. Partition the N arrivals into P batches in the same way as described in the first
algorithm.

3. Set Z; tol0foralll1 <i<P.
4. Set the FRST of each batch to 0.

5. For each batch, compute departure times and queue lengths independently via
a sequential simulation.

6. Assign the new initial queue length of batch i to ..

7. If ;=g for all 1 < i < P, exit; otherwise go to step 4.

The degree of freedom of the simulation is two since we remove FRST from the
unmatched set by fixing the initial FRST’s of all batches. Therefore the computation
of FRST’s is local to each batch. TFixing the FRST’s is valid when the batch size
is large. Because the tramsient effect of the approximate FRST will becomes less
significant as more jobs are simulated.
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A =1 K=5 K=10 K=20 K=50 K=100

0.1 {2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0)
0.3 {2.0,0.0} {(2.0,0.0} (2.0,0.0) (2.0,0.0} (2.0,0.0) (2.0,0.0)
0.5 {2.0,0.0) {2.0,0.0) (2.0,0.0) (2.0,0.0) ({2.0,0.0) (2.0,0.0)
0.7 (2.0,0.0) {2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0)
0.9 {2.0,0.0) {2.0,0.0) (2.0,0.9) (2.C,0.0) ({2.0,0.0) (2.0,0.0)
1.0 {2.0,0.0) {2.0,0.0}) (2.0,0.0) (2.1,0.2) ({3.5,0.4) (7.9,1.1)
1.1 (2.0,0.0) {2.0,0.0} (2.9,0.0) (3.0,0.0) ({(3.0,0.0) (3.C,0.0)
1.5 (2.0,0.0) {2.0,0.0} (3.0,0.0) (3.0,0.0) {3.0,0.0) (3.0,0.0)
2.0 {2.0,0.0) {3.0,0.0} (3.0,0.0) (3.0,0.0) (3.0,0.0) (3.0,0.0)

Table 4: Numbers of iterations of the M/D/1/K model using the second algorithm.
Each data point is an average of 10 runs. Each run simulates 10° jobs, which are
divided into 64 batches. For each entry (a,b), a is the average iteration number and
(a —b,a+ b) is the 90-percent confidence interval for a.

ARL =1 =5 K=10 K=20 K=50 K=100

0.1 (2.0,0.0) {2.0,0.0) (2.0,0.0) (2.0,0.0} (2.0,0.0) (2.0,0.0)
0.3 (2.0,0.0) (2.0,0.0) (2.0,0.0} (2.0,0.0} (2.0,0.00  (2.0,0.0)
0.5 (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0} {(2.0,0.0) (2.0,0.0)
0.7 (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.C,0.0) (2.0,0.0) (2.0,0.0)
0.9 (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.0,0.0} (2.0,0.0) (2.0,0.0)
1.0 (2.0,0.0) (2.0,0.0) (2.0,0.0) (2.4,0.3} (6.4,0.5) (16.0,3.1)
1.1 (2.0,0.0) (2.0,0.0) (2.0,0.0) (7.0,0.9} {61.2,5.1) (64.0,0.0)
1.5 (2.0,0.0) (2.2,0.2) (30.6,4.7) (64.0,0.0) (64.0,0.0) (64.0,0.0)
2.0 (2.0,0.0) {9.2,0.9) (64.0,0.0) (64.0,0.0) (64.0,0.0) (64.0,0.0)

Table 5: Numbers of iterations of the M/D/1/K model using full state matching.
Each data point is an average of 10 runs. Each run simulates 10° jobs, which are
divided into 64 batches. For each entry (a,b), a is the average iteration number and
(a — b,a + b) is the 90-percent confidence interval for a.
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ML
‘7>\\ 0.1 0.3 0.5 0.7 0.9 1.0 1.3 1.5 2.0
1{0.00 ©0.01 0.02 0.04 06.07 0©.06 0.08 0.10 0.13
5 |o.02 o0.21 0,24 0.38 0.53 0.65 0.56 0.2% 0.43
i0 | 0.02 ©0.11 0.26 0.57 0.95 1.05 0.82 0.08 0.20
20 | p.02 0.11 0.26 0.58 1.85 2.38 0.83 0.06 0.09
50 |o.02 0.12 0.26 0.58 2.48 4.88 0.54 0.03 0.03
100 |0.02 0.11 0.26 0.58 2.48 10.28 0.27 ©.01 0.02

Table 6: The normalized approximation errors for the M/D/1/K model using the
second algorithm. Each entry is the value of 100 * (E{L) — A(L))/E(L), where E(L)
and A(L) are the average queue lengths of 10 runs obtained from the full state matching
simulation and the partial state matching simulation, respectively.

Table 4 and 5 compare the convergence speed of the proposed partial state match-
ing simulation with a full stafe matching simulation. The full state matching simu-
lation has the same batch partition and initial state assignment as the partial state
matching simulation (step 1 to step 4) described in this section, except that the full
state matching simulation does not use approximate FRST’s and converges on both
FRST and the queue length. That is, in step 7, the full state matching simulation
compares both the queue lengths and the FRST’s, and goes to step 5 when the pro-
gram loops back. It is expected that a large number of iterations is required for the
full state matching simulation when the value of A/ is large. Because for the FRST
sequence, synchronization points occur only when the queue becomes empty. Thus,
when A/p increases, the possibility that the quene becomes empty decreases. This
can be seen in Table 5. Linear convergence begins to occur when A/p > 1.1 and
K > 50. For smaller K’s, linear convergence occurs at a higher traffic intensity value
because queunes with smaller buffers have higher possibilities of being empty. The par-
tial state matching simulation, on the other hand, requires only a few iterations when
Afp > 1. In fact, the number of iterations for the partial state matching simulation
will converge to 2 as A/p increases. In this case, the partial state simulation gains an
order 7 fold speed-up. The longest convergence times for both simulations occur when
Afu = 1. This can be argued similarly as the M/M/1/K simulation (section 4.2). In
addition to execution speed, another important consideration is approximation errors.
Table 6 shows that the partial state matching simulation produces close results. The
normalized approximation errors are less than 1% for most cases.
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Figure 7: Without approximation, the full state matching simulation converges on
both FRST and the queue length. The longest propagation distance is (#4 —#1). With
approximation on FRST sequence, the partial state matching simulation converges
only on the queue length. The longest propagation distance is ({3 —t2).

6 Concluding Remarks

Partial state matching simulation artifictally fixes some state variables in the un-
matched set by using some approximate values so that these state variables can be
removed from the unmatched set. As a result, the simulation needs to converge on
fewer state variables and thus is likely to converge more quickly.

Two algorithms using this partial state matching approach to simulate FCEFS
G/G/1/K and G/D/1/K queueing models are proposed in this paper. The first al-
gorithm uses approximate job departure times; the second algorithm uses approxi-
mate first job remaining service times. Experiment results of an M/M/1/K and an
M/D/1/K model show that the speed-up gained by using these partial state matching
simmlations against full state matching simulations becomes very significant as A/p
exceeds 1. Also, both partial state matching simulations produce small approxima-
tion errors in general cases. The worst performance for both simulations occurs when
Af/p = 1. An argument is made to explain this phenomenon. The first algorithm
introduces more significant errors when the model has a small bufler and has a small
variance in job service times. The second algorithm is introduced for this situation.
Possible future work includes testing a broader class of probability distributions, and
investigating networks of queues which contains G/G/1/K queues.
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Appendix
Lemma A.1 For 0 < p < 1, P(p, K) is strictly decreasing.

Proof: We show that for 0 < p <1

8P, _— KpfTlo(K4n)eK | (KeD)pK(pK—pfH)
?;7& - 1.._pK+1 + gl_p1(+1)2 -
(KX 2 (K4 1)pX (1 =p K V(K4 1) X (pF = pF )~ (1-p™ 42
- (LmpHe 1) <

Because (1— oK +132 > (, the above inequality holds if the numerator of the left-hand-
side expression is less than zero. This is derived as follows:

[KpX=1 — (K + 1)p"](1 — pBH1) 4 (K + )5 (pF — pRH1) — (1 — pH1)?

= (KpRt = KK — pEY(1 = pEH) g (0K 1 KpFY(pK — plHT) (1 2pKH1 4 242
— "-,02K+2 +P2K +2pK+l _ I{pK _ PK +I{p1{—1 -1

= (1= p)A+p) + Kp¥ (1= p) = pM(1 = p) = (1 = p)(Ei50 £Y)

= (1= p)[P* (14 p) + KpF=1 — oK — 521, 4] _

= (1= p)[(p*+! = %) + (0K — pF) + (K" - TG P < 0. O

Lemma A.2 For p > 1, Py(p, K) is strictly increasing.

Proof: When p > 1, Ps(p, K) = Px. Again, we take the first partial derivative of Px
with respect to g:
0P _ (I{pK—-l _ f{pK) + (pZK _ ,OK)

dp (1- PK+1)2

Because (1 — p11)2 > () for p > 1, to prove the lemma it suffices to show that:
(KpE =KXy + (0K = %) >0 p> 1.

Dividing both sides of the above inequaity by p ! and letting g(p, K) be the resulting
left-hand-side expression, we have:

a(p, K) = (K= Kp—p+p"t).

Because g(1,K) = 0 and 8g/8p = (Kp® — K)+ (p% — 1) > 0, clearly, g(p, K) > 0 for
allp>land K > 1. O

Theorem A.1 The minimum of Ps(p, K) occurs at p = 1 for p > 0.

Combining Lemma A.1 and A.2 completes the proof of theorem A.1. O
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