A Robust Variable Order Facet Model
for Tmage Data

Y. Mainguy, J. B. Birch, and L. T. Watson
TR 91-33

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

December 12, 1991

A Robust Variable Order Facet Model
for Image Data*

Y. Mainguy
Department of Computer Science

J. B. Birch
Department of Statistics

L. T. Watson
Departments of Computer Science and Mathematics, Virginia Polytechnic Institute and State Uni-
versity, Blacksburg, VA 24061-0106

TR 91-33

Abstract. The underlying piecewise continuous surface of a digital image can be estimated through
robust statistical procedures. This paper contains a systematic Monte Carlo study of M-estimation
and LMS estimation for image surface approximation, an examination of the merits of postpro-
cessing and tuning various parameters in the robust estimation procedures, and a new robust
variable order facet model paradigm. Several new goodness of fit measures are introduced, and
systematically compared. It is shown that the M-estimation tuning parameters are not crucial,
postprocessing is cheap and well worth the cost, and the robust variable order facet model algo-
rithm (using M-estimation, new statistical goodness of fit measures, and postprocessing) manages
to retain most of the statistical efficiency of M-estimation yet displays good robustness properties,
and preserves the main geometric features of an image surface: step edges, roof edges and corners.

* This work was supported in part by Department of Energy grant DE-FG05-88ER 25068/ A002,
USDA grant 91-37103-6544, National Science Foundation grant CTS5-8913198, and Air Force Office
of Scientific Research grant 89-0497.

1. Introduction.

1.1. Surface estimation.

The sensors used in computer vision can measure intensity values (CCD camera), distances
ifrom the sensor to the scene (range sensors) or temperatures (thermal sensors), to cite a few. Due
to obvious physical limitations, the measurements can only be performed at spaced intervals, The
measured (or observed) data are thus discrete and only related to each other by the underlying
signal. The relations between adjacent pixels are somewhat lost and distorted by the sensing process
because of noise and quantization errors. Therefore the first task after sensing is to filter out the
effect of noise and quantization, and construct an intermediate level model of the data as a basis
for further processing. The intermediate level model assumes that the sensed image is a piecewise
continuous surface.

Traditionally filtering in computer vision consists of scanning the image with a window, re-
placing the center pixel value in the window by the result of a linear or nonlinear operator on the
values of its neighbors in the window. Tor instance, the value of each pixel & can be estimated as
the median value of all the pixels in the window centered on the pixel z. Similarly, we scan the
image with windows performing robust estimations of polynomial models of the pixel values in each
window. Since a majority of pixels in a window must support the polynomial model, the support
of any feature in the image must be at least of 5 pizels when processing with a 3 X 3 window and
13 pizels when using a 5 X 5 window.

The work described in this paper is heavily based on robust statistics. A robust estimator
vields good estimates when the sample data is distributed according to a given distribution and
reasonable estimates if the data is contaminated with points from another distribution, which is
the case when a surface discontinuity (edge or corner) is present in the window. An estimator is
characterized by its efficiency and its robustness, The term efficiency refers to the relative ability
of a procedure to yield optimal estimates under ideal conditions; e.g., least squares estimators are
optimally efficient for identically distributed normal variables. The term robustness refers to the
relative ability of a procedure to yield reasonable estimates under less than ideal conditions. There
is a fundamental tradeoff between efficiency and robustness: fully efficient procedures cannot be
the most robust and the most robust procedures cannot be fully efficient.

The main contributions of this paper are a systematic Monte Carlo study of M-estimation
and LMS estimation for image surface approximation, examination of the merits of postprocessing
and tuning various parameters in the robust estimation procedures, and a new robust variable
order facet model paradigm. Several new goodness of fit measures are introduced, and systemat-
ically compared. Briefly, the main conclusions are that the M-estimation tuning parameters are
not crucial, postprocessing is cheap but well worth the cost, and the robust variable order facet
model algorithm (using M-estimation, new statistical goodness of fit measures, and postprocessing)
manages to retain most of the statistical efficiency of M-estimation yet displays good robustness

properties.

1.2. Related work.

Constant coefficient window operators have been used since the beginning of computer vision
[34], [33], (23], {1], [15, 16], [7], [2]. Local surface fitting based on orthogonal polyromials provides
the theoretical basis for such operators. Robust estimation probably started in computer vision with
the use of median filtering (13, 21] and the Hough transform [11], albeit informally. The first vision
paper to actually use formal robust statistical procedures appears to be Forstner [12]. Davis and
Rosenfeld [10], Hurt and Rosenfeld {24], Hoffman and Jain [20], and Harwood et al. [19] have used

i

a robust technique known as nearest-neighbor smoothing. Bolles and Fischler’s Ransac method
[8] and Besl and Jain’s region growing method [3] address related problems of outlier rejection
in global surface fitting. Chen {9] accomplished outlier rejection in a form closely related to the
robust statistical influence function. Medioni [28] developed a robust derivative estimation scheme
based on diffusion concepts. Kashyap and Eom [26, 27] have developed robust methods based on
M-estimation for image smoothing which are extensions of Sharma and Chellappa’s [37] method
for two-dimensional spectral estimation and Hansen and Chellappa’s [14] algorithms. Adaptive
window operators for smoothing, derivative estimation, and edge detection are known [41], and can
be made more robust using the two-dimensional autoregression model of Hansen and Chellappa
[14]. Haralick and Joo {15, 16] discussed the use of M-estimation for line fitting and pose estimation.
Meer, Mintz, and Rosenfeld [29] have a least median of squares (LMS) based paradigm to filter
noise and segment images. Continuing this work, Mintz developed a consensus by decomposition
paradigm [31, 32]. Schunck {38, 39] used LMS for surface reconstruction without postproceseing.
Roth and Levine [35] also make use of LMS to segment geometric objects whereas Waks and
Tretiak [40} use M-estimation to detect the boundaries of regions. Zhuang and Haralick [42, 43]
have developed a highly robust estimation procedure, which has a very high breakdown value, by
using heuristic reasoning combined with Bayesian rules. In their robust clustering algorithm, Jolion,
Meer and Bataouche [25] analyze the Hough space through M-estimation. Meer et al. published a
review of the different robust estimators used in computer vision [30].

This paper presents a method of estimating the underlying piecewise continuous surface
through robust statistical procedures. We first define M-estimation in Section 2, and then study the
effect of tuning the M-estimation parameters in Section 3. In Sections 4 and 5, we introduce and
compare several different new variable order and postprocessing paradigms. Section 6 introduces a
LMS based paradigm which is compared to the equivalent M-estimation paradigm of Section 4. In
Section 7, a postprocessed M-estimation paradigm is compared to a postprocessed LMS paradigm.
Section 8 summarizes the results of the Monte Carlo studies in the earlier sections, and draws some

conclusions.

2. M-estimation.

2.1. Generalities.

A good understanding of M-estimation can be achieved through a comparison with least squares
(LS) estimation since M-estimation is a generalization of LS estimation. In the typical signal
processing problem, the N responses d(i) are observed at the integers ¢ = 1,.. .,N. One goal is
to then model the responses d(i) in terms of some “model” function fa(i), which depends on the
vector a, the regression coefficients, and i, the regressor variable. Since the vector a is unknown
and one desires to use fa(i) to model the d(i), a must be estimated using the data (i,d(?)). One
technique is LS estimation, where one tries to minimize the sum of squared residuals

N
r(a) = Zea(i)z, where e, (i) = d(i) = fa(4), (2.1)

over all parameter vectors a defining a class of “model” functions fa. The “best fit” is that
model function fa which minimizes 7(a). The error ea() corresponds to the difference between the
observed response d(i) and the value of the fitting function fa(%), the model’s estimated response
evaluated at the corresponding 7. The often stated weakness of least squares is that the function

2

d(i)

Figure 2.1: ideal versus LS fit.

fa(i) is computed by equally weighting all the data even if some of these data are not consistent
with the pattern expressed by the majority of the data. To illustrate this, consider Figure 2.1,
where the data obviously follow a line, except one point (circled cross).

The solid line represents the line we would like to get, and the dashed line shows the actual
least squares line. The circled point is called an outlier, while the other data are called inliers. An
inlier is a datum which is consistent with the model whereas an outlier is inconsistent. One should
not infer from this example that the dichotomy between inliers and outliers is always so clear. We
will give more details on this later.

Another concept of robust statistics is the breakdown point of an estimator. It is the smallest
fraction of contamination that can cause the estimator to take on values arbitrarily far from the
value of the estimator computed without contamination [36]. The breakdown value of least squares
estimation is 1/N, which means that its asymptotic breakdown value is zero (one bad datum can

corrupt the whole estimator). .
To reduce the impact of outliers on resulting estimators, Huber [22] suggested that one mini-

N N
mize E pleali)/s) instead of Z(ea(i))z, where p must be even {only the magnitude of the error
t=] i=1

is significant, not its sign) and differentiable. A scaling factor s is required to rescale the residuals.
In LS estimation, p(z) = z%/2.

2.2, Algorithm.

The general algorithm for M-estimation is described below for the two dimensional case, which
is just a straightforward extension of the one dimensional algorithm. The purpose of this algorithm
is to determine a surface that approximates a majority of pixel values in a window. The input data
is 2 n X m matrix, extracted with a window from an image, where n and m are odd so that the
window can be centered on a pixel, and usually » and m are equal (square window). A function d
is used to index the data in the window according to the local coordinate system: d(#,c¢) is the data
value at the pixel (r, ¢) located at the intersection of the rth row and the cth column. The origin of
the local coordinate system is set at the center of the window, the “row-axis” is oriented from top
to bottom, and the “column-axis” from left to right. The fitting functions f, will be also defined

in the local coordinate system. For example with a 3 X 3 window (Figure 2.2), fa(—1,—-1) will be

3

(=113 (-1,0) |{-1.1)

10-1) (0.0} [¢9.1)

(1.-1) 189 {11}

Figure 2.2: a 3 X 3 window to extract data from an image.

the pixel value estimate of the left upper pixel in the window, fa(0,0) the pixel value estimate of
the center pixel in the window and so on.
For later nse, we define

$(z) = - plz) (2:2)

and) .
il P L (2.3)

2’ 2

To determine the coefficient vector a of the fitting function, we minimize the function:

@)= 3 f} p(222) (2.4)

r=wfi e=—H

fi =

where the residual
eal(r,€) = d(r,¢) — fa(r, €) (2.5)
is the error between the observed data and the model function values computed with the model

function defined by
P
fa(r,c) = Ea,;gé,-(r, e), (2-6)
i=1

where the coefficients @; are the p components of the vector a. The ¢; are a family of basis functions,
which are polynomials in our application. For example, in a planar fit (p = 3), the functions are
$1(r,¢) = 1, ¢o(r,c) = and ¢3(r,¢) = c. Thescaling factor s is evaluated using the MAD (Median

Absolute Deviation)
s = 1.4286 median|e,(r, ¢}|. (2.7)

4

The MAD is both a robust estimator of the standard deviation of the noise and computationally
inexpensive. The constant 1.4286 is used to make the MAD a consistent estimator of the standard
deviation if the noise are random observations from a normal distribution {22, p. 108]. In the algo-
rithm that follows, s is computed from (2.7) initially and then kept constant during the remainder
of the algorithm {5].

The necessary conditions for a minimum of (2.4) are

dr(a) _ .
-—'6—@;——0 VZ—].,...,p. (28)

With the additional constraint of p being convex, i.e., ¥» monotorically increasing, the solution a
is unique [5]. Combining (2.4) and (2.8) we get

> Z;ﬁ(f?%ﬁ) di(r,c)=0 Vi=1,...,p (2.9)

i (e__a(éi) (2.10)

ea(r,¢)
s

Substituting the weights

w(r,c) =

into (2.9) gives

Z Z w(r,) (&:’Q) éi(r,e)=10 Vi=1,...,p (2.11)

r=—f c=1h
or, using {2.6), we obtain

P

Z‘ Z- Z w(r, c) di(r,) ax Pr(r, c)

—f o= —1n k=1
1 i)
= E d(r, ey w{r,e) ¢{r,c) Vi=1,...,p. (2.12)
r=—f ez —M
This can be written in matrix form as

P'W,Pa=d'W, z, (2.13)

which is a nonlinear equation. @ is a nm X p matrix whose rows are ¢1{r,c},...,¢p(r,c), Wy isa
nm x nm diagonal matrix whose diagonal elements are w(r, c), a is a p-vector whose entries are a;,
and z is a nm-vector whose entries are d(r, c).

The matrix equation (2.13) is of the form
AtAa=A'b where A=W,/2& and b=W,"z (2.14)
A solution to (2.13) can be found using a ¢ R-decomposition of A,
A =QR, (2.15)

5

where Q is a nm X nm orthogonal matrix, and R is an nm X p upper triangular matrix. Since W,
depends on a, Q and R also depend on a. One gets the recurrence formula

alk+l) = (Rtatk)Ra(k))_lRf,(k) Qb (2.16)

(al?) denotes the value of a at the kth iteration). This method of solving (2.13) is known as
iteratively reweighted least squares (IRLS). To initialize the recurrence, an initial fit coeflicient
vector a(® is needed; a® is set with the previous order fit coefficient vector, e.g., the initial
quadratic fit coefficient vector will be set with the planar fit coefficient vector that has just been
computed. There are no particular difficulties with the implementation of this algorithm (IRLS
M-estimation) except that the rank of the matrix A has to be checked; rank(A) must equal p,
otherwise the @ R-decomposition of A cannot be computed.

2.3. -functions and weights.

If the 1-function is chosen as the identity function i.e., ¥(z) = z, then Wy = I'in (2.13),
and the solution to (2.13) is just the least squares estimator. To overcome the limitations of least
squares estimation described in Section 2.1, Huber introduced the Huber minimax fanction or
Huber function {Figure 2.3)

¥y(2) = min{b, max{z, —b}}, (2.17)
where b, called the cutoff value, is a constant chosen to limit the influence of the outliers on the
resulting estimates. In fact, since blim tn({z) = z, resulting in the LS estimate, b is typically chosen

—05

between 1 and 2.

psi (x)

P .
)

Figure 2.3: Huber #-function.

When 3 is bounded, the influence of large errors (potential outliers) is limited by the weights
w(i, 7} as defined in (2.10). This idea has been extended with the use of redescending ¥-functions
like the Hampel ¥-function (Figure 2.4)

z, if-ae<z<a,
a, ifa<l|z| <0,
= - 2.
P= 229 gl < (218)
0, otherwise,

or the bisquare (also called Tukey’s biweight) 1p-function

2

2
z .
po(z) = a:(l - Ez-) , if—eLz<Le (2.19)

0, otherwise

which will discard some data completely, if [z] > .

psi (x) |

-

Figure 2.4: Hampel redescending ¥-function.

Since redescending ¢-functions cannot assure convergence of the IRLS algorithm to a solution,
o few iterations are performed with a Huber function to approach a solution, and then further
iterations are completed with a redescending ¥-function. Figure 2.5 displays three weight functions,
used in (2.13): a Huber (solid line) ¥-function with b = 1.5, a Hampel (dashed line) +-function
with @ = 1.5, b =3, ¢ = 4.5 and a bisquare s-function {dot-dashed line) with ¢ = 4.1.

Figure 2.5: different weight functions.

7

IS s e

2.4, M-estimation in computer vision applications.

Digital images are usually arrays of integers in a small range (0 to 255 is common), and differ
qualitatively from the typical data for which M-estimation techniques were developed. A zero MAD
for data sets from other scientific disciplines is very rare, but can easily happen for image data if
the fit is perfect for at least half the data in the window, which is likely for low noise images. A
zero MAD makes the weights undefined, so the standard M-estimation algorithm must be logically
extended to deal with zero MAD. It can even happen that distinct polynomial fits of different
orders all have zero MAD for a given window, and deciding which of these “perfect” fits to use is
nontrivial. The complete details for dealing with zero MADs are in Section 4.

Another difference is that in statistics the quality of the result is fundamental, whereas in
computer vision there is a trade off between the quality of the result and the speed at which the
result is obtained. Vision applications cannot afford fo iterate till convergence during IRLS M-
estimation, hence only about 4 iterations per estimation are performed. In any event, the precision
of the coefficients a; does not need to be high as the predicted pixel values, computed through
(2.6), are rounded to an integer between 0 and 255.

3. Tuning M-estimation.

3.1. Choice of the ¥-function.

In this section and the next two (Sections 4 and 5), we discuss methods to improve our surface
estimation algorithm [4]. This algorithm works as follow: for every pixel z in the image to process,
one considers the pixels enclosed in a window centered on this pixel z, three different surface models
are fit to the data in this window using IRLS M-estimation, one chooses the surface model fa(r,¢),
which “best” fits a majority of pixels, then the new value of the pixel is estimated as fa(0,0).
The three fitted models are the constant, planar and quadratic surfaces, that is, polynomials in
two variables of order 0,1 and 2. In section 4 we elaborate more on these three models and on the
choice of the “best” model. In this section, we focus on adjusting the TRLS M-estimation part of
the algorithm.

Tt is recommended in IRLS M-estimation, when using a redescending -function, to begin the
iterations with a Huber v-function (a nonredescending ¢-function) to localize 2 solution and then
use a redescending -function to converge faster to the solution [5]. However, the number of itera-
tions with the Huber v-function, the type of redescending i-function and the number of iterations
with this -function are parameters that can be adjusted for a particular application. A Monte
Carlo study is performed to determine these “optimum” parameters for our surface estimation
algorithm.

In this study two families of redescending t-functions have been tested: the Hampel and the
bisquare t-functions. For each family, different cutoff values are used. These different functions
are illustrated in Figure 3.1. The results, presented in the Tables 3.1 to 3.4, have been computed
1o determine the best combination of iteration numbers and ¢-functions.

3.2. Experiment protocol.

The Monte Carlo study is conducted as follows: we begin with a noiseless image, displayed
in Figure 3.2, and on each Monte Carlo trial, alter its appearance by adding noise, random values
generated from the e-contaminated normal distribution of the form

(1— €)N(0,0%) + eN(0,03). (3.1)

8

"—I\.
— ’. \
1.5 - TS
')
(4
' —-.\. \\ \
1 el i e S
) \ [.
\ A) Ay
vy
\‘ AR v
0. 59 v oMLY
“ \.‘\ \ A
\ \.‘ \ \
L 1 1 L Y ! A L e
‘f"; ‘ ¥ ‘ L] 1] L
_6 \' “'q‘\. LY -2 2 4 6
LN A Y
\ s
Voav NN -0f5+
A T
LY TR Y
"\ \‘ \ \\
. N v = -1
\ \ Y s 1
. \ ‘wme’
Y \ .I
LY | r
.\. A r'd "1. . 5
~ .

Figure 3.1: t-functions used in the Monte Carlo study.

Legend
Solid line curve: Huber function (Huber(z,1.5))
Dashed line curves: Hampel functions

Hampel(z,1,2,3) type 0
Hampel(z,1.5,3,4.5) type 1
Hampel(z,1,3,4) type 2
Dot-dashed line curves: Bisquare functions
Bisquare(z,4.1) type 3
Bisquare(z,6.0) type 4

Here, N(0,0?) represents a normal distribution with mean of 0 and a variance of 2. Thus, with
probability 1 — €, the noise is an observation from N (0,0%), and with probability €, the noise is an
observation from N(0,¢3). The ¢-contaminated normal distribution is widely used and recognized
as adequate for modeling noise in images [43]. In the following experiments, ¢ = 5%, oy is set
successively to: 3, 5 and 10, representing low, medium, and high noise levels, and o3 = 20. The
noiseless image, first introduced by Besl et al. [4], was chosen because of its interesting features
including step and roof edges and adequate representation of industrial range images.

The results of each Monte Carlo trial for each estimation procedure are evaluated by using two

goodness of fit measures: the MAE (Mean Absolute Error) computed as

PPN

)
MAE = M (3.2)

Figure 3.2: noiseless image (72 X 72).

and the RMS (Root Mean Square) computed as

Y (@i —2i5)
J

RMS = i , (3.3)

where the sums are all over all processed pixels in the images, N is the number of processed pixels,
z;,; is the original pixel value and #;,; is the pixel value after filtering (processing). The pixels on the
border cannot be processed as a window cannot be centered on these pixels and postprocessing is
needed to take care of them (Section 5 describes how postprocessing can be done). The motivation
behind the use of two different goodness of fit measures is that M AE is less sensitive to an occasional
poor fit at a pixel than RM S, which squares the errors, thereby increasing the effect of large errors.
On the other hand, RMS is the measure traditionally used in the vision research community.
Average values for MAFE and RMS, MAE and RMS, respectively, are obtained by averaging
these quantities over 50 Monte Carlo trials. The standard errors, § E(MAE) and SE(EMS),

defined by

Ne

2 (@i =)

=N i=1 — . i

SE(z) = \ IS where Z is the mean of the z;, (3.4)

10

are also computed. They indicate the dispersion of MAE and RMS. Here, n. is the number of
trials in the Monte Carlo study. Generally to decrease the standard error, the number of trials n.
is increased. We had to limit n. to 50 to keep the computational time within reasonable bounds.

3.3. Conclusion.

In each table, the Original M AE or Original RM S is indicated, it corresponds to the M AE or
RM S, respectively, between the noiseless image and the image corrupted by noise before processing.
The MAE results for a 3 x 3 window of this experiment are shown in Table 3.1 which displays
the MAE, SE(MAE) for each type of ¢-function (types given in Figure 3.1) for varying values of
iteration number. A quick conservative method to compare one 1p-function by iteration combination
with another can be made by checking whether 95% confidence intervals (X £ 2 SE(X)) between
combinations overlap. As shown in Table 3.1, the best parameter combination is 2 iterations with
Huber 7-function and 2 iterations with 1-function of type 4. Tts confidence interval is overlapping
with the interval of the second best (2 iterations with Huber 1-function and 2 iterations of -
function type 1) only for the case oy = 3. Table 3.2 is similar to Table 3.1 except that average
RM S across v-function by iteration are displayed. The two “bests” are the same in Table 3.2, but
there is an overlap of the confidence intervals in all cases (07 =3, 01 =5 and 01 = 10). Tables 3.3
and 3.4 repeat the information contained in Tables 3.1 and 3.2, respectively, using 5 x 5 windows.
The two “bests” in Table 3.3 are 2 iterations with Huber and 2 iterations with respectively -
functions type 2 and type 3. In Table 3.4, the “winners” are 2 iterations with Huber #-function,
9 iterations with v¢-function type 4, and 3 iterations with Huber ®-function, 1 iteration with -
function type 4. The results across the four tables also point out that the values obtained with a
5 % 5 window are always worse than the one computed with a 3 x 3 window. This can be explained
by the size of some image features, which are only 3 pixels large, and thata 5X 3 window processing
tends to smooth regions more than a 3x 3 window processing. The fact that the confidence intervals
of RMS values are 2 to 5 times larger than those for M AE values show the higher sensitivity of
“the RM S meagure to bad pixel estimates.” e i

Overall, the best combination is 2 iterations of Huber followed by 2 iterations of ¥-function
type 4 i.e., a bisquare function. It is important to notice that the results are quite close, as shown by
the overlapping of confidence intervals, hence the influence of the choice of the number of iterations
and t-function is negligible on the performance of our algorithm. As a consequence, trying other
-functions or increasing the number of trials n, to narrow the confidence intervals seems useless.
Other factors have to be studied ir order to improve our surface estimation algorithm.

11

Table 3.1: averaged MAEs and standard errors over 50 trials. The window size is 3x3.

oy = 3 a1 = b g1 = 10
Original MAE 2.422 3.600 6.475
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type: 2.257 3.047 4,917
Redescending function iterations: 0 +0.007 +0.009 +0.013

2.205 3.169 5.209
+£0.007 +0.009 + 0.014

2.186 2.987 4,916
+0.006 +0.007 +0.012

2.243 3.086 5.095
+ 0.007 +£0.008 +0.013

2.231 3.070 5.062
£0.007 +0.007 +0.012

2.168* 2.954% 4.856%*
+0.006 +0.008 £0.011

2.230 2.995 4.875
+0.007 +0.008 +0.013

2.243 3.028 | 4.900
£0.007 +0.009 +0.012

2.222 2.979 4.860
£0.007 +0.008 +0.012

AL FUPRSY FEFRPIT Ry IURRFRY F RS U] I RN LT L I e L

* denotes the minimum value of MAE.

12

Table 3.2: averaged RMSs and standard errors over 50 trials. The window size is 3x3.

o = 3 oy = 5 oy =10

Original RMS 4.605 5,733 9.281
Huber iterations: 2

Redescending function type: 0 9.275 9.515 10.696
Redescending function iterations: 2 +0.062 £ 0.064 +0.058

Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:

2

1 9.009 9.032 10.138
2
2
2
2
2
3
2
2

Redescending function type: 4 8.921* 8.901* 10.031*

2
3
1
1
3
3
1
3
4
1
4

+0.043 £0.046 | £0.047

9.193 9.290 10.474
+0.058 +0.056 +0.053

9.163 0.246 10.410
+0.060 £0.055 =0.054

Redescending function iterations: £0.043 =0.047 +0.055
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type: 9.344 9.368 | 10.392
Redescending function iterations: 0 +0.063 +0.058 +0.051

9.254 9.151 10.169
+0.061 +0.056 +0.055

9.293 9.267 10.257
+0.061 =0.059 +0.055

9.196 9.036 10.080
+0.060 +0.057 +0.057

* denotes the minimum value of RMS.

13

Table 3.3: averaged MAEs and standard errors over 50 trials. The window size is 5x5.

gy = 3 g1 — 5 g = 10
Original MAE 2.422 3.600 6.475
Huber iterations:
Redescending function type: 4.453 5.126* 7.217

Redescending function iterations: + 0.010 +0.012 +0.021

Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type: 4,965 5.586 7.604
Redescending function iterations: 0 +0.009 +0.010 +0.019

4.768 5.458 7.546
+0.011 +0.013 +0.019

4.525% 5.173 7.160
+0.010 + 0.010 +0.019

4.550 5.165 7.142%
+0.010 +0.011 =0.018

4.847 5.577 7.491
+0.011 £0.014 £0.020

4.879 3.585 7.618
+0.009 +0.013 £0.019

4.851 5.454 7.347
+0.008 £0.010 +0.018

4.807 5.574 7.460
=0.009 +0.014 +0.020

rihH#WHQDODHHWM»LMMCDMMMMMHMMOM

* indicates the minimum value for M AE.

14

Table 3.4: averaged RMSs and standard errors over 50 trials. The window size is 5x5.

oy = 3 o1 = 5 agy = 10
Original RMS 4.605 5.733 §.282
Huber iteratiomns:
Redescending function type: 16.789 16.621 17.262

Redescending function iterations: £0.050 £ (.038 * .041

Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type:
Redescending function iterations:
Huber iterations:
Redescending function type: 17.318 17.196 17.315
Redescending function iterations: 0 £ 0.034 + 0.033 = 0.034

17.119 16.692 17.262
£ 0.062 + 0.042 + 0.038

17.040 16.681 17.050
=+ 0.056 =+ 0.036 + 0.038

17.099 16.699 17.050
+ 0.061 = 0.039 + 0.038

17.026 16.515 16.895
= 0.070 + 0.048 £+ 0.054

16.896 16.736 17.315
+ 0.040 + 0.038 #+ 0.039

16.895 16.678 17.050
+ 0.038 + 0.037 + 0.036

16.550* 16.390* 16.782*
=+ 0.046 =+ 0.045 * 0.052

0~l=~H#“HWWHI—‘WM%MM@E\DMMMMHMMOM

* indicates the minimum value for RMS.

15

4. Variable order and M-estimation based paradigms.

4.1. Variable order estimator.

When estimating data in a window either an unique model is used or several models are
considered; in the latter case the estimates are computed using the model that “best” fits the data
in the window. The time complexity of a surface estimation approach is roughly the number of
fitted models times the complexity of the estimation algorithm (IRLS M-estimation or least median
of squares, described in Section 6). The time complexity of IRLS M-estimation is O(np?), whereas
the complexity of least median of squares is O(nP*!logn), where n is the number of data and p the
number of parameters [30]. The high complexity of least median of squares limits its use in surface
estimation, so generally only one model (planar) is fit [29]. With IRLS M-estimation several models
can be used, which gives more degrees of freedom to model the data, hence increasing the quality
of the estimates. In our approach, based on IRLS M-estimation, three models are used: constant,
planar and quadratic. A constant fit could be seen as just a particular case of planar fit, but it is
not. A constant fit can be computed by either a zero order M-estimator or a median estimator,
both of which have a 0.5 breakdown value, whereas the breakdown value of a planar M-estimator
is only 0.25. This difference is fundamental when detecting (estimating) step edges, since with a
constant fit a step edge is recovered if it occupies at least 50% of the window, and with a planar
fit if it occupies at least 75% of the window. The same kind of argument prevails between a planar
and a quadratic model, since the breakdown value of a quadratic M-estimator is only 1/p = 1/6.
There are limitations on the number of models one can fit to the window data. Obviously the
computational time is one limitation, and as the order (or the number of parameters) of the model
increases, the window size gets bigger, since the relation

nm—n, > p, (4.1}

where nm is the number of pixels in the window, n, the number of outliers, and p the number of
parameters, has to be satisfied for each model to be estimated (the number of equations must equal
the number of unknowns).

The difficulty in a multiple model paradigm is determining which of the models will yield
the best estimates for the data. For this purpose, we need to measure the difference between the
window data and the data estimates; the outliers, data which don’t follow the fitting model, should
be downweighted. For example, if a majority of pixels in a window are on a plane, we don’t want
to consider the one or two pixels not on this plane when evaluating the quality of the estimates
computed with a planar model. We have used the following measures to assess the goodness of fit:

- M AD = 1.4286 median|ea(r, ¢)|, which is a good robust estimator of the standard deviation if
the data sample is large enough and follows a normal distribution. The first assumption is not
realized for window data but this operator is computationally inexpensive.

7 L
- Yy = Z Z wa(r, ¢), which measures the consistency of the fit with the data. If the fit
r=—f o=~
is perfect all the weights wa(r, ¢} = 1 and v, = nm, the window size, This measure is used
in conjunction with the MAD. A zero M AD, which is particular to computer vision, means
that the fit is perfect for at least half the data in the window. If two different models yield a
M AD of zero, v, is used to select the mode] which has the best fit for the largest number of
pixels. It is also used to decide between two fits with the same n,— the fit with the largest -+,

is chosen.

16

n¥m?2s? Z Z P (ea(r, c)/s)

r==fi ez~

om=n(3 3 Weatno)

r=—fi c=—1

-y = 5 where s is a scale estimate, which is an excellent

robust estimator of the variance.

E Z wa('r: C)Bi(f‘, C)

- WRMS = r=—f c=—wh , where wa(r, C) - ’l,b(ea(r, C)/S)

\ (Zn: f_: wa(r,c)) —p ea(r, c)/s

, which is also a good

r=—f ¢=—7h

robust estimator of the standard deviation.

The problem with the 5, and the WRM S (weighted root mean square) measures is that they
require a scaling factor s, an estimator of the standard deviation, which is what they are estimating.
The MAD is used as a quick and dirty estimator of s in the computations of 7, and WRMS. As
in [4], the median is used for the constant fit because it is faster than the zeroth order M-estimator
and produces comparable results. Weights w, (7, ¢) for the constant fit are computed from (2.10)
with the bisquare.

Using these different estimators of the standard deviation, we have built five paradigms to
determine which model is the best for the current window:

1. If the M AD resulting from the constant fit is less than a threshold, use the constant fit,
otherwise select the best (n,-wise) of the planar and quadratic fits (the model which yields
the smallest 7, is selected). In this paradigm, if a constant fit is detected, no M-estimation is
performed (the planar and quadratic models are not fit).

2. Paradigm 1 drops the constant fit if the threshold is exceeded, but it seems that even if this
happens the constant fit can still be better than the two others. Hence Paradigm 2 is: if the
MAD is less than a threshold, use the constant fit, otherwise select the best of the constant,
planar and quadratic fits (n,-wise, M AD? is used to approximate n, for the constant fit). In
case of a tie give the preference to the lowest order.

3. Since a M AD of zero or smaller than a threshold means that the fit is perfect or very good
for at least half the data, in an attempt to decrease the complexity of our surface estimation
paradigm, M-estimation of a model is performed only if the previous model doesn’t have a
small MAD. If any of the fitted M ADs are smaller than a threshold in the order constant,
planar and quadratic, use this fit. Otherwise choose the best of the three fits (n,-wise, M AD?
is used to approximate 7, for the constant fit). For example, if the M AD of the planar fit is
below the threshold, the M-estimation of the quadratic model is not performed. This paradigm
looks also for the lowest order model.

4. An alternative to the 1y estimator is the WRM S estimator, hence a simple scheme: compute
the WRMS of each fit and select the fit with the smallest WRAMS, in case of a tie give the
preference to the lowest order.

5. This paradigm tries to override the preference for the lowest or the highest order. For each
fit (constant, planar and quadratic) compute the M AD. If the MAD is zero, set 7, = 0 and
comptte v, as the number of points with a perfect fit. Otherwise, evaluate Np and compute
Yr as the consistency of fit across all pixels in the window. The chosen fit is the one with the
smallest 7, and the largest Tp, i case of ties.

17

4.2, Experiments.

Monte Carlo studies, using the protocol described in Section 3.2, have been run to determine
which paradigm works best. For all the runs, two iterations with the Huber function followed
by two iterations with the bisquare function (Cs = 6.0) have been performed during each IRLS
M-estimation. Tables 4.1 to 4.4 show the M AE and RM § measures, results of these Monte Carlo
studies, using Paradigms 1 to 5. In the last row of each table, the results of Paradigm 5 with no
estimation of the quadratic model are shown. From the four tables (Tables 4.1 to 4.4), Paradigm 5
without a quadratic model produces worse results, by a large margin, than all the other paradigms,
proving the usefulness of a multiple order paradigm.

As displayed in Table 4.1, Paradigm 1 yields the best M AFEs, followed by Paradigm 4; the
results of Paradigms 2, 3 and 5 are close. The classification of the paradigms based on RASS,
established from Table 4.2, is the same as that from Table 4.1, However Paradigms 1 and 4 yield
resuits twice as good as those of Paradigms 2, 3 and 5, which are even worse than the original
(before processing) values. This is certainly due to the semsitivity of the RM.S measure to very
poor estimates at a few pixels. Hence Paradigm 1 works the best for 3% 3 window processing. With
a window size of 5 X 5, the MAFE measure indicates (Table 4.3) that Paradigms 2, 3 and 5 give
relatively good results whereas Paradigms 1 and 4 work poorly. The RM S measure distinguishes
less clearly the different paradigms, but Paradigms 1 and 5 still yield the best results. Combining
the M AFE results with the RM S results, the conclusion is that Paradigm 5 produces the best results
with 5 X 5 window processing. Since we don’t want a different paradigm type for each window size,
we will use the postprocessing results (Section 5) to choose between Paradigm 1 and Paradigm 5.

The results of processing with Paradigm 5 are shown in F igures 4.1 to 4.10 in order to illustrate
the effect of 3 X 3 window versus 5 x 5 window processing. In all the processed images (Figures 4.2,
4.3, 4.5, 4.6, 4.8, 4.9, 4.11 and 4.12) the corners are chopped; this effect is much more noticeable
with a 5 X 5 window than with 2 3 x 3 window. 3 X 3 window processing preserves the geometric
features of the input image better than 5 x 5 window processing, however, 5 x 5 window processing
is much more efficient for smoothing noisy peaks and holes. This is the most clearly illustrated
with the high noise input image (Figures 4.11 and 4.12).

Table 4.1: averaged MAEs and standard errors over 30 trials. The window size is 3 x 3.

oy = 3 o1 =5 ay = 10
Original MAE 2.422 3.600 6.475
Paradigm 1 1.865 *{ 2714 *| 4737 *
=0.007 £0.008 +0.012
Paradigm 2 2.168 2.973 4.840
+0.006 +0.008 +0.010
Paradigm 3 2.155 2.967 4.836
£0.003 £0.007 +0.010
Paradigm 4 2.127 2.896 4.814
+0.007 +0.008 +0.012
Paradigm 5 2.168 2.954 4.856
+0.006 +0.008 +0.013
Paradigm 5 3.919 4.566 6.522
No quadratic model +0.007 £0.011 =0.019

* denotes the minimum value of MAE.

18

Table 4.2: averaged RMSs and standard errors over 50 trials,

The window size is 3 X 3.

,_ j ;=3 j g1 =5 l o1 =10
| Original RMS | 4605 | 5.733 | 9.281
Paradigm 1 3.926 * | 4638 * | 7.233%
+0.111 +0.073 +0.072
Paradigm 2 8.027 9.158 10.212
/ +0.046 I +0.046 £0.052
Paradigm 3 8.890 9.090 10,164
£0.036 I +0.040 10.047
Paradigm 4 4.075 4.800 7.108
+0.066 ‘ £0.052 £0.038
Paradigm 5 8.921 8.901 10.031
+0.043 ’ £0.047 £0.055
Paradigm 5 12.468 12.700 14.131
No quadratic model +0.021 [+0.025 =0.031

* denotes the minimum value RM S,

Table 4.3: averaged MAEs and standard errors over 50 tzials,

The window size is 5 x 5.

o1 = 3 g1 =5 ag; =10
Original MAE 2.422 3.600 6.475
Paradigm 1 7.296 7.891 9.273

£0.009 £0.009 +0.014
Paradigm 2 4.909 9.300 * | 7.354 *

+0.010 +0.011 +0.018
Paradigm 3 4.928 5.503 7.354%

£0.011 +0.011 +0.018
Paradigm 4 8.378 8.748 9.689

- £0.007 £0.008 +0.013

Paradigm 5 4.847 * | 5577 7.491

+0.011 +0.014 +0.020
Paradigm 5 8.689 9.405 11.747
No quadratic model =+0.008 I *=0.017 +0.025

* denotes the minimum value of MAE.

19

Table 4.4: averaged RMSs and standard errors over 50 trials. The window size is 35X 5.

E , oy =3 l gL =35] G'1=107
(_Original RMS | 4605 | 5.733 | 9.282
Paradigm 1 | 16.915*%| 16.566 17.108 I
, +0.053 | +0.037 I +0.025
Paradigm 2 | 17.393 16.935 17.289
I +0.057 I +0.029 I +0.030]
Paradigm 3 | 17527 16.960 17.289
I +0.065 ’ +0.025 / +0.030
Paradigm 4 | 17,244 17.411 17.967
I +0.014 l £0.012 ! +0.014
Paradigm 5 [17.026 16.515* | 16.895%
’ +0.070 ! +0.048 / +0.054
Paradigm 5 [21.709 21.867 22.980
LND quadratic model I +0.025 I +0.023 I +0.032 7

* denotes the minimum value of RM S

20

R

::E_::'_;E:E-%: lll \“ ’ ' "{I[W 3

< / i
\\\\\ sl i /
< et

\\ ::JI(I e
EANOOO0) ‘\v 4
"0‘ 0‘0.0.1-“ ‘\ i)
(N e
\ R

L

/ [\
\ !f‘c‘fo’o’t’»;.‘ Al

"’-':s,.\""';"m Wil

i

Figure 4.3: noiseless image processed (5x5 window),

21

” {j/{/{/w‘:f:%z:;;!;'i\‘}“\‘{\;:

i =

I

b
)

-
e
.‘W
e
e

)
I

’ X
.,‘ i ot
h AN fl"
el
s W J

I

o
e
S
o

|

”["f"'f// R
o
€@ \:};51‘::‘2;%3}%;;%;;:\ L

*

Figure 4.4: low noise image.

gqgﬁxk”v
A AASER
)

OO
i
I
ih {
|

\ X
) il

A L
"“\ [T X

Figure 4.5: low noise image processed (3 x 3 window).

Figure 4.6: low noise image processed (5 x 5 window).

22

CAASEAN
IOKOLA XYY
:"p'f‘:"'.‘“ M

WV
P .-;‘;;o;;::t::‘" N
‘-:"-. ,f"""' ()
2 i ,’!"’ f.
i)

Figure 4.7: medium noise image, Figure 4.8: medium noise image processed 3x3 window),

o ST
Sy ‘{':‘\““}.p‘ 'f’i:

(Y

" IR “‘;‘\‘“‘i

[l/ "':5,;2;:! 1
;'// " Ml
"N e

Figure 4.9: medivm nojse image processed (5x5 window).

23

i
i

‘i “\,I"' 74

q :4':\“1 I ‘“};«p’o'i '/flﬁqfi:';"::;";:ﬂ’:‘é "
e
i
it g
“ﬂ/\ ol /;/“\Lﬂ\l{ ‘,q/{//////j////
N!/ Y "“:'l“i\:\““ b o
il

WA '}'

\\ -‘1
0 f ' \""‘“

1 'I .\‘
:,'. :,‘o‘M ‘4

i ,t; t ‘\?
_ l‘, H

Figure 4.9: high noise image. Figure 4.10: high noise image processed {(3x3 window).

\\\\‘ !" () ":'I:

m‘ l/j; i
< \

O’ff.i‘Q ‘\"“\\’ ‘“
f f H ‘
:’ ity 'n
il ﬂ “ ‘ ’lim 'IM \“. \\'l\

............

\ “‘\“\ il

Figure 4.11: high noise image processed (5 x 5 window).

24

5. Postprocessing Variable Order Paradigms.

5.1. Postprocessing,

is computed for every possible window in the image. In the spirit of the facet model of Haralick and
Watson [17], one can use these results to find the “best” pixel estimate from among all nm windows

the order and the coefficients of the fit, the weights associated with each pixel in the window and
measures of fit goodness, which depend on the paradigm used for processing. The goodness of fit
measures yielded by Paradigms 1 and 5 are: M AE, n,, and Yo

An intuitive scheme is to take the best fit among all windows containing a given pixel. Each
corner should be estimated properly, since a window can be placed to overlap this corner such that
the data enclosed in this window would yield a perfect fit f with no outlier (for ideal data). The
fit f would be chosen since all the other windows would have at least one outlier (recall that to
select a fit 7, is minimized, and in case of a tie 7p is maximized). Figure 5.1 illustrates this point,
showing the window (bold boundaries) used to obtain the fit £, which will accurately estimate the
corner (pixel marked by a Cross).

41777\

///Il
|

/

a4 ey
LT

Figure 5.1: the window used to accurately estimate a corner.

Unfortunately, this straightforward approach doesn’t work in the presence of noise or if a
surface on one side of the discontinuity is not fit as well as the surface on the other side. Consider
the profile of a step edge (Figure 5.2): on the step edge right-hand side the horizonta] plane is going
to be fit “perfectly”, 7p = 0, by a constant model, However, on the left-hand side, if we assume

moving the location of the edge to the left. The presence of noise can produce the same problem,
altering the location of an edge for the same reasons,

The above example demonstrates the necessity of considering the inlier foutlier information for
each pixel. Every pixel is assigned a weight w, whose value ranges from 0 (the pixel is an outlier)
to 1 (the pixel is an inlier). However, if a w of 1 clearly indicates an inlier, a pixel with a weight of

25

Figure 5.2: step edge.

0.6 could be either classified as an outlier if ail the other weights in the window are close to 1, or
classified as an inlier if most of the weights are in the range from 0.5 to 0.7. This suggests that an
arbitrary threshold cannot be set to classify a pixel as an inlier or outlier according to its weight.
It is preferable to avoid this binary decision, since optimizing the threshold value can be extremely
difficult. To take into account these weights and yet avoid a binary classification, we introduce the
function

e

ga(r,c) = wa(r, ¢’ +0.001 ' (5:1)
where 5 is a parameter to optimize. The constant 0.001 takes care of the case where the weight
wa(r, ¢) is zero. Instead of minimizing 5, across all windows containing the given pixel z, which
suffers from the problem described above, we minimize ga(r, ¢) across all windows containing the
pixel z, where 7 and ¢ are the coordinates of the pixel z in the local system of the window containing
z. A low weight wa(r, c) will increase the value of ga(7,¢). Hence if a pixel is an outlier for a fit
(weight close to zero) that is good (small n,) for all the other pixels, the value of g,(r,c) will be
huge and a fit with a worse Tp but a larger w,(r, ¢) will be preferred. Since doubling the value of a
weight does not correspond to doubling the 5, — a variation in a weight is much more significant
than the same variation in 7 — O is set to an integer greater than one. In case of a tie between
ga(7,) values, we maximize Yp- The algorithm described above will be referred to as the robust
variable order facet model paradigm.

5.2. Experiments.

Monte Carlo studies were run, using the protocol described in Section 3.2, to determine the
optimum value of 8 and to decide between Paradigms 1 and 5. Tables 5.1 to 5.4 show the MAF
and RMS measures yielded by postprocessing Paradigms 1 and 5, using two different window sizes
for different values of 3. Paradigm 1 yielded poor results for both window sizes and for the three
noise configurations (Tables 5.1 to 5.4). This is to be expected, since the ability of a paradigm to
accurately estimate surfaces is linked to the quality of the model. For the sake of speed, Paradigm 1
first considers the constant fit alone; if this constant model is not selected (the fit M AD exceeds
a threshold), then the constant model is dropped and Paradigm 1 decides between the planar
and quadratic models. The better results of Paradigm 5 compensate for its higher complexity,
and justify its use over Paradigm 1. The remainder of the discussion is focused on Paradigm 5’s
postprocessing. The results in Tables 5.1 and 5.2 are consistent: § = 2 is clearly a bad choice.
A correlation appears between B and the amount of noise, measured by oy: 4 = 5 does the best
Job for oy = 3, B = 4 for g1 =5and 8 =3 for o; = 10. On the average, § = 4 seems to be a
good choice for 3 x 3 window processing. The results in Tables 5.3 and 5.4 confirm that conclusion,

26

following the same pattern as the results in Tables 5.1 and 5.2, Hence 2 = 4 seems to be the best
choice.

In order to visually assess the improvement yielded by postprocessing Paradigm 5, we have
Tun our postprocessed surface estimation paradigm on the noiseless image (Figures 5.3 and 5.4),
the low noise image (Figures 5.5 and 5.6), the medium noise image (Figures 5.7 and 5.8) and the
high noise image (Figures 5.9 and 5.10). The results for the noiseless image shown for both window
sizes look perfect: no geometric features of the original image are altered. Without postprocessing,
all the corners of the “wedding cake” and the side edges of the cross in the noiseless image were
chopped (Figures 4.2 and 4.3). The M AE and RM S measures (Table 5.5) show that 3 x 3 window
Processing is nearly perfect and that 5 X 5 window is still impressive. When noise is added to the
noiseless image, the results of the postprocessed variable order paradigm of Section 5.1 (Figures
3.5 to 5.10) show that postprocessing effectively solves the corner preservation and edge location

Table 5.1: averaged MAEs and standard errors over 50 trials. The window size is 3 x 3.

o =3 o3 =5 ' oy = 10
Original MAE 2.422 3.600 6.475
Postprocessed Par. 1 7.448 6.971 8.362
B=4 +0.092 +0.079 +0.080
Postprocessed Par. 5 1.960 2.727 4,933
B=2 +0.010 +0.010 =0.011
Postprocessed Par. 5 1.832 2.654 4.761*
5=3 £0.006 +0.007 £0.012
Postprocessed Par. 5 1.816 2.656% 4.809
B =4 +0.005 +0.007 +0.011
Postprocessed Par. 5 1.815% 2.666 4.844
B=5 +0.005 +0.007 +0.011

* denotes the minimum value of MAE.

27

Table 5.2: averaged RMSs and standard errors over 50 trials. The window size is 3 x 3.

o = 3 o1 = 5 op =10
Originai RMS 4.605 5.733 9.281
Postprocessed Par. 1 34.393 29.348 26.137
B=4 +0.313 +0.430 +0.354
Postprocessed Par, 5 5.053 5.241 8.751
B=2 +0.127 +0.108 +0.109
Postprocessed Par. 5 3.532 4.384 7.243 *
8=3 £0.075 +0.063 +0.057
Postprocessed Par. 5 3.377 4,297* 7.244
B=4 £0.073 +0.064 +0.058
Postprocessed Par. 5 3.366 * | 4.336 7.312
A=35 £0.070 +0.064 +0.060

* denotes the minimum value of RM 5.

Table 5.3: averaged MAEs and standard errors over 50 trials.

The window size is 5 x 5.

g1 =3 g1 =25 o1 = 10
Original MAE 2.422 3.600 6.475
Postprocessed Par. 1 6.151 6.475 8.182
g=4 £0.107 +0.119 +0.124
Postprocessed Par. 5 3.304 3.448 5.107
f=2 +0.026 +0.022 £0.040
Postprocessed Par. 5 2.578 3.043 4.488
B=3 +0.011 +0.012 +0.021
Postprocessed Par. 5 2.521 3.021% 4.550*
B=4 +0.012 +0.013 +0.022
Postprocessed Par. 5 2.517 * | 3.032 4.584
f=5 +0.013 +0.013 +0.022

* denotes the minimum value of M AE.

28

Table 5.4: averaged RMSs and standard errors over 50 trials. The window size is 5 x 5.

gL =3 g1 =5 g1 =10
L Original RMS 4.605 5.733 0.282
Postprocessed Par. 1 29.694 28.294 27.676
B=4 =0.373 +0.439 +0.470
Postprocessed Par. 5 13.264 11.178 13.408
f=2 +0.182 +0.181 +0.181
Postprocessed Par. 5 8.238 8.783 10.438 *
3=3 +0.132 +0.112 10.104
Postprocessed Par. 5 8.100 8.691* 10.455
B=4 +0.140 +0.118 £0.106
Postprocessed Par. 5 8.083* 8.725 10.488
| B=5 £0.144 | £0.115 | +0.107

* denotes the minimum value of RASS

Table 5.5: MAE and RMS measures for the postprocessed images (Figures 5.1 to 5.8).

[MAE | RMS

noiseless
3 X 3 window 8.496 2.881
5 % 5 window 1.696 8.112
low noise
|3 %3 window | 2.063 3.720
| _5x5window | 1.437 | 2.074
l medium noise
| 3x3window | 3.175 | 4.983]
5 X 5 window 2.130 3.511
high noise
3 x 3 window 5.872 | 8.527
5 X 5 window 4.041 l 6.696

29

O

L)
CARO0AXS)
U RACOOAGAY

)
[AAXAA)
!' ",Mﬂ \}

i

30

T

o A
’.-::.:3'4.‘.1‘ ‘ " -
o "fl:.ff,f._,\

//////;;,,,u

o

il

il =7
3 “'"‘\\\}:f:;;f:E:I:E:f{I[]"“"“"{""-f//// %
e
R W st

\,’ "!!:.s.t.}:!!s‘\.‘“’W ‘ //////\“

L

3t

000
”"l" "') "“ “ \

W
a0y

.

o

)
o)

|

L “W“\ 2
' A.A‘A'A’M Sl

)

Figure 5.6: low nojse image postprocessed (5x5 window).

31

i
AT p
o ‘i"ﬁ i

T
”W{//,/f,”/i/]ff’g@f;?éﬁ?ﬁia _

| 0
e
S

i 5 ,
il

B b

4

't -II[
":; o
¥ (X ;“:‘\
ARAX
3 ;f’l ()

A0
=)

\ i

NAXXU o"\
e
Bl

Figure 5.8: medium noise image postprocessed (5 x 5 window),

32

;;."_f;_:: X ' ".
:) ﬂ’/if":fi’f‘:?‘e‘:v‘ff* W
Al {]”//]} i

e
SR 8y,
i YN
\\\‘ e) ;%_\“ III‘ “ﬂ“t"’“"'" " ‘“

o v

)) '(
\‘ NV \I i ‘ ““’” it ’l""“’

Gk
,:,;::';\’ n f/, o / /

.;,;_.:é!y,,(ﬂo / //.//" H\l’ ::t"[

u t’/

anl

I/[I I"” ‘ ‘ v “ //
2 \t m' \ .

\

.‘

.' -
W;

H

_H_L_ﬂ
h_-—

5

Figure 5.10: high noise image postprocessed (5%x5 window)

33

6. Least median of squares based window operators.

6.1. Least median of squares,

In Sections 4 and 5 we have developed a surface estimation paradigm (Paradigm 5), which uses
M-estimation to locally estimate different polynomial models (constant, planar and quadratic). The
robust estimation of these models could also be performed by the least median of squares (LMS)}
method developed by Rousseeuw [36]. The objective of thjs section is to analyze the performance
of LMS coupled with Paradigm 5, and compare it with the performance of Paradigm 5 using M-
estimation. We will first describe the algorithm for LMS, and in Section 6.2 we will discuss the
results of some experiments using LMS-based Paradigm 5, and then compare them to the results
of Section 4.

The main difference between LMS and M-estimation (Section 2.1) is that in LMS the median
of the squared errors,

r(a) = meﬁiaﬂ ei(re) , (6.1)

instead of the sum of a function of the errors, is minimized. The coefficient vector a, which
minimizes r(a), is the solution to the LMS problem. The error ea(r,¢) is the difference between
the observed value at pixel (r,c), and the estimate computed with the polynomial model whose
coefficients are the entries of a. One of the main feature of LMS is its breakdown value

& = int(nm/2) —p+ 2
- nm

(6.2)

k

which converges toward 0.5 when nm increases (int{z) returns the integer part of a number z).
However ¢* is only 1 /3 when fitting a planar model in a 3 x 3 window, and ¢ equals 0 when fitting
& quadratic model in a 3 x 3 window.

Due to the use of a median operator in Equation 6.1, the solution vector a cannot be found
analytically, instead the following algorithm has to be used. To begin, nm data points are extracted
using a window as described in Section 2.2. We then consider all the p-tuples, which can be
formed by choosing p points out of nm (p is the polynomial coefficient number). For every p-tuple
(d(r(1),¢(1)), d(r(2), &(2)), .. . d(r(p), ¢(p))) of data points or pixels, we solve the linear system

B+ < 4

4%M@=ZZ%MW@‘i=www, (6.3)

k=0 =0

where oy are the sought coefficients of the polynomial model, 7(z) and e(i) are the coordinates of
the ith p-tuple in the local coordinate system (Figure 22),d=1 for a planar model and d = 2 for
a quadratic model. Since there are Cy™ possible p-tuples, one expects to solve C7™ linear systems.
In reality, there are a few p-tuples leading to degenerate linear systems that are discarded. For
example, in the case of a 3 x 3 window and a planar model, the three picked pixels cannot be
aligned, so 8 p-tuples are dropped (3 p-tuples when the pixels are on the same row, 3 p-tuples
when the pixels are on the same column and 2 p-tuples when the pixels are on the same diagonal),
hence only CJ -8 = 76 p-tuples are used. With the same window size and a quadratic model, only
70 p-tuples are considered since more p-tuples have to be discarded (in each row, in each column,
and in each diagonal a pixel must be picked). When processing with a 5 x 5 window, the number
of p-tuples becomes too large to be handled realistically (C2® = 2300 and C§® = 17700) even if
some of them are discarded; remember that this polynomial fitting is performed for every possible

34

window in the image. Rousseeuw [36] showed that a subsample of ¢ p-tuples, where g < ey,
could be picked randomly with only a small probability of error in estimating the coefficients and
a slightly worse breakdown value. The number ¢ of p-tuples can be determined by satisfying the
inequality

I-(1-(1-eryr<p | (6.4)

where ¢ is the “fraction of contaminated data” in the window, and P is the probability of finding
the regression coefficients that are not influenced by “cutliers” (P=1-¢, with £ a small positive
number). For example, by setting € = 0.45 and P = 0.95, only 17 p-tuples are needed for estimating
a planar model (p = 3) and 107 p-tuples with a quadratic model (p = 6). To make up for potential
duplicate p-tuples, Rousseeuw advises to pick 400 p-tuples for a planar fit when the number of data
points exceed 15, and 700 for a quadratic fit when the number of data points exceed 11 [36, p.199).
Thus q is set to these values when processing with a 5 x 5 window.

The fundamental assumption in LMS is that at least one p-tuple is not corrupted by outliers
and will yield the robust coefficient vector a. For each solution ¢ of Equation 6.3, we compute

k< d
B(r,e)=d(r,e) - ZZQM ¢! where r = =%y fand e = —1, .. .y TR (6.5)
k=1 =1

The constant coefficient aog of the fitting polynomia] is computed as the midpoint of the shortest
half of the sample B that is composed of the S(r, ¢) values. To determine the shortest half of the
array B of nm values: first sort the array B to get B, then the shortest half is the minimum of

Enm—l)/2+l - B} with [= 1,2, .. s(nm = 1)/2 4+ 1, § equals half the length of the shortest half,

Bfnm-—l)/?-l-l + B;

2
@01, ...y 4o, 0pg). The next step is to find the best fitting polynomial for the window. Since

8% = min r(a) for a given p-tuple, the p-tuple which yields the minimum 42 wil] minimize r(a) over
all p-tuples and hence the coefficients (agq, agy, .. 4 0tdn, Ggq) generated with this p-tuple are our
solution vector a.

This minimum 6 can be used to estimate the standard deviation as

- Hence each p-tuple yields the fitting polynomial coeflicients (oo,

and agy =

s = 1.4286 (1 + (#_T)) 6. (6.6)

This formula is very similar to the MAD, used in Sections 4 and 5. The only difference is the
5/(nm — p) term, which is a finite sample size correction [36, P-202). To be able to apply Paradigm
9, we need the weights associated with each pixel and the goodness of fit measure 1,. The weights
can be computed using the bisquare -function and s:

w(r,¢) = M (6.7)

ea(r,c)/s °

Note that we could have used any ¢-function. To make valid comparisons we keep the same
parameters as the ones used in Paradigm 5 (Section 4). Since the breakdown value of LMS is high,
there is no need to distinguish the constant and planar model. Hence the best model] is chosen as
the one with the minimum Tp or the maximum 7, in a case of a tie in the 7p values.

35

6.2. Experiments with LMS-based Paradigm 5.

A Monte Carlo study, following the experiment protocol described in Section 3.2, was conducted
to analyze the performances of LMS as the estimation method in Paradigm 5. Table 6.1 displays the

The results in Table 6.1 show that LMS based Paradigm 5 does a worse job that M-estimation
based Paradigm 5 (Tables 4.1 to 4.4) by a large extent. The only case where the performance of
LMS based Paradigm 5 is Impressive is the nojseless image processed with a § x 3 window. For

order paradigm. Hence the higher complexity of LMS is not compensated by better performance
than M-estimation. In the next section (Section 7) we will postprocess LMS-based Paradigm 5
to check if this will improve its performance and make it competitive with M-estimation based

Paradigm 5.
Table 6.1: MAE and RMS measures for the LMS processed images.

[MAE | RMS

| noiseless
3 X 3 window | 0.470 | 5.196
5 X 5 window | 2.598 [17.677
low noise

Original 2.440 4.679
+0.011 10.038

3 X 3 window 3.511 8.933
+0.026 +0.287

5 X 5 window 5.619 22.291
+0.075 +0.273
medium noise

Original 3.617 l 5.787

/ +0.013 +0.031
3 X 3 window 4.834 10.069
I +0.043 I +0.279
5 X 5 window 6.524 22.611
’ +6.053 [.,-‘:0.191‘[
high noise

—
Original 6.493 9.306
+0.020 | +0.028

3 X 3 window 8.255 I 3.483

+0.033 +0.188
3 X 5 window 8.725 23.178
+0.070 +0.268

36

Figure 6.1: noiseless image processed (3 x 3 window).

it LANLLG [\
T ADGOUOAXED
RO

oo t:‘l
00 ,"s‘.\‘\

EREN
LN

“\\\\“

Figure 6.2: noiseless image processed (5 x 5 window).

37

. P ‘\',"a' "f'-. ”
e ARSI

iz I NI ;
” “;‘-;'-":t:f?' f‘,’ il
U’f{'ﬂ{[m{flf RGL A
et /'.;;;.;;*g;;,;

L
AN |

I i
U

it
f,_!f///_/@\}}!!;“e: // ////MH

: \\\\lg.s;-.g////XJ :

L

[
n "'
oy /3

0
RO
(hgs¢

7

»
-,

Figure 6.4: low noise image processed (5 x 5 window).

33

1]
AXA R, .
5 ATNY ','9'-'1;,? I
TR
”'.:j:;-_li‘g Y TERA
| Js

) i
R
, / A
i

i ol
///]”‘Jfﬁf.tlh\\",". R
l

¥ /}

,15;;\!!'[‘_7 ol ..“.::"-“""’i f
\\ 0 ‘v":\‘l B '/l / ///‘::‘?:“"l:":&::::::’:"’:j ,} "f‘
el
A .‘0\‘\“ l .;5;;:3;;;-;;;\Ih:",:‘t,:,;}’;,.;;
Dl
: ’s‘.f 1L .?g.‘if:‘ // m ":;:. mlr‘.’”
' I

/ I / it (il
l...j--;.'_,,:é/(/, -..‘“'“g?'_-:z- g
.

SRR
e

iz () :
[T ::;-\\\‘J ’”‘ f!!:‘[_r' A

. »}.;.,o'-'.:fff,:&o l
| I“,i“ﬂ.’\\\'
! ",;f,::;o;;:;:i{';o;\\{'{‘\\
i | I | ‘ I

“ “’.‘t';’;\@é‘ ‘-;.: :

Figure 6.6: medium noise image processed (5 x 5 window).

39

P o ‘\\ H\'I /)
Hfl.

XY 1}“'
'f,w '\‘ i“/;;“
/l f' \im’w\.‘. 0 NH. i
fstendr RN O il
“"“ “! !’)Iu “‘,’
l

,\\\\ "’:"i:iiﬁ"/
J }‘.‘-‘-“‘{i‘i‘!-///

Wy il
\\ h’! “ ll t{:l
, ' ' p ’ &
h'o‘t.f N\“

,_

At ii Ay l'
-'-'.f=.-!: /' ‘\\“fi”'
’

..._..-..-.—-

- ==

“-.)
.-——""-—-
_____. -—-_.__ 4

A o [I
‘.’o’o oy \\’

Y \A ‘\'9; '.'!ll‘ l! $ t

,, ,*‘n 4 ‘\\\Q

, H im H\
"r;Im't'\\ “ il

Figure 6.8: high noise image processed (5 x 5 window).

40

7. Postprocessing LMS-based Paradigm 5.

7.1. Postprocessing,

The results obtained in the Previous section are somewhat disappointing, as the LMS based
paradigm doesn’t handle the noise along edges particularly well. This behavior of LMS-based
operators was also observed by Meer, Mintz and Rosenfeld [29], who dealt with it by smoothing
the data before the LMS processing. We will try to improve the LMS output by postprocessing it.
As noted in Section 5, since the fit for every window in the image has already been computed, it is
natural to exploit all these computations by estimating a pixel using all the fits from all the windows
containing that pixel, The output from the LMS based Paradigm 5 is postprocessed exactly the
same way as that from the M-estimation based Paradigm 5.

7.2. Experiments.

The same Monte Carlo study as the one described in Section 6.2 was performed to assess the
contribution of postprocessing to a LMS based variable order facet model paradigm. Table 7.1 dis-
plays the averaged M AE and BMS over 10 runs with the associated standard errors. The results
in Table 7.1 and Figures 7.1 to 7.4 show that postprocessing greatly improves the performances of
the paradigm. A comparison between Table 7.1 and Table 3.5 indicates that LMS based postpro-
cessed Paradigm 5 does better on the nojseless image than the M-estimation based postprocessed
Paradigm 5, but as some noise is introduced, the M-estimation based postprocessed Paradigm 5
gains the advantage and the difference increases with the amount of noise added. This suggests that
LMS estimation is sensitive to noise and cannot handle noise qs well as M-estimation, which is
consistent with the fact that the statistical efficiency of LMS estimation is lower than the statistical
efficiency of M-estimation,

7.3. Computation times.

The practical utility of an image processing algorithm depends both on the quality of its output
and its execution time; this is rather different from the typical application of statistics, where the
quality of the results is paramount and computing time is generally irrelevant. In fairness, it must be
remembered that LMS estimation was conceived in this latter context. In Table 7.2 execution times
for different paradigms are given in seconds on a DECstation 5000/125, using a 72 x 72 medium
noise image as the input image. These times illustrate two points: (1) the cost of postprocessing is
relatively low, hence the benefit of postprocessing is important, and {2) the LMS-based paradigm
is several orders of magnitude slower than the M-estimation based one. The random sampling of
p-tuples used with 5 x 5 windows is insufficient to keep processing times within reasonable bounds.
The data in the tables and figures of this section argue against the use of LMS as the estimation
procedure in this type of application, and clearly prove the usefulness of postprocessing.

Table 7.2: execution times (seconds) for a typical 72 x 72 image.

3 X 3 window 5 X 5 window

M-estimation based “plain” 41 89
Paradigm 5 postprocessed 42 91
LMS based “plain” 469 6451
LParadigm 5 postprocessed 470 6465

41

Table 7.1: MAE and RMS measures for the LMS postprocessed images.

[MAE] RMS

noiseless
3 %X 3 window 0.141 1.376
5 X 5 window 0.226 0.563

low noise

Original 2.440 4.679
+0.011 +0.038

3 x 3 window 2.476 4,717

*0.013 +0.041
3 X 5 window 2.308 5.237
+0.027 +0.401

medium noise
Original 3.617 5.787
+0.013 +0.031
3 X 3 window 3.676 5.837
+0.016 +0.033
5 X 5 window 3.548 6.246
+0.028 +0.396

high noise
Original 6.493 9.306
+0.020 +0.028
3 X 3 window 6.606 9.388
+0.023 +0.027
3 X 5 window 6.505 9.697
+0.043 +0.151

42

Figure 7.2: noiseless image postprocessed (5 x 5 window).

43

&, SO
) iy /!!]li‘i':‘;;g‘\‘c“w\\\‘
Vi

h?'::&.“ ':l:'-j.;;.
; f{ff’! sy

i i
}/]'1 !
.‘i" X A

A
/]

—_
o

-.
..
.
S o
S
- -
:'q 3043
Lol

e

¥
-t
%
-
L)

-

"
-’

-
—
-

o
e
-

-
ey

-
o

e
23 -’
-
e
o
-
-

s
-
-t
‘.

-

.

-

-
oh
-
e gse
- -
-

T

-l
P N
e T

e
",

i oLl
RN
T _l““i

Figure 7.4: low noise image postprocessed (5 x 5 window).

44

O’If; b
H"}ﬁ’ '\

e
"
’.—

H "\ ’ ------- ,
l \\\
‘)' I i \ \“

\\\\‘ " W;
t\ ‘ “\‘ \\

l/””’nlla\“ i m Y ‘

fffwf"//

g)
i A \\"'r,"l‘\\{l .j;“;"""-i/ X
\\\\}?;::3‘:':;»:.‘\1{01 //// ‘

,
.c-
W
T
“"'———T ;

o
M_h

T
=

......

Figure 7.6: medium noise image postprocessed (5 x 5 window).

45

u‘ ‘ !’ |
’Hlj ullﬂ‘ R y
//ﬂ’n"ﬁfﬂl ""” " 'Hl",

1\: rﬂ ‘[’f,ﬂ[‘ Y ,’|

) IR "f“lﬂl- !
J A
jll/ i ‘lfd f«/ I’l m:;":f‘."ﬁ i
MHERN
a0
¥X)
|

I “0 2 / : f;‘
: / l?_'?'f:.
¥ M gy “:::_;..
v ? i \ ll '. i3 * ['._"‘;\:;_.
~‘.»/././l\“};»:‘- il

il
llm’.&;a \““‘_3;;: S

Figure 7.7: high noise image postprocessed (3x3 window).

il

Ao i i

/ ‘-, \‘ H :;l..;
I/[] ll ”m 1“ b\ '[Al l'n‘;".\.
q‘\-fmfil ,’ 4 f; u n h HI AR
,’\‘-‘;“ "J‘ (l I ‘J"‘;‘;;\'I’ r"' 'I’f A !“: ' "'i "f J
et f/ “hl’ /////"’”"" K g
H;‘f;"ﬂff:\‘:';':‘ : ![(X0 "0‘“ R K
Rl I//[s tf{f
(V] & N Y] '.‘ i f ;
I | '

———-

i

Figure 7.8: high noise image postprocessed (5x5 window}).

46

8. Conclusion.

Both the M-estimation and LMS estimation procedures involve severa} parameters: for M-
estimation, the choice of Y-function, the number of IRLS iterations, the cutoff value; for LMS
estimation, the number of p-tuples used, how the p-tuples are generated. The Monte Carlo studies
show convincingly that, within reasonable bounds, the valyes of these tuning parameters are not

at all crucial.

measure (7,) to resolve ties between equally good fits and a new goodness of fit measure (ga) which
takes into account the inlier/outlier information. We have also demonstrated that M-estimation

of M-estimation. ‘

An alternative paradigm would be based on using a robust F-statistic (6] to measure the
significance of terms in the fitting polynomials, both during the Processing and postprocessing
phases. A F.test op the different fitting polynomjials would complement the information obtained
with the goodness of fit measure, 7,, and the consistency measure, 7v,, and could improve the
choice of the model order. Another possibility would be to cascade the robust varighle order facet

The variable order bostprocessed paradigm we have created is really intented to be a basis
for further image processing like segmentation, Since at every pixel the first and second partial
derivatives of the underlying surface can be evaluated through the fitting model (constant, planar
or quadratic), segmentation of the surface could easily be performed by region growing as in {3].
From any given processed pixel, one can estimate the pixels in its neighborhood by extrapolation,
and then check how wel] the estimated valueg compare to the actual pixel values, One could even
keep track of the goodness of fit measures to weight those comparisons,

10. References.

[1] P. R. Beaudet, Rotationally invariant image operators, Proceedings of 4th International Con-
ference Pattern Recognition, Kyoto, Japan, Nov. 7-10, 1978, 579-583.

[2] P. J. Besl and R. C. Jain, Invariant surface characteristics for three-dimensional object recog-
nition in range images, Com puter Vision, Graphics, Image Processing, 33, 1 (January), 1986,
33-80.

[3] P. J. Besl and R. C. Jain, Segmentation via variable-order surface fitting, JEEE Trans. Pattern
Analysis Machine Intelligence, PAMI-10, 2 (March), 1988, 167-192.

[4] P. J. Besl, J. B. Birch and L.T. Watson, Robust window operators, Proceedings of the Second
International Conference on Com puter Vision, December 5-8, Tampa, Florida, 1988, 591-600,
See also Machine Vision and Applications 2, 1989, 179-214.

[5] J. B. Birch, Some convergence properties of iteratively reweighted least squares in the location
model, Commun Stat., B9, 1980, 359-369.

[6] J. B. Birch and D. B. Agard, Robust Inference in Multiple Regression, Proceedings of the
Statistical Computing Section, American Statistical Association, (to appear in 1992), 6 pages.

[7] R. M. Bolle ard D, B. Cooper, Bayesian recognition of local 3-D shape by approximating image
intensity functions with quadric polynomials, IEEE Trans. Pattern Analysis and Machine
Intelligence, 6, 4 (July), 1984, 418-429.

[8] R. C. Bolles and M. A. F ischler, A RANSAC-based approach to model fitting and its applica-
tion to finding cylinders in range data, Proceedings of 7th International Joint Conference on
Artificial Intelligence, (Vancouver, B.C., Canada, Aug. 24-28), 1981, 637-643.

[9] D.S. Chen, A data-driven intermediate level feature extraction algorithm, IEEE Trans. Pattern
Analysis Machine Intelligence, PAMI-11,7(J uly), 1988, 749-758

[10] L. S. Davis and A, Rosenfeld, Noise cleaning by iterated local averaging, IEEE Trans. Systems,
Man, Cybernetics, SMC-8, 9 (September), 1978, 705-710.

[11] R. O. Duda and P. E, Hart, The use of Hough transform to detect lines and curves in pictures,
Comm. ACM, 15, 1972, 11-15.

[12] W. Forstner, Reliability analysis of parameter estimation in linear models with applications to
mensuration problems in computer vision, Computer Vision, Graphics, Image Processing, 40,
1987, 273-310. '

[13] N. C. Gallagher and G. L. Wise, A theoretical analysis of the properties of median filters, IEEE
Trans. Acous., Speech, Signal Processing, ASSP-29, 6, (December), 1981, 1136--1141.

[14] R. R. Hansen and R. Chellappa, Two-dimensional Robust Spectrum Estimation, JEEE Trans.
on Acoustics, Speech, and Signal Processing, 38, 7, (July), 1988, 1051-1066.

[15] R. M. Haralick and H. Joo, 2D-3D pose estimation, Proceedings of the 9th International
Conference on Pattern Recognition, (November 14-17, Rome, Ltaly), 1988, 385-391.

[16] R. M. Haralick, H. Joo, C. N. Lee, X. Zhuang, V. G. Vaidya, and M. B. Kim, Pose estimation
from corresponding point data, IEEE Trans. on Systems, Man, and Cybernetics, 19, No. 6
(November-December), 1989, 1426-14486,

(17] R. M. Haralick and L. T, Watson, A facet model for image data, Computer Graphics Image
Proc., 15, 1981, 113-199.

[18] R. M. Haralick, I.. T. Watson, and T. J. Laffey, The topographic primal sketch, Int. J. Robotics
Res., 2,1 (Spring), 1983, 50-72. :

[19] D. Harwood, M. Subbarao, H. Hakalahti, L. and Davis, A new class of edge-preserving smooth-
ing filters, Pattern Recognition Letters, 6 (August), 1987, 155-162.

48

[20] R. Hoffman and A. K. Jain, Segmentation and classification of range images, IEEE Trans.
Pattern Anal. Machine Intell.,, PAMI-9, 5 (September), 1987, 608-620.

[21] T. S. Huang, G. J. Yang, and G. Y. Tang, A fast two-dimensional median filtering algorithm,
IEEFE Trans. Acoust., Speech, Signal Processing, ASSP-27, 1979, 13-18.

(22] P. J. Huber, Robust Statistics, Wiley, NY., 1981,

[23] M. Hueckel, A local operator which recognizes edges and lines, J. Assoc. Comp. Mach., 20,
1973, 634-647.

[24] S. L. Hurt and A. Rosenfeld, Noise reduction in three-dimensional digital images, Pattern
Recognition, 17, 4, 1984, 407-421,

(25] J.-M. Jolion, P. Meer, and S. Bataouche, Robust clustering with applications in contputer
vision, IEEE Trans. Pattern Anal. Machine Intell., PAMI-13, 8 (August), 1991, 791-801.

[26] R. L. Kashyap and K. Eom, Robust image modeling techniques with an image restoration
application, IEEE Trans. on Acoustics, Speech, and Signal Processing, 38, 8, (August), 1988,
1313-1325.

[27] R. L. Kashyap and K, Eom, Robust image models and their applications, in Advances in
Electronics and Electron Physics, 70, Academic Press, San Diego, CA, 1088, 80-157.

(28] G. Medioni, Smoothing by diffusion, DARPA Image Understanding Workshop. Also USC
Technical Report, 1987.

[29] P. D. Meer, D. Mintz and A. Rosenfeld, Least Median of Squares Based Robust Analysis
of Image Structure, C8-TR-2428, Center for Automation Research, University of Maryland,
College Park, MD, 1990.

[30] P. Meer, D. Mintz, D. Y. Kim, and A. Rosenfeld, Robust Regression Methods for Computer
Vision: A review, Int. J. Computer Vision, 8, 1991, 59-70.

[31] D. Mintz, P. Meer, and A. Rosenfeld, Consensus by Decomposition: A Paradigm for Fast High
- Breakdown Point Robust Estimation, Technical Report CAR-TR-525, Center for Automation
Research, University of Maryland, College Park, {December), 1990.

[32] D. Mintz, Robust Consensus Based Edge Detection, Technical Report CAR-TR-546, Center
for Automation Research, University of Maryland, College Park, (March), 1991.

(33] J. Prewitt, Object enhancement and extraction, Picture Processing and Psychopictorics, B.
Lipkin and A. Rosenfeld, Eds., Academic Press, New York, 1970, 75-149.

[34] L. G. Roberts, Machine perception of three-dimensional solids, Optical and Electro-Optical
Information Processing., J.T. Tippett et al., Eds., MIT Press, Cambridge, Mass., 1965, 159
197.

[35] G. Roth and M. D. Levine, Segmentation of geometric signals using robust fitting, IEEE 10th
International Conference on Pattern Recognition, (16-21 June), 1990, 826-831,

[36] P. J. Rousseeuw and A. Leroy, Robust Regression and Outlier Detection, John Wiley and Sons,
New York, 1087. '

[37] G. Sharma, and R. Chellappa, An iterative algorithm for 2-D robust spectral estimation, Proc.
Int. Conf. ASSP, San Diego, CA, 1984.

[38] 5. S. Sinha and B. G. Schunck, A robust method for surface reconstruction, in Proceedings of
the International Workshop on Robust Computer Vision, {Seattle, WA, USA, 1-3 October),
1890, 183--199.

[39] A. Tirumalai and B, . Schunck, Robust Surface Approximation Using Least Median Squares
Regression, University of Michigan, 1989, CSE-TR-13-89,

(40] A. Waks and O. J. Tretiak, Robust detection of region boundaries in a sequence of images,
IEEE 10th International Conference on Pattern Recognition, (16-21] une), 1990, 947-952,

49

[41] Y. T. Zhou, V. Venkateswar, and R, Chellappa, Edge detection and linear feature extraction
using a 2-D random field model, IEEE Trans. Pattern Anal, Machine Intel,, PAMI-11, 1,
1989, 84-95.

[42] X. Zhuang and R. M. Haralick, Develo

ceedings of the International Workshop
- October), 1990, 10-38.

[43] X. Zhuang and R. M. Haralick, A hi
International Conference on Pattern

ping robust techniques for computer vision, in Pro-
on Robust Computer Vision, (Seattle, WA, USA, 1-3

ghly robust estimator for computer vision, IJEEE 10th
Recognition, (16-21 J une), 1990, 545-550.

50

