Adapting Protocols to Massively
Interconnected Systems

Dennis Kafura and Marc Abrams

TR 91-27

September 9, 1991




Adapting Protocols to Massively Interconnected Systems

Dr. Dennis Kafura Dr. Marc Abrams -
Department of Computer Science Department of Computer Science
Virginia Tech Virginia Tech
Blacksburg, VA 240610-0106 Blacksburg, VA 24061-0106
kafura@vtopus.cs.vt.edu abrams@vtopus.cs.vt.edu
703/231-5568 703/231-8457
Fax: 703/231-6075 Fax: 703/231-6075

Abstract

This paper describes ongoing rescarch focused on two critical problems posed by the
interconnection of a massive number of computer systems. The interconnection may be
achieved through wide area or local area networks. The two problems considered in this
research are:

« performance analysis of the protocols used in an internetwork connecting
thousands to millions of nodes, and

. application development in 2 massively distributed, heterogeneous

environment where components implemented in different programming
languages must be integrated and/or reused.

The performance analysis problem is addressed by employing large-scale parallel
simulation, extended finite state machines and objected-oriented simulation techniques.
The approach to solving the application development problem is based on an environment
which exploits the synergism between object-oriented programming and layered
communication protocols (specifically, OSD.

(R



l. Introduction

In this paper we consider two important issues in the design of complex, computer based
systems which impose far more stringent requirements for communication than for
computation. Such systems,termed “massively interconnected systems,” may employ both
wide area and local area networks. The two issues are:

« how can the performance of existing and proposed communication protocols be
assessed in light of the limitations of direct experimentation and analytical techniques,
and

« how can applications be engineered so that an application is insensitive to the
distribution of its components across heterogenous processor architectures and where
the components may be implemented in differing programming languages.

In the remainder of this section the particular importance of these two issues to massively
interconnected systems will be described. Subsequent sections provide an overview of the
research we are conducting (Sections 2 and 3) and the current status of this work (Section
4).

1.1 Performance Analysis of Protocols for Massively Interconnected Systems

Development of any new technology is hampered without tools to predict system behavior.
While tools exist to predict the behavior of individual computer communication networks,
- network architects desperately lack tools to predict the behavior of the combination of
individual networks into a single, unified internet. A problem of immense importance is to
identify what protocols best manage the data pathways of an internet. Often details of the
algorithms and methods used to implement a protocol and the parameters used with the
protocol dramatically affect the data capacity of the intemet. Therefore network designers
need to model the internet to evaluate proposed protocol algorithms and parameter settings
before they are installed and unleashed on the world. The need to model is growing more
critical because the rate at which data can be transmitted over a network soon will increase a
hundred-fold. Increased data communication rates will permit new uses of geographically
distributed computers. For example, video, voice, and data could be transmitted over a
common network. Desktop workstations could display graphic images from scientific
computations on remote supercomputers.

Better internet prediction tools could provide scientifically sound answers to topics of
debate among internet architects. For example, standardization bodies do not know if TCP
[ISI81] can efficiently handle gigabit per second transmission rates in future internet
backbones. Many viewpoints exist on this issue; some examples follow.

« TCP must be implemented in hardware [KANASS].

+ TCP must be replaced by a new transport protocol {CHES88].

« Congestion control must be based on rate rather than through a sliding window
[CHERS6].



» Algorithms that deal with network dynamics (e.g., round trip delay estimation and
congestion avoidance) need to be modified [JACO88, RAMAO90].

» The operating system, memory, and network adaptor rather than TCP itself limit
performance [CLAR&9].

Modeling internets presents a paradox: internets today connect tens of thousands of hosts,
yet experiments are practical with at most dozens of hosts and gateways. Furthermore, no
satisfactory analytic models exist. This leaves simulation as the only practical method.
However, the speed and memory size of any single computer -~ even a supercomputer --
limits the number of hosts and gateways that may be simulated. This research project
addresses the critical question of whether an arbitrarily large internet model could be
simulated, given a large enough parallel processor. The question is worth exploring
because characteristics that have led to good parallel simulation performance in the past --
loose coupling among model components and look-ahead (model components can predict
some future actions before receiving enabling events) -- appear to exist in internet models.

The problem addressed by this research, of developing techniques for parallel simulation of
thousand to million node internets, is arguably one of the largest computational problems
attempted using parallel simulation. To simulate a million node internet may well require a
parallel simulation partitioned among dozens of heterogeneous parallel processors
communicating over a high speed network. Therefore completion of the proposed project
will lead to better understanding of the use of massively parallel computation.

This research will have several other potential impacts. First, completion of the project will
give us the ability to study proposed algorithms and protocols in internets with thousands
to millions of hosts and gateways. This cannot be done today, and has enormous
commercial and research importance. For example, the resultant simulation techniques can
be used to give new quantitative data on design alternatives as internets increase in
transmission speed and size. Second, we anticipate distributing the simulator outside of
Virginia Tech for other researchers to use. Third, our work is based on describing a
simulation model as a set of extended finite state machines which are mechanically mapped
to a parallel simulation and used to mechanically detect lookahead can be applied to parallel
simulation of non-protocol applications. Fourth, the techniques developed for simulating
protocols based on extended finite state machines may have application in simulation of
neural nets and celtular automata.

1.2 Application Development for Massively Interconnected Systems

The software engineering practice of building massively interconnection applications can be
made possible by exploiting the powerful synergism between object-oriented programming
(OOP) and Open System Interconnection (OSI). This synergism can be used to
simultaneously:

» empower the object-oriented paradigm by infusing it with the distributed
programming capabilities inherent in open systems communication, and

» harness the power of an open system by organizing its services within the
language framework of object-oriented programming,



The synergy between object-oriented programming and Open System Interconnection
arises because in each there are elements which are complementary to corresponding
elements in the other. The corresponding elements will first be identified and then the ways
in which they are complementary will be explained.

Figure 1 identifies the corresponding elements which will be discussed at greater length in
the following sections. The three elements from object-oriented programming are
persistence, concurrency and communication. The three elements from the OSI
environment are layered services, structured communication and remote operations. The
result of integrating these elements is a computational (application development) paradigm
based on persistent, communicating active objects. Careful justification is given that a
synergistic effect occurs when the elements depicted in Figure 1 are combined
appropriately.

Structured
Communication

Concurrency Layered

Open
Service P

Systems
Programming

Oriented
Programming

Communication Remote Operations

Ohjec
QOriented
Open Systems
Computing

Persistent Communicating Active Objects

Figure 1. Elements of the Synergy

The three elements of object-oriented programming contributing to the synergy are not
accidental; they seem to arise naturally from the requirements of contemporary and
envisioned software systems. Wegner [WEGN90] uses the term “megaprogramming” to
refer to systems which exhibit distributed concurrency, persistence and heterogeneity. The
National Collaboratory is cited as an example of a system imposing these requirements.
Similar requirements are given by Zdonik and Maier [ZDON90] for systems developed by
“data intensive programming in-the-large™. These systems, exemplified by CAD tools, are
large and complex in both function and data. Concurrent access by independent,
distributed users to long-lived entities is typical for such applications. Finally, Hewitt
describes the needs of an Open Information System (OIS) - a system which is open-ended,
incremental and evolutionary [HEWI84]. An OIS is exemplified by an “enterprise-wide
information system of the future” [HEWI9Q]. It is interesting to note that a prototype OIS
[DEJQY1] relies on concurrent, distributed objects. The requirements expressed in these
three views are congruent to the elements we have identified in object-oriented
programming: persistence, concurrency and communication.



To justify the claim of synergism between OOP and OSI, the major improvements brought
to OSI and object-oriented programming by their integration are now briefly outlined. What
does OSI gain? First, the structuring facilities of object-oriented programming can be used
to hide the complexity of the OSI protocols from the application developer. By applying an
object-oriented approach to OSI the formidable power of the OSI communication services
become available through a clean and simple interface. Behind this interface can be hidden
all of the forbidding detail which currently deters application development. Second, object-
oriented programming can be used to control the complexity of the protocol
implementation, We have observed, for instance, that the OSI protocol stack neatly divides
into two primary inheritance hierarchies. Greater structuring permits easier experimentation
and creates opportunities for performance improvement (e.g., by multithreading). Third,
several experimental systems (e.g., [DIX089, LEDD89, CAMP87] ) have demonstrated
that inheritance is a useful mechanism for disseminating and specializing the services (in
our case OSI communication services) provided by an underlying system. What does
object-oriented programming gain? First, objects are easily distributed. The object-oriented
paradigm assumes the dimensions of a distributed development paradigm. Second, OSI-
based communication provides interaction among objects executing on heterogeneous
processor architectures, employing fundamentally different data representations and
implemented in different languages. Third, the tight coupling between OSI and object-
oriented programming expands the notion of persistence to include persistence of the
communication state as well as the state of the object’s encapsulated application data. The
key point is that these substantial improvements cannot be achieved in isolation. Only by
integrating the object-oriented paradigm with OSI can they be realized.

The last issue considered in this introduction is how the OOP/OSI integration relates to the
remote procedure call (RPC) mechanism. RPC has two principal aims:

o preserving a familiar programming structure within a distributed computing
environment, and :

+ providing transparent interoperability among heterogeneous architectures.

Both of these goals can be achieved better by the proposed integration than by RPC. The
advantage of OOP/OSI over RPC appears in two ways. First, both OOP/OSI and RPC
preserve familiar programming structures: objects and procedures, respectively. However,
an object is a more robust programming structure - that is, after all, the point of object-
oriented programming. Second, communication among objects, often expressed in a
message-passing metaphor, is a better basis for distributed communication than that offered
by RPC. RPC suggests only one (albeit, a useful one) model of interaction - a client/server
model. Object-based communication, while permitting a client/server interaction, also
permits interactions which are asynchronous or based on peer-to-peer communication.

2. Internet Simulation

2.1 Why Internet Simulation is Required

Experimentation with small numbers of hosts over a local arca network has yielded
important insights about protocols and their implementations [JACO88, BORMBS9].
Recently, construction of five testbeds for experimentation with gigabit rate networks have
been initiated [IEEES0]. Experimentation is limited by practical consideration to relatively
small numbers of hosts and to network architectures that can be built from components



currently available. Therefore experimentation cannot answer all questions arising in
internet design.

Promising analytic models are being developed [BOLO90, SING90], but these techniques
are limited in the number of network connections that can be analyzed.

This leaves simulation, Simulation is attractive for several reasons. A simulation can
model internets with arbitrary speed, size, topology, protocols, and transmission media. It
may be possible to simulate internets on parallel processors or even networks of parallel
processors to allow arbitrarily large simulation models. Finally, simulation has been
successfully applied to individual networks of 1 to 103 nodes. Examples include MIT’s
Network Simulator [HEYB89], COMNET II [CACI90], and the University of Maryland’s
Routing Testbed [ALAESQ].

2.2 Why Internet Simulation Is Hard

Can we simulate internets? In particular, can individual network simulators be modified in
a straightforward manner to simulate thousand to million node internets? Currently, the
answer to the first question is “not yet” and to the second question is “no,” for three
reasons. Existing individual network simulators are:

1. sequential programs, which are difficult to port to parallel processors;

2. large, complex programs that are difficult to understand, validate, and modify; and

3. designed for the 1 to 103 node range, which implies they contain unnecessary detail for
modeling the 103 to 106 node range. For example, faithfully representing the media
access timings by a single LAN host may be unnecessary when simulating a million
nodes. However, limited buffer storage in hosts may be critical to an internet model.
The challenge addressed by the proposed research is to select judiciously model
features that yield output measures correct to an order of magnitude, but which do not
achieve unnecessary accuracy at the expense of code complexity and long simulation
running times.

2.3 Objectives and Tools
QOur objectives are to:

1. develop new techniques for simulation of 103 to 106 node intemets that:

A. require less programmer time to construct a simulation program representing a
protocol, and

B. require less wall clock time to execute than sequential simulation requires;

2. demonstrate the validity of the techniques in objective 1 by building an internet
simulation and validating its output measures using real network measurements (We
also anticipate distributing the simulation for others to use.); and

3. formulate recommendations for end-to-end internet protocols algorithms and parameter
settings using the simulation of objective 2. In particular, the aim is to explore
parameter settings and congestion control algorithms (e.g., contrast window- and rate-



based mechanisms). One can also view this objective as investigating the physics of

internets using simulation.
Our emphasis is on developing rechnigues for simulation that can be applied to any protocol
and internet, rather than developing a simulation of a particular protocol running on a
particular internet topology. However, to insure that the techniques developed capture a
sufficient level of detail to accurately predict internet dynamics, we will use the techniques
to build a simulator and validate that simulator with measured data. Finally, we will use
this simulator to draw some preliminary conclusions about thousand to million node
internets. We intend these conclusions to be the point of departure for my research work
following completion of the project proposed here.

Accomplishment of the objectives will be done using three prior research tools that we have
built.

1. A general purpose parallel simulation system, called OLPS [ABRAS88]. OLPS
implements three general purpose parallel simulation algorithms (time warp [JEFF85],
bounded lag [LUBA89], and Chandy-Misra’s algorithm with deadlock avoidance
through nuil messages [CHAN79]) as well as an efficient sequential simulator. The
sequential simulator may be used to estimate speedup of each parallel simulation
algorithm.

A unique feature of OLPS is that all four simulators share a common programming
interface [ABRA87]. Therefore, given a single simulation program written for this
interface, OLPS mechanically generates four simulators. This feature is important in
the proposed research, because no consensus exists as to which parallel simulation
algorithm is superior. To satisfy objective 1, the performance of internet simulations
based on the four simulation algorithms listed above will be evaluated using a variety of
workloads. In particular, both trace driven and synthetic workloads will be constructed
from two sources: traffic measurements that have been made on department networks
and the backbone network within Virginia Tech, and traffic statistics that can be
obtained from NSFnet. Workloads will also be constructed based on the client-server
paradigm representing remote logins and file transfers.

2. A hardware-based measurement tool for distributed systems software [ABRAS7]. The
tool consists of a measurement card that is inserted into each host on which
measurements are performed. The hardware has been fabricated for the IBM PC-AT
bus, and when funding is available it will be ported to the bus of a RISC workstation
that can be equipped with a high speed network adaptor (e.g., FDDI). The tool is
currently being used to examine the transient behavior of IBM’s TCP/IP protocol on
Ethernet and token ring connected IBM PS/2’s. The measurements will be used in the
validation required by objective 2.

The measurement hardware is unique in that it provides to all hosts equipped with the
card a time base synchronized to within one microsecond. The tool permits event
driven and time driven measurement. Event driven measurement requires inserting
calls to trace events into the source code, and generates a single log of the order and
times of these user-defined events on all network hosts equipped with the measurement
hardware. Time driven measurement interrupts all hosts equipped with the
measurement hardware within a window of 1 microsecond at a regular interval which
can be set from 4 microseconds to 1.19 hours. Time driven measurement requires
writing an interrupt handler that examines and writes to a disk log important data
structures of the software under study (e.g., to collect queue lengths). We are currently
developing tools to visualize the performance data collected using the X Window
System.



3. A prototype TCPIIP simulation model. The model is intended to be suitable for parallel
simulation of internets containing a thousand hosts and gateways. The prototype model
represents data transfer, but omits connection establishment and release. It uses a
client-server workload and incorporates the algorithms proposed by Jacobson (e.g.,
slow start, exponential retransmission timer backoff, additive increase/multiplicative
decrease window sizing, and a fast round trip delay mean and variance estimation
algorithm) [JACO88]. The model is specified as a set of finite state machines, as is
discussed in section 2.4.

Finally, the project will complement and utilize another tool present at Virginia Tech, which
is the Model Development Environment [BALC87]. The Model Development Environment
will be used to map a protocol specification mechanically to a simulator.

The combination of the OLPS parallel simulation system, the hardware-based measurement
tool, the prototype TCP/IP simulation model, and the Model Development Environment
provides a unique set of tools that will permit us to study the problem of simulating large
internets in a way that few other researchers can.

2.4 Extended Finite State Machines

A novel aspect of this research is to map a protocol described by a set of extended finite
state machines (EFSM’s)! to a parallel simulator in a mechanical fashion. An EFSM
consists of states,arcs and variables. Each arc is associated with a predicate and an action.
Predicates are used if and only if the arc is one of several out of a state. The actions are
code fragments that may include sending and or receiving a message and also modifying
the values of variables.

The methodology of mapping an EFSM protocol description to a parallel simulator will
fulfill objective 1A of overcoming the traditional problem of a protocol simulator being a
large, complex program for several reasons. First, protocol designers are used to working
with EFSM’s. Therefore a protocol designer will have more confidence that the simulator
reasonably represents the protocol if the simulator is directly synthesized from the EFSM's.
Second, if the simulator needs modification, then the EFSM can be modified and remapped
to a simulator.

Synthesizing a simulation model from EFSM's will also have several advantages with
respect to parallel simulation. Existing parallel simulation algorithms use a computation
model in which a set of logical processes communicate via messages. (A logical process is
a scheduleable unit of code.) Each EFSM naturally maps to one logical process. A second
advantage of using EFSM's is to exploit lookahead. Lookahead is the ability of a logical
process of a parallel simulation to predict actions that occur after reception of future
messages before the logical process receives those messages. The existence of lookahead
leads to higher speedup in parallel simulations [FUJI88]. A current problem in the parallel
simulation field is that there is no automatic technique to determine if lookahead exists for
an arbitrary simulation model. In addition, at the moment the parallel simulation code must
be hand-coded to exploit lookahead.

! finite state machines are also called state transition diagrams and finite state automata.



The lookahead problem will be alleviated by using EFSM's, which naturally reveal
lookahead, as the following examples illustrate. This solution to the lookahead problem
apparently has not been recognized in the literature,

1. Suppose that a protocol entity is making a transition from state § to S’, and that the
action associated with this transition requires waiting for a message. Further assume

that state S has one outgoing transition to state S”. Therefore, before the awaited
message arrives, we can predict that the entity will enter states §* followed by §”.
This type of lookahead is mechanical to deduce from EESM's.

2. If state $” has multiple outgoing transitions, and the predicates that select the transition
depend on the data to be received in the message, then lookahead may still be possible.
One would examine the sender's EFSM. From its current state, it may be possible to
predict what the message to be sent will contain, This again can be automated to reveal
lookahead.

3. The protocol implementation technique of predicting header contents to speed up
protocols can also be employed in a simulator as another form of lookahead.

A third advantage of EFSM's is that they can be efficiently mapped to various parallel
architectures. One implication is that the EFSM’s may be mapped to SIMD as well as
MIMD architectures. A second implication is that it will facilitate running a protocol
simulator on multiple, heterogeneous parallel computers that are interconnected by a local
area network. This requires a simulator to be portable to different parallel computers and
still yield acceptable execution efficiency. We plan to try multiple multiprocessor internet
simulations at Virginia Tech on our Sequent and Hypercube.

A fourth advantage of EFSM's is that they provide a basis for developing special purpose
parallel algorithms for protocol simulation. First, EFSM’s may provide a means to
efficiently execute the simulation on an SIMD machine. If the number of states is much
less than the number of SIMD processors, then the simulation can consist of an execution
schedule that cycles through all states. For each state, the actions associated with the state
are broadcast to all processors. Second, some messages that are used in general purpose
parallel simulation algorithms may be omitted in a special purpose simulator, if one EFSM
can predict another EFSM’s transitions. A similar idea has been used in parallel simulation
of chches by computer architects. Third, it may be possible to simulate two protocols on
the same workload simultaneously in an amount of time that is less than the sum of the time
required to simulate each protocol separately. This idea has also been used in cache
simulation, where caches with different parameters are simulated simultaneously. Finally,
trace reduction techniques may exist for internet traffic traces, just as reduction techniques
exist for memory reference traces for cache simulations.

3. An Application Environment for Massively Interconnected
Systems

Designers of distributed applications must deal with two fundamental problems: invoking
the operations provided by remotely located objects (termed remote operations) and
transmitting complex application data structures (termed structured communications) among
heterogeneous systems. These two problems - daunting enough in small-scale distributed




systems - become insurmountable in massively interconnected system unless suitable
mechanisms are provided in the execution environment. The combination of object-oriented
programming and the OSI protocols can be used in the execution environment to reduce
these problems to manageable proportions.

3.1 Remote Operations

An open systems application is a computational process in which a relatively significant
portion of the computation is concerned with establishin g and managing associations with
other application processes residing on different nodes in a network. Internally, an
application process is a collection of application_entities, each representing some
communication aspect of the application process. Figure 2 illustrates two application
processes, each consisting of two application entities. Remote communication is realized
for each application entity through use of one or more application service elements (ASEs).
ASE:s provide common abstractions needed by most application entities and a higher-level
interface to the services offered by the Presentation Layer. Two common ASEs are the
Association Control Service Element (ACSE) and the Remote Operations Service Element
(ROSE) [1SO88]. The ACSE provides a service for binding and unbinding an association
with a remote entity. The entity requesting an association is called the initiator while the
entity accepting the association is called the responder. The ROSE provides the basic
services required to implement remote interactions.

Application
Protocol X
X [€ — = — —J— — == - ——==->
Initiator
< > Y ACSEROSE
Initiator Application Responde
Protocol Y ACSEIROSE

Presentation Connections

Figure 2. Communicating Peer Application Entities

From an object-oriented perspective, application entities are objects which communicate
with remote objects. From this perspective, the boundary surrounding an application entity
object can be exploited to encapsulate:

* complexity: the existing interfaces to application services entail lengthy argument
lists containing system structures which the user must retain and supply with later
uses of the service. These system structures can be better represented as objects.

* distribution: an application process may be composed of both locally
communicating objects and remotely communicating objects. The application
developer need make no distinction between remote and local objects.



+ protocol: each pair of peer application entities uses a separate, but not necessarily
unique, protocol. The protocol used in interacting with a remote object may be
completely hidden from the application developer.

+ language: an application entity need only be concerned with the external behavior of
a peer entity whose services it uses. The internal implementation details - including
the implementation language - is encapsulated, allowing entities implemented in
different languages to interact. :

Structuring the ASEs as objects creates an application environment with simpler, more
abstract services and one which is safer as the control of arguments and the proper use of
defaults can be insured by the ASE class designer.

3.2 Structured Communications

An important aspect of distributed programming is to impose the structure of application
data onto the otherwise unstructured (bit stream) offered by the underlying communication
service. Peer application entities, like those shown in Figure 2, use this structured
communication to request operations and transmit application data values as arguments and
results. The interacting entities may reside on machines whose hardware architectures
differ in their representation of common values, such as integers. Such heterogeneity
necessitates techniques enabling the consistent invocation of remote operations and the
correct interpretation of data values.

A common approach to structured communication is to provide a remote procedure call
(RPC) protocol [BIRR84] and a machine independent data representation langunage.
Various RPC protocols and data representation languages exists; for example, Sun
Microsystems provides a popular datagram based RPC [SUN88] used in conjunction with
the External Data Representation (XDR) [SUN87] language for specifying C language data

types.

Abstract Syntax Notation One (ASN.1) [ISO87] is defined as an ISO standard data
representation language which is representationally more powerful than XDR. ASN.1 is
used in conjunction with the Remote Operations Service Element to provide a remote
operations service for OSI-based applications.

There are two points of synergism between the object-oriented paradigm and structured
communications. First, ASN.1 and the ROSE offer sufficient mechanisms for supporting
remote communication among cooperating objects. In particular, ASN.1 has the
representational power to express the strongly-typed method signatures found in a typical
class definition. Second, the encapsulation properties of objects allow the translation
mechanics implied by XDR or ASN.1 to be concealed from the user of the object.

3.3 Project Synergy

Recently, the Synergy Project was initiated to develop a prototype system synthesizing
object-oriented programming and the OSI environment. By judiciously adapting existing
software, a workable prototype will be operational within approximately one to two years.
The global architecture of the Synergy system is shown in Figure 3. The interaction among
the parts of this architecture will be explained by following a scenario of how classes are
defined by a “provider” and accessed by a “user.”



user [ e—

ASN.1
database

application [~ converter

A

Y

generator
{initiator)
compiler/linker
Run-Time
Environment

application
object(s)

ISO
protocol
stack

provider

hetwork

converter [“%—

implemented
class

generator
(responder)

'

Y

compiler/linker

Y

dispatcher

Run-Time
Environment

?

ISO
protocol
stack

Figure 3. Architecture of Project Synergy




The developer of a distributed application, the “user”, will have available a universe of
existing classes (types) which have been previously implemented and made available for
reuse by “providers.” These classes will be defined in a programming language-
independent fashion. The class definition notation we use is Abstract Syntax Notation One
(ASN.1) although any other similar type definition language with equivalent expressive
power could be used. We chose ASN.1 because it is part of the OSI standards and because
there exist public domain tools for processing ASN.1 specifications [ROSE90].

Retrieving classes for reuse from the universe of predefined classes is an interesting
question, but one which is beyond the current scope of the Synergy Project. One could
foresee, however, employing the Synergy environment to build a distributed system aiding
in the identification and retrieval of needed classes. The retrieval system itself illustrates the
kind of application we imagine Synergy would support - systems requiring access to
persistent objects (the long-lasting ASN.1 descriptions of available classes) in a distributed
and heterogeneous environment (classes may be offered by other systems/organizations
without prior agreement) and which may be implemented in various languages (the classes
offered by a system/organization will be implemented in the developing organization’s
language of choice which may differ from the user’s language of choice).

The provider of a class fully implements the class in the provider’s language of choice. A
converter examines this implementation and produces the class specification expressed in
ASN.1. This ASN.1 specification is made available (ideally through a distributed data-
base) to potential users. The ASN.1 specification is input to a responder generator. This
generator produces “boilerplate” methods needed to interface with the OSI-based run-time
environment on the provider’s side. The responder methods and the methods developed by
the provider are woven together by the compiler/linker to produce an entry in a library.
Once installed in the library the class is available for use. This is all that the supplier need
be aware of. We will consider in a moment how the instantiation of an object of this class
and the invocation of its methods will take place.

A user examines the available class specifications and selects those which are appropriate
for use. While the user may examine the specification in the ASN.1 syntax, in Figure 3 we
show that a converter is used to generate a class definition in the user’s language of choice.
Selected class definitions are added to the application code under development and are also
input to an initiator generator. This generator produces a “boilerplate” class whose methods
interface to the ISO-based run-time environment on the user’s side. The full application and
the output from the initiator generator are woven together by the compiler/linker.

We now consider the events which occur when the application instantiates an object of a
class provided by another node in the network. The application instantiates an object in the
“boilerplate” class produced by the initiator generator. The constructor of this class uses the
OSI application services to establish an association with a dispatcher on the host supplying
the implementation of the desired class. Using this association, the user’s object requests
the dispatcher to instantiate an object of the class, execute the object’s constructor and bind
the association to that object. The constructor of the user’s object completes when the
remote object has been completely created. Thereafter, invoking a method of the user’s
object results transparently in the invocation of the remote object’s methods using the OSI
remote operations facilities. Destructing the user’s object results in a termination protocol
being followed to destruct the remote operation and close the association.



4. Current Status

4.1 Internet Simulation

To model internets with thousands, millions, or billions of nodes will require execution of
a simulation on a parallel computer. Therefore we are studying implementation of the
model on a variety of architectures using a variety of parallelization techniques. We are
investigating two classes of architectures, MIMD and SIMD. We are investigating three
parallelization techniques: optimistic and conservative discrete event simulation [FUJI90]
as well as a numerical solution method.

We are currently producing three Internet simulation models:

* Implement the model in Sim++, a simulation programming language that runs on Time
Warp [JEFF85] on a network of transputers.

* Implement the model using Nicol’s conservative synchronous parallel simulation
algorithm [NICO90] on hypercubes. (This is work with Dr. David Nicol at the College
of William and Mary.)

* Model a window flow control mechanism running on a network that looses datagrams
by a set of recurrence relations that are evaluated in parallel [GREE90] on a Connection
Machine.

4.2 Application Environment - Project Synergy

The cornerstone of Project Synergy is OSI/C++ - a re-engineering of the OSI protocols in
C++. Mr. Greg Lavender, a Ph.D. student at Virginia Tech, is currently re-engineering and
implementing the OSI/C++ protocol stack. This work is being done by Mr. Lavender as an
intern at the Microelectronics and Computer Technology Corporation (MCC) in Austin,
Texas. Mr. Rajesh Khera, an M.S. student at Virginia Tech, is currently examining the
ASN.1 tools in the ISO Development Environment (ISODE) in preparation for extending
these tools to support object-oriented structures.

References

[ABRA87}] M. Abrams (1987), Synchronous 1MHz Clock/Timer for Measurement of
Network-Connected IBM PC's, Research Report RZ 1640, IBM Zurich Research
Laboratory, Oct.

[ABRAB8B] M. Abrams (1988), “The Object Library for Parallel Simulation (OLPS),”
Proc. Winter Simulation Conference, San Diego, CA, Dec., 210-219.

[ALAEQQ] C. Alaettinglu, K. Dussa, A. U. Shankar, and J. Bolot (1990), Routing Testbed:
Initial Design, CS-TR-2475, Dept. of Computer Science, Univ. of Maryland, May.



[BALC87] O. Balci and R. E. Nance (1987), “Simulation Model Development
Environments: A Research Prototype,” Journal of the Operational Research Society
38, (8), 753-763.

[BIRR84] Andrew D. Birrell and Bruce J. Nelson. “Implementing remote procedure
calls, " ACM Transactions on Computer Systems, 2(1), February 1984, pp.39-59.

[BOLO90] J. Bolot and A. U. Shankar (1990), Analysis of a Fluid Approximation to Flow
Control Dynamics, CS-TR-2553, Dept. of Computer Science, Univ. of Maryland,
Qct..

[BORM89] D. Borman (1989}, “Implementing TCP/IP on a Cray Computer,” Computer
Communication Review 19, (2), pp. 11-15.

[CACI90] CACI Products Company (1990), COMNET 1.5 Overview, March.

[CAMP87] Roy Campbell, Gary Johnson and Vincent Russo, “Choices (Class Hierarchical
Open Interface for Custom Embedded Systems,” Operating Systems Review, Vol. 21,
Number 3, July, 1987, pp.9-17.

[CHAN79] K. M. Chandy, C. Holmes, and J. Misra (1979}, “Distributed Simulation of
Networks,” Computer Networks 3, 105-113.

[CHESS88] G. Chesson, B. Eich, V. Schryver, A. Cherenson, and A. Whaley (1988}, XTP
Protocol Definition, Technical report revision 3.0, Silicon Graphics, inc., Jan.

[CHER86] D. Cheriton (1986), “VMTP: A Transport Protocol for the Next Generation of
- Communication Systems,” In Proc. ACM SIGCOMM (Stowe, Vermont, Aug), 406-
415,

[CLAR89] D. Clark, V. Jacobson, J. Romkey, and H. Salwen (1989), “An Analysis of TCP
Processing Overhead,” IEEE Communications Magazine 27, (8), 23-29.

[DEJO91] Peter dedong, “A Framework for the Development of Distributed
Organizations,” unpublished paper, 1991.

[DIX089] G. N. Dixon, G D. Parrington, 8 K. Shrivastava, and S. M. Wheater. "The
treatment of persistent objects in arjuna, " Procedings: ECOOP'89 Proceedings of the
1989 European Conference on Object-Oriented Programming, July 1989, pp. 169-
189.

[FUJI88] R. M. Fujimoto (1988), “Lookahead in Parallel Discrete Event Simulation,”
Proc. Int. Conf. on Parallel Processing, St. Charles, IL, Aug.

[FUJI9O] R. M. Fujimoto (1990), “Paralle! Discrete Event Simulation,” CACM 33
(10), Oct., 30-53.

[GREEQQ] A. G. Greenberg, B. D. Lubachevsky, and |. Mitrani (1990), “Unboundedly
Parallel Simulations Via Recurrence Relations,” Proc. ACM SIGMETRICS, Boulder,
CO, May, 1-12.



[HEWI84] Carl Hewitt and Peter de Jong. "Open systems, " in On Conceptual Modeling,
(ed. Michael L. Brodie), Springer-Verlag, 1984, pp. 147-164.

[HEWI90] Carl Hewitt. "Towards open information systems semantics, "
unpublished paper, 1990.

[HEYB89] A. Heybey (1989), The Network Simulator, Laboratory for Computer
Science, MIT, Oct.

[[EEEQQ] IEEE Computer Society (1990). “Gigabit Network Testbeds,” Computer 23,
(8), 77-80.

[IS181] Information Sciences Institute (1981). Transmission Control Protocol, NIC-
RFC 793, Sept.

[[SO87] International Standards Organization. Information Processing --- Open
Systems Interconnection --- Specification of Abstract Syntax Notation One (ASN.1),
International Standard 8824, 1987.

[ISO88] International Standards Organization. Information Processing --- Text
Communication --- Remote Operations part 1: Model, Notation and Service
Definition, Working Document for International Standard 9072--1, 1988.

[JACOB88] V. Jacobson (1988), “Congestion Avoidance and Control,” in Proc. ACM
SIGCOMM, Aug, 314-329.

[JEFF85] D. Jefferson (1985), "Virtual Time,” ACM Transactions on Programming
Languages and Systems 7, (3), 440-425,

[KANA88] H. Kanakia and D. Cheriton (1988), “The VMP Network Adaptor Board
(NADB): High-Performance Network Communication for Multiprocessors,” Proc.
ACM SIGCOMM, Aug, 175-187.

[LEDDS89] Bill Leddy and Kim Smith. "The Design of the Experimental Systems Kernel,
Proceedings of the Conference on Hypercube and Concurrent Computer Applications,
Monterey, CA, 1989.

[LUBA89] B. D. Lubachevsky (1989), “Efficient Distributed Event-Driven Simulations
of Multiple-Loop Networks,” Comm. ACM 32, (1}, 111-131.

[NICO90] D. M. Nicol (1990), The Cost of Conservative Synchronization in Parallel
Discrete Event Simulations, Report 90-20, Inst. for Comp. App. in Sci. and Eng.,
NASA Langley Research Center, May.

[RAMAS0] K. K. Ramakrishnan and R. Jain (1990), “A Binary Feedback Scheme for
Congestion Avoidance in Computer Networks,” ACM Trans. on Computer Systems 8,
(2), 158-181.

- [ROSESQ] Marshall T. Rose. The Open Book: A Practical Perspective on QSI, Prentice-
Hall, 1990.




[SING90] S. Singh, A. K. Agrawala, and S. Keshav (1990), Deterministic Analysis of
Flow and Congestion Control Policies in Virtual Circuits, CS-TR-2490, Dept. of
Computer Science, Univ. of Maryland, June.

[SUN87] Sun Microsystems. "XDR: external data representation standard, "
Reguest for Comments 1014, SRI Network Information Center, June 1987.

[SUN88] Sun Microsystems. "RPC: remote procedure call protocol specification version
2, " Request for Comments 1057, SRI Network Information Center, June 1988.

[WEGN90] Peter Wegner. "Concepts and paradigms of object-oriented programming, "
OOPS Messenger, 1(1}, August 1990, pp. 7-87. '

[ZDON@0] Stanley B. Zdonik and David Maier, “Fundamentals of Object-Oriented
Databases” in Readings in Object-Oriented Database Systems, (eds. S.B. Zdonik and
D. Maier), IEEE Press, 1990, pp.1-32,





