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Abstract

This paper presents experimental results on what limits local area network through-
put at the application program level for two popular transport protocols, TCP and UDP,
using two application program interfaces, Berkeley sockets and System V transport layer
interface. The sensitivity of application-level performance to the choice of host computer
speed and background load on the host are also studied. Two sets of measurements are dis-
cussed, The first contains macroscopic measurement of throughput on 68020, 68030, 68040,
80386, SPARC, and MIPS R2000 and R3000 based computers over a single Fthernet sub-
net. The second presents a detailed timing analysis using a hardware monitor of a TCP JIP
implementation for PC architecture computers. Previous studies implicate memory copy-
ing, checksumming, and the operating system interface as the major overheads in TCP/IP,
rather than the time required to execute the protocol itself. This study indicates that these
factors are secondary when the sender and receiver are closely matched in speed; Tather the
primary bottleneck is the TCP flow control mechanism. TCP flow control becomes closer
to optimal as the degree of speed mismatch increases: We draw conclusions on why window
mechanisms should be augmented by rate Lased flow control in the new generation of high
data Tate networks.
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1 Introduction

This paper presents the results of a detailed measurement study of the TCP/IP protocols op-
erating on a variety of architecture computers over an IEEE 802.3 LAN. The results confirm
through measurements past results in the literature, and brings to light a new view on what
limits TCP/IP throughput.

The study consists of macroscopic followed by microscopic measurements. The MAacroscopic
study (Section 2) investigates application-level performance sensitivity to three factors: host
speed, host load, and choice of application program interface (Berkeley sockets versus System
V transport layer interface (TLI)). The microscopic study (Section 3) then analyzes what limits
the performance of one particutar TCP/IP implementation. The implementation chosen is a
relatively slow host (an Intel 80386-based PC), because the degree to which a slow (=1 MIP)
host can be pushed to utilize a 10 Mbps (108 bits per second) LAN indicates how a host that is

10 to 100 times faster can utilize a LAN whose data rate is 10 to 100 times faster.

1.1 Related Work

Geveral works reporting the performance of the TCP(UDP)/IP protocols are discussed below.

Based on the observations of distributed graphics applications running on the V distributed
operating system, Lantz shows the effect of the following parameters (listed in order of their
importance) on the performance of data transmission: speed of the source machine, speed of the
destination machine, choice and implementation of network transport protocol {(e.g., choose a
general-purpose transport protocol versus a specialized protocol; implement the transport process
within the operating system kernel versus outside the kernel), and pattern of data transmission
(i.e. the granularity of each data transfer).[8]

Svobodova [14] reports the measured throughput and delay of several transport layer proto-
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cols. These measurements indicate that performance improvements (throughput and delay) of
various OSI TP4/CLNS and TCP/IP implementations can be achieved by implementation op-
timizations. A major TCP/IP performance improvement is achieved by a combination of many

changes:
e climination of data copies into internal TCP buffers,

e modification of network drivers to allow more than one packet to be queued for transmis-

sion,
e prediction of the header of the next packet to be sent or received, and

e caching of frequently used data structures.

The author concludes that good design of communication software, clever coding of the protacol,
and the support of the operating system play a critical role in improving the transport service.

Cabrera, Hunter, Karels, and Mosher study user-perceived performance when using TCP
and UDP on 4.2 BSD Unix in an Ethernet environment.[2] They assess the impact that different
processors, network hardware interfaces, Ethernets, and host load have on the performance. The
host load and network hardware interface have a severe effect on the user processes’ perception
of network throughput. They also analyze the 4.2 BSD Unix TCP and UDP implementations
and find that data copying and checksumming account for a disproportionate share of the total
delay time.

This paper also assesses how different processors and host loads affect the performance of
current workstations and protocol implementations in a variety of operating systems (4.3B5SD,
SVRA4, Mach 2.1, MS-DOS, and Sun0S 4.1). We also measure the effect that varying application

program interfaces have on the performance.
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Clark, Lambert, and Zhang make two conclusions on the TCP window-based flow control
strategy.[4] First, the flow control mechanism is vulnerable to transmission errors and delays
because the window mechanism combines both data flow control and error recovery. When the
transmission error rate and the network delay is high, the sender must stop frequently to wait for
an acknowledgment. Under such a situation, the window mechanism no longer controls the flow.
Second, the window mechanism uses the receiver advised window size as the control parameter.
But the advised window size does not carry enough information for flow control. This is because
the window controls how much data can be sent rather than how fast the transmission should go.
Transmissions occurring at an unregulated rate can easily congest the network and the receiver.
In this case the window mechanism negatively influences performance.

This paper complements Clark et al. by exposing flow control and receiver advised window
size problems in a low error rate, low delay environment, namely a LAN.

Sanghi, et al. describe an instrumentation of 4.3BSD Unix TCP JIP.[11,12, 13] They conclude
that a high resolution clock is essential to obtain good round trip time estimates, and that the
round trip time estimator suggested by Jacobson {6] performs better than the one suggested in
the original TCP specification.[9]

Clark describes implementation strategies to avoid the so-called silly window syndrome (SWS)
and excess acknowledgements.[3]

Tips on efficiently implementing TCP/IP on personal computers are given by Saltzer.[10]
The upcall is proposed to avoid excessive interface code from layering. Enhancements of DOS
necessary to support network applications are also discussed.

Clark, Jacobson, Romkey, and Salwen investigate whether the transport layer is the bottle-
neck of data transmission.{s] The technique used is to identify the normal path through 4.3BSD

Unix TCP and count the instructions. Based on their study, they predict that TCP can be used




on high speed fiber optical networks if implemented properly. The major overhead of TCP/IP
packet processing comes from the operating system interface, which handles interrupts, restarts
I/O devices, wakes up processes, and sets timers. Another overhead is operations that touch
bytes, such as memory copy and checksum.

The microscopic measurements of Section 3 complement Clark et al. Section 3 instruments
and measures one implementation to analyze sources of overhead in segment processing. Our
study concurs with the 4.3 study conclusion that the TCP/IP protocol itself is not a bottleneck.
Our measurements concur with the overheads of memory copying and checksumming. However
we also analyze to what degree the window flow control mechanism limits performance, and find
that the primary bottleneck arises from the window flow control mechanism, which forces idle

periods in network hosts if the TCP receive buffer is improperly sized.
9 Macroscopic Measurements

The objective of the experiments reported in this section is to study the delay and throughput
experienced by a bulk data transfer application at the application level as a function of host

processor speed, host load, and choice of application programming interface.
2.1 Experimental Environment

The experiment is to transfer a 40K byte file using a data sending program on one host and a
data receiving program on another host. The sending program transfers a file using a variety of
write sizes in a tight loop; the Teceiving program reads the file in a tight loop. The write size is
defined to be the number of bytes passed as an argument from the application program to the
write C library function call.

A file size of 40K is chosen because the performance measures, described shortly, do not vary

much if the file size is increased, except as noted in Section 2.3; however shorter file lengths



do affect the performance measures. Write sizes of 10, 100, 512, 1024, 1200, 1460, and 2048
bytes are used. Additional write sizes are used as necessary to determine the shape of measured
throughput curves. Write sizes smaller than 10 bytes are not used to avoid excessive numbers of
datagrams to transmit the file, which would unreasonably increase the duration of experiments.
Write sizes of 512, 1024, 1460, and 2048 are used because 512 and 1024 are common disk blocking
sizes, 1024 and 2048 are often factors of buffer sizes in many TCP implementations, 1460 is the
maximum segment size that fits in a single 802.3 network packet, and 2048 is a size larger than
the maximum segment size. Write sizes of 100 and 1200 are also used to better understand the
shape of measured curves.

Each data point reported in this section represents the mean and confidence interval for a
05% confidence level. Each data point is based on 100 executions of the file transfer. This value
is sufficiently large to keep the relative precision under 15% for almost all data points, yet the
value does not make the duration of experiments unreasonably long.

The performance measure used is throughput, which is defined as the length of the transmitted
file (40K bytes) divided by the delay. Delay is defined as the interval from when the receiving
host receives the first packet of the transmitted file until the host receives the final packet. Delay
excludes the time required for connection establishment and release.

Table 1 lists the machines used in the experiments, along with mnemonics identifying each
machine. This set of machines represents a wide range of ratios of host to network speeds and
encompasses different generations of architectures, including CICS microprocessors (Motorola
63020 and 68020, Intel 80386), RISC processors (SPARC, MIPS R2000 and R3000), and one
CICS architecture benefiting from RISC design techniques (Motorola 68040).

In all experiments two hosts are connected to the same IEEE 802.3 10 Mbps CSMA/CD

subnet. Experiments are perturbed by two factors. The first is system daemons that periodically



Mnemonic Machine Type crPl Operating TCP Receive
System Buffer Size
D310 Dell 310 Intel 80386, 12.5 MHz MS-DOS 4.0 0-4 Kbyte
PS2 PS/2 model 30 Tutel 80386, 12.5 MHz MS-DOS 4.0 0-4 Kbyte
Macll Macintosh I1 Motorola 68020, 16 MHz A/UX 2.0 4 Kbyte
(SVR2 based)

A3000 Amiga 3000UX | Motorola 68030, 25 MHz AT&T SVR4 4 Kbyte
NeXTch NeXTcube Motorola 68040, 25 MHz | NeX'T Mach 2.1 4 Kbyte
NeXT'st NeX Tstation | Motorola 68040, 25 MHz | NeXT Mach 2.1 4 Kbyte

SUN Sun 4/390 SPARC CY7C601 SunOS R4.1 4 Kbyte
DEC2100 || Decstation 2100 |  MIPS R2000, 25 MHz Ultrix 4.1 N/A
DEC5000 || Decstation 5000 MIPS R3000, 25 MHz Ultrix 4.1 16 Kbyte

Table 1: Machines used in Section 2.

awaken on the hosts being measured. The second is that traffic on the Ethernet during the
experiments is not controlled. To minimize the second factor, experiments are performed in early
morning hours when no user processes are running on any machines attached to the subnet. To
assess the representativeness of the measured data, one version of the testing program, TCP
with sockets, was run between two A3000’s on three consecutive days. Using a writing size of
1460 bytes, the testing program transmits 40K bytes of data 100 times. The highest average

transfer delay obtained from the three day experiments is 10% higher than the slowest.

2.2 Application-level Performance Sensitivity to Host Speed

The objective In this subsection is to identify the sensitivity of application level throughput to
host processor speed.

2.2.1 TCP Throughput

Figure 1 represents throughput for the file transfer application using a Berkeley socket interface

with the TCP transport protocol as a function of write size for pairs of homogeneous hosts. The



PS2-D310 throughput for a 2K write size is excluded from the figure becanse the PS/2 crashes
when write is called with a 2K byte argument.

In Figure 1, as expected, faster host processors yield higher throughput. Larger write sizes
lead to higher throughputs, but only for write sizes below 1K. The DECstation throughput
flattens out at 8.4 Mbps with a 1024 byte write size; its performance appears to be limited by
the 10Mbps physical media data rate.

Throughput is limited by the TCP receive buffer size and TCP segmentation.

TCP receive buffer size: Based on the size of the currently available receive buffer, the
destination host returns an advised window size in every acknowledgement to the sending host.
The teceiver advised window size is an upper bound on the sender window size. Therefore a
smaller receive bufler can cause the sender to stop more frequently, and this introduces delay
that limits the data transfer rate. The receiver buffer size is 16K on the DEC, 2K on the D310,
and 4K on the remaining hosts. The buffer size can be varied on the D310, and this is explored
later in Section 3.5. Because the receiver advised window size is set to the available receive
buffer, throughput is higher at write sizes that are factors of the receive buffer size, such as 1K

and 2K.

TCP segmentation: TCP waits to transmit data until either it completely fills the current
segment or until the segment flush timer expires. Therefore a large write size tends to increase
throughput because fewer calls are made to write and each TCP segment is more likely to contain

the maximum amount of data, and therefore fewer packets are sent.
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Figure 1: File transfer throughput using socket interface and TCP.



P52 Macll | A3000 | NeXTechb | SUN | DEC5000
Write to to to to to to
Size D310 | Macll | A3000 | NeXTst | SUN | DEC5000

10 0.00% | 0.01% | 0.57% 0.05% | 0.07% 3.70%
100 0.00% | 0.00% | 0.00% 0.61% { 0.32% 0.03%
512 1.80% | 0.01% } 0.00% 0.05% | 0.00% 0.09%

1024 || 20.70% | 0.00% | 0.00% 1.50% | 0.00% 0.56%
1460 || 57.00% | 0.10% | 0.00% 0.17% | 0.00% 0.07%

Table 2: Loss rates for UDP throughput experiments.

2.2.2 UDP Throughput

Figure 2 represents the throughput of the file transfer application nsing UDP, rather than TCP,
as the transport protocol. Once again, the socket interface is used. Unlike TCP, the UDP
throughput monotonically increases with write size. This data is easier to interpret than the
TCP data for two reasons. First, there is no flow control, so that there is no artificial delay
added to the communication due to waiting for acknowledgements to increase the upper edge of
the send window. Second, there is no delay introduced by the transport protocol to fill segments;
therefore the number of segments sent is inversely proportional to the write size.

With UDP, the host processor speed has a profound effect on throughput, because the
throughput is only governed by the packet sending and receives of the source and destination
hosts, respectively, and the physical transmission media bandwidth (10Mbps).

Table 2 shows the loss rates associated with each data point in Figure 2. The PS2 to D310
observations are excluded from Figure 2 because the loss rate at 1024 and 1460 bytes is 20% and
57%, respectively. In contrast the loss rates on other hosts never exceed 4%. This shows the

disadvantage of using UDP when the sender is faster than the receiver.
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Figure 2: File transfer throughput using UDP and socket interface.
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2.2.3 Comparison of TCP, UDP

The throughput of TCP and UDP is compared in Figure 3. (The MacIl and A3000 hosts are
excluded from the figure, but yield results similar to the other hosts.) At small write sizes, TCP
is better because TCP delays transmission to fill segments, hence reducing the number of packets
sent. At larger write sizes, using a reliable transmission medium with a sender that is no faster

than a receiver, UDP wins, because the TCP window mechanism artificially introduces delay.
2.3 Application-level Performance Sensitivity to Host Load

A study of the sensitivity of the protocol performance to host load can confirm the contention in
Clark et al. that the time required to execute instructions to process datagrams and segments
by IP and TCP is not a bottleneck.[5] This is because transport-level throughput is insensitive to
host load if and only if execution of the IP and TCP protocol software itself is not a bottleneck.

The experiment performed is to run a compute-bound computation on the sending host while
the file transfer application program executes. The computation used is a matrix multiplication
program that performs no I/O during the file transfer. We run zero, one, or three copies of
the multiplication program; load is defined as the number of multiplication programs running.
Therefore resnlts from Section 2.2 correspond to the zero load case. Tables 3 and 4 present the
results for the slowest hosts with TCP and UDP as the transport protocol, respectively. Faster
hosts are not shown, because host load negligibly increased delay at all write sizes.

With TCP, the 16 MHz based 68020 Macll case shows a doubling and quadrupling of delay
with write sizes of 10 bytes with loads of one and three. For 100 bytes, there is a negligible
change in delay with a load of one, but a tripling of delay with a load of three. At 512 bytes the
delay increases by 20% for loads of one and three. For 1024 bytes and above, the delay increases

by a negligible amount. The faster 256 MHz 68030 based A3000 case shows negligible increase
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Write Macil te Macll A3000 to A3000

Size load=0 | load=1 | load=3 load=0 | load=1 | load=3
10 30156+12.6 | 5480+£22.7 | 122004+91.8 || 4041£13.5 | 50724103 | 128064344
100 501+10.8 | 507+12.7 | 15214£37.9 59446.3 597+6.6 6751+39.4
512 266+8.3 319+12.9 328+14.3 216%1.0 2304-14.6 236+16.7

1024 209+£2.7 220+3.4 216322 174+3.0 180+1.9 185%4.1

1460 292412.2 | 3244176 332+13.3 254+14.8 | 265%15.1 279+15.3

Table 3: Data transfer delay, in milliseconds with a 95% confidence level, to send 40K bytes
using a socket interface and TCP while various numbers of matrix multiplication programs are

executing on the sending host,

Write Maell 1o MaclT A3080 10 A3000

Size load=0 | load=1 | load=3 load=0 | load=1 | load=3
10 8871+24.5 | 17585+32.3 | 382304217 11920+14.3 | 21313461.5 | 4230141055
100 16214+7.2 14434154 3684434.7 13174+8.2 12793+4.8 13074112
512 272434 28343.5 518+26.5 2984-0.7 2994+-0.6 207109

1024 18143.1 197+3.1 2104+7.5 166+0.6 168£0.7 1674+0.6

1460 168%+1.2 1724-4.6 188+7.6 13941.2 138+1.2 137+1.1

Table 4: Data transfer delay, in milliseconds with a 95% confidence level, to send 40K bytes
using a socket interface and UDP while various numbers of matrix multiplication programs are
executing on the sending host,
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in delay as a function of load for all write sizes larger than 10 bytes. At 10 bytes, a load of one
increases delay by 30% and a load of three triples the delay.

The UDP results follow a similar trend. For the Macll, a load of one or three and a write
size larger than 100 bytes or 512 bytes, respectively, shows a negligible increase in the delay. For
the A3000, delay only increased for a write size of 10 bytes.

Comparing UDP and TCP for the same hosts and write sizes, UDP delay is more sensitive
to host load for small write sizes. This behavior is explained by considering the relative number
of datagrams that results from each protocol. The number of datagrams sent by IP on behalf
of UDP serves as an upper bound on the number of datagrams send on behalf of TCP, given a
reliable transmission medium and equally matched sender and receiver speeds. At a write size
of 10 bytes with UDP, IP sends 4096 datagrams for the 40K file transfer, while TCP generally
results in less than 4096 datagrams because it delays transmission in an attempt to fill the
current segment. Therefore UDP will be more sensitive than TCP to host load for a write of 10
bytes, as Tables 3 and 4 bear out. However with a write size of 512 bytes, UDP transmits only
80 packets, which is only 2% of the number of datagrams sent with a write size of 10 bytes, and
both UDP and TCP are less sensitive to host load.

The conclusion from the measurements is that the total number of transmitted packets during
a fixed time interval increases, the delay becomes increasingly sensitive to the host load no matter
what write size is used. However the sensitivity decreases as speed of the host increases:

This conclusion implies that the results reported are sensitive to the size of the file fransferred.
For a write size that yields negligible delay increase in Tables 3 and 4, increasing the file size
to the point where a thousand or more datagrams are sent will make delay sensitive to load.
To verify this statement, the experiment reported in Table 5 is performed, consisting of a file

transfer of 512,000 bytes using a write size of 512 bytes, which yields 1000 datagrams for UDP.
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[Protocof " load=0 r load=1 [ load=3 ]

TCP 3086+70.4 | 4806+93.3 | 8420+301.6
Ubp 3533:£60.0 | 6524+40.6 | 13775+£196.9

Table 5: Effect of increasing size of file transferred on delay sensitivity to host load. All delays
are in milliseconds, with a 95% confidence level.
In a 40K file transfer, the delay increases negligibly with load, but for the 512,000 byte file, the
delay more than doubles with a load of three,

Based on these results, a file transfer that requires on the order of a thousand or more
datagrams will be sensitive to host load, whereas file transfers requiring a hundred or fewer

datagrams will be insensitive to host load.

2.4 Application-level Performance Sensitivity to Choice of Application
Program Interface

The A3000 host implements both a socket and a System V TLI application program interface.
Figure 4 compares the throughput of the file transfer application with both interfaces. Based on
observation of only a single platform, we can make conclusions about the importance of choice
of application program interface, but not about any inherent properties of the sockets and TLI
that affect performance.

Figure 4 shows, as before, that TCP yields higher throughput than UDP at small write sizes,
while UDP does better for large write sizes. However, TLI outperforms sockets when UDP is
used, whereas sockets outperform TLI when TCP is used. The difference in performance can be
surprising; for TCP and a write size of 100 bytes, the socket delay is 24% lower than the TLI delay,
and for UDP and a write size of 512 bytes, the socket delay is 21% greater than TLI. Therefore
a user must carefully evaluate alternative application program interfaces, ideally by performing

experiments using the write sizes and timings of writes that the actually implementation will
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generate,
3 Microscopic Measurements

Section 2 sets the stage for the detailed analysis of one particular protocol implementation in
this section. Figure 1 shows that at one end of the performance spectrum, the DECS5000 can
saturate an Ethernet. At the other end the 80386 based hosts never use more than 13% of the
raw network bandwidth.

Does the 13% limitation arise from the host processor speed, or does it arise from something
subtler, such as the protocol or its implementation? The answer is actually quite critical to the
future of high speed networks. In terms of orders of magnitude, the question of whether two
communicating 1 MIP, 1 Mbyte machines {e.g., a bit slower than the 12.5 MHz 80386-based
D310) can fully utilize a 10Mbps network can be viewed as predictive of whether a pair of 10-100
MIP, 10-100 Mbyte RISC workstations can fully utilize a 0.1 to ! gigabit per second network.
How far can the slowest machine be pushed? The measurements discussed next suggest that
even an 80386-based machine can be pushed to the limit of a 10Mbps network.

This section looks at detailed timings of a TCP/IP implementation distributed by IBM
for IBM PC and PS/2 architectures, called MD-DOS/IP. The measurements are made on an
Intel 80386-based machine: the D310 equipped with an Ungermann-Bass PC-NIC Ethernet
adapter communicating with a 80386-based IBM PS5/2 model 80 also running MS-DOS and
MD-DOS/IP. The MD-DOS/IP package implements a Berkeley socket interface, and provides
memory management, timer management, and multitasking extension to MS-DOS.

Even though RISC workstations generally run some version of the Unix operating system,
while our measurements are from another operating system, we believe that they do have predic-

tive value for Unix machines, because the multitasking system on MS-DOS interleaves execution

18



of protocol processes in a the same manner as Unix systems.
Our objective is to identify what limits throughput to about 1 Mbps in the D310 running

MD-DQS/IP on a 10Mbps network.

3.1 MD-DOS/IP

The MD-DOS/IP package is implemented as a set of three tasks, for the application program,

TCP, and IP, and an interrupt handler for incoming packets.

Outgoing packets: Each outgoing packet requires two copies, one from application to TCP task
address space, and a second from TCP space to the network adapter. Qutgoing packets
pass from the application task to the TCP task, which executes cutgoing operations of the

TCP, IP, and adapter card driver functions, and then fo the network adapter.

Incoming packets: Each incoming packet also requires two copies, first from the network to the
interrupt handler, and then to the application task space. Incoming packets pass from the
network adapter to the interrupt handler, then to the IP task, then to the TCP task, and

finally to the application task.
3.2 Experimental Environment

Detailed measurements of the MD-DOS/IP package during execution of the file transfer ap-
plication described in Section 2.1 are made. The MD-DOS/IP code running on the D310 is
instrumented to log a sequence of timestamped events during the file transfer in memory space
external to the application and protocol. Events recorded include the time at which each soft-
ware module is entered and left and the time at which key protocol operations, such as setting or
clearing timers and starting and ending the checksum computation, start and stop. Timestamps

are provided by a 40-bit microsecond-resolution hardware clock card plugged into the D310 bus
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that appears as a set of I/O ports [1]. Each clock read requires approximately 40 microseconds.

Any software measurement alters the measured data. To insure that the measurements
accurately reflect the behavior of an uninstrumented system, several versions of MD-DOS/IP
are compared: (1) the unaltered code, (2) the code with all instrumentation enabled, and (3)
a set of codes with only instrumentation of certain modules enabled by compile time switches.
The total delay for the file transfer for codes (1) and (3) differ by less than about 3% and are
reported in the processing cost analysis of Section 3.3. The difference between (1) and (2) is -

larger; (2) is used only once in the paper, for the overal timing graphs given in Section 3.3.
3.3 Analysis of System-level Processing Costs

Figure 1 shows that the D310 achieves maximum throughput with a write size of 1024 bytes.
Because our objective is to identify what limits the D310 throughput, we analyze the maximum
throughput performance, and hence select a write size of 1024 bytes.

Figures 5 presents a portion of the time-dependent behavior of the sending side of the file
transfer application and TCP/IP protocol for one particular observation with a write size of
1024 bytes. The diagram is representative of the entire log file of all observations of this write
size. Discrete points on the y-axis of each graph represent specific activities of the sending and

receiving host, respectively.

Sender behavior: Figure § partitions the activities of the sending host into six categories:
application running, TCP task copying data from the application address space into a TCP
buffer, TCP protocol running but not copying data from the application address space into a
TCP buffer, IP protocol running, network adapter driver running, and host idle. Transmission
of one eighth (5k) of the file is illustrated. As mentioned earlier, the application writes the data

as 1K messages through the socket interface to TCP,
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Figure 5: Time evolution of TCP/IP on the sending side for a transfer of 5K of data.
21



At time 600, the application writes the first 1K message. TCP copies the message to its
address space, and sets a segment flush timer in an atternpt to fill a 1460 byte segment, which is
the maximum that will fit in one Ethernet packet. The host goes idle until the application task
is rescheduled and sends the second 1K message. TCP copies the message to fill a 1460 byte
segment, and 436 bytes of a second segment. The first (1460 byte) segment is passed to IP and
then to the driver, which copies the resultant datagram to the network adapter.

At this point the TCP send buffer contains the last 588 bytes of the send application write.
The size of the buffer between the application task and the sending TCP task as well as the
TCP receive buffer size are 2K. Therefore the application task is scheduled and writes the third
1K message through to the TCP send buffer. Because the receive buffer size is 2K, and one
segment of length 1460 has been sent but not acknowledged, the sending window is 588 bytes,
and a second segment of size 588 bytes is passed to IP and through the adapter driver to the
network. 'The send buffer now contains 1K of data, and the application task is scheduled to write
its fourth 1K message to TCP. At this point the send window is closed, so that TCP cannot
send more data. The only scheduleable task is now the application, which executes its fifth write
of 1K to the socket interface. However the send buffer is now full, so that the application task
blocks, and the host goes idle. The predominate feature of Figure 5 is that the host remains idle
for 15.446 milliseconds until the driver receives an acknowledgement packet.

The MD-DOS/IP acknowledgement strategy is to delay acknowledgements when possible in
an attempt to send one acknowledgement for every to received datagrams. Hence the sender
receives a single acknowledgement increasing the upper send window edge by 2K. This permits
TCP to create a third segment of maximum size, 1460 bytes, using the current contents of the
TCP send buffer; the segment is transferred through IP and the driver to the network. With

1K of the 'T'CP send buffer now free, the fifth application write, back at time 8607, can now be

22



copied to the TCP send buffer.

Analysis: Figure 5 indicates that the predominate component of delay is due to the lack
of receive buffer space causing TCP to stop sending data. The secondary delay component.. -
is the device driver, which is copying data to the network adapter under CPU control. The
time required for TCP, IP, copying data from the application to the TCP send buffer, and the
application itself are all much smaller contributers to delay.

How significant is the idle time? The idle state is defined as the time when there is no
scheduleable task. We instrumented MD-DOS/IP to timestamp only transitions between idle
and non-idle states, and no other events. For thirty observations of the 40K byte file transfer
application with a 1K write size, the sample mean of delay is 345.452+£16.00 milliseconds, and
the sending host is idle for 156.49148.65 milliseconds, using a 95% confidence interval. (The
sample mean of delay for a code without instrumentation is 10.4 milliseconds lower.) This yields
a remarkably high 45.3% idle time, primarily due to the sender artificially blocking because no
receiver buffer space is available.

This data suggests that the file transfer throughput will increase markedly if either the
receiver has a larger buffer or if the window mechanism is changed to another flow control

mechanism. These changes are investigated in Section 3.5.

Uppér bound on throughput: The issue of which flow control mechanism maximizes per-
formance is a subject of longstanding debate [7]. We use our instrumented code to compute an
upper bound on the throughput that can be achieved by any flow control mechanism.

Suppose that all costs associated with file transfer are zero on the D310 except for the cost of
executing the TCP and the IP protocols themselves. In terms of Figure 5, the user, TCP data

copy, and driver times could at best be zero. An upper bound can be computed by multiplying
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Protocol Sender Receiver
Send Data | Processing ACK || Recetving Data | Sending ACK

TCP 8231061 | 297+0.67 493+5.20 153+0.39
1P 1244053 | 11240.46 106+£0.32 118+1.25
Total 647 409 599 271

Table 8: Sample mean and confidence intervals of time required for TCP and IP protocals to
process one 1K byte segment with a 95% confidence level. All times are in units of microseconds.
the measured cost per data and acknowledgement segment of TCP and IP at the sender and
receiver times the number of packets of each type that are required for a 40K file transfer.

The measurements from Table 6 will be used to calculate an upper bound. Each entry in
the table is based on observation of 100 repetitions of the following experiment: sender opens a
connection to the receiver, then transfers 1K bytes using 1K bytes as the write size, and then
closes the connection. The sender (respectively, receiver) measurements in the table are obtained
by instrumenting the sending (receiver) code and runiing it on the D310.

Some assumptions are required for the upper bound. First we assume that T'CP sends one
acknowledgement segment for every two data segments received; this is the normally case for
the file transfer application using MD-DOS/IP. Second we assume that TCP sends forty 1K
segments to transfer the 40K byte file. Therefore it takes 851.5 microseconds (647+0.5 x 409) at
the sender and 734.5 microseconds (599 4 0.5 x 271) at the receiver to transfer 1K of data. The
sending path is the bottleneck, which leads to a data rate of 9.6 Mbps, exceeding the Ethernet

data rate available after the bandwidth required for segment and datagram headers is removed.
3.4 TCP Segment Processing Overhead

Figures 6 and 7 decompose the cost of TCP segment processing, The measurements are made

using the D310 as the sender (respectively, receiver) for Figure 6 (Figure 7). The experiment
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performs 100 repetitions of the following: sender opens a TCP connection, sender writes  bytes
of data using a single wrile call, sender closes connection. The values of z, the data size, used
are 1, 10, 100, 500, 1024, and 1460 bytes. The connection is closed after each write to insure
that TCP sends one segment for each call to write. The TCP implementation of MD-DOS/IP
is instrumented to record the time spent performing data copy, checksum, timer management,
and remaining TCP functions. (The upper bound computed earlier assumes that the first two.
times are zero.)

Timer management includes setting timers and processing acknowledgements. The sending
side TCP starts a timer each time a segment is sent. On receiving an acknowledgement, TCP
calculates the round trip time. Based on the new round trip time, TCP updates the retransmis-
sion time out value and sets the sending window size. These two values are set using Jacobson’s

round trip timing and slow start algorithms [6].

TCP send overhead: Figure 6 shows that the data copy and checksum costs grow linearly
with the data size, which is the expected result. The cost of timer management is nearly constant,
with a mean of 84 microseconds per segment, consisting of 22 microseconds for setting a timer
upon segment transmission and the balance for acknowledgement processing, The cost of the
remaining TCP operations is also nearly constant; its mean is 351 microseconds per segment.
At worst (a write size of 1460 bytes), data copying and checksumming each take about a
third of the time (36% and 32%, respectively), with the remaining TCP functions consuming the
remaining third of the time (31%). This result bears out suggestions in the literature of how to
reduce copying and checksumming costs, such as by combining both functions into one loop [5];
eliminating the checksum [2]; and avoiding one data copy, from application to protocol address

space,
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Figure 6: Overhead of TCP segment processing on the sending side.
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Figure 7: Overhead of TCP segment processing on the receiving side.
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TCP receive overhead: Figure 7 partitions the receive cost into data copy, checksum, and
the remainder of TCP. There is no timer management in the receiving side. Again, the first two
costs increase linearly with the data size as expected. The remaining TCP costs are constant
at just over 300 microseconds per packet. The suggestions listed earlier for the sending side can

also be used on the receiving side to reduce the copying and checksumming costs.
3.5 Bottleneck Analysis

The preceding results suggest that the flow control mechanism, rather than the time required to
execute the protocol, is the primary bottleneck in bulk data transfer applications with TCP/IP.
This section considers the question of what limit throughput from a system level viewpoint, and
expands the study to consider the sensitivity of the limit to the relative sender and receiver
speeds.

The mazimum send rate (respectively, mazimum receive) in a systern, denoted A (respectively,
#t) is the maximum rate at which a sending host can introduce datagrams into (remove datagrams
from) a transmission medium, ignoring undelivered and corrupted datagrams. Let p = Al
denote the ratio of send rate to receive rate.

Application level TCP/IP throughput is limited by one of four factors: transmission medinm
data rate, A, zt, and the TCP receive buffer size. We will assume that the first factor is infinite,
which is reasonable for future high data rate networking technologies that are not a bottleneck.

The objective in this section is to measure how far away from the optimal data rate that
TCP/IP functions for many of the hosts in Table 1. This can be represented by graphs of

throughput as a function of p (Figures 8 and 9).

Experimental environment: The Macll, D310, PS/2, DEC2100, and DEC5000 are used;

these provide several data points in speed from the slowest to the fastest hosts from Table 1. All
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experiments used a write size of 1K.

The maximum send rate of a host is estimated to be the throughput obtained using the
following experiment. The sender runs the 40K byte file transfer program of Section 2.1 with
UDP as the transport protocol and the DEC5000 as the receiver. The DEC5000 is faster than
all other hosts used in this section, according to Figure 2. Therefore the DEC5000 can be viewed
as an infinitely fast receiver. The measured throughput is then used as the maximum send rate.
UDP is used as the transport protocol because there is no window mechanism to artificially limit
throughput.

Ouly two hosts, the slower D310 and faster DEC2100, are used as receivers in the experiments.
The D310 is used because its TCP receive window size, which is identified as a bottleneck in
Section 3.3, can be changed, although over a limited range (1 to 3 K bytes).

The maximum receive of the D310 is estimated using measurements. The experiment used
to compile Table 6 is used to measure the entire time taken to process a 1094 byte data segment,
excluding only the application time. Therefore the time includes the processing time of TCP, IP,
and the network driver. The receiver requires 3.469 milliseconds to process one data segment,
and 0.477 milliseconds to generate and copy to the network adapter an acknowledgment segment.
Assuming that every other data segment is acknowledged, the time required to process a 1024
byte packet is at least 3.71 milliseconds (3.469 -+ 0.5 x 0.477), which corresponds to a maximnm
throughput of 2.209 Mbps.

The maximum receive rate for the DEC2100 is estimated by measuring the rate at which
the host can accept UDP datagrams with 1K byte segments from a faster host, the DEC5000,
without losing datagrams. The rate is 4.2 Mbps.

"The aforementioned graphs of throughput as a function of p are constructed by collecting

observations of throughput from 100 repetitions of the 40K byte file transfer application. The
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sample mean of observations are reported.

Comparing measured, optimal thronghput: Let F(A, 1) denote the throughput obtained
with send rate A and receive g. An upper bound on throughput is always given by the function
S(A #) = min(A, p). That is, if the sender is slower, then A limits throughput, otherwise ¢ limits
throughput.

Figure 8 presents the graph for a slow receiver, namely the D310 (g = 2.209 Mbps). The
diagonal line is f(A, 4) = A, and the horizontal line is § (A, #) = p. The remaining curves connect
points representing the throughput measured for senders that are half as. fast {(p = 0.5), equal to
{p = 1), and slightly under four times as fast (p = 3.7) as the receiver for receive buffer sizes of
1K, 2K, and 3K.

Because the D310 is the slowest machine in Table 1, we artificially slow down the Macll
to a send rate smaller than the D310 receive rate by inserting some extra operations between
each write. The maximum send rates of the slowed down Macll, unaltered PS2, and unaltered
DEC5000 are 0.552, 2.596, and 8.192 Mbps, respectively.

The distance from the three curves of actual throughput from the two upper bound curves
suggests how far from optimal that TCP/IP performs. For the case of the Macll sending to
the D310, Figure 8 shows that the throughput does not change with variations in receive buffer
size. This is because the sender, not the receiver, is a bottleneck for small p. For the case of
the PS2 sending to the D310, increasing the receive buffer size produces some improvement in
throughput. However the connection operates far below the upper throughput bound. For the
DEC5000 sending to the D310, increasing the buffer size from 1K to 2K increases throughput
from 1.677 Mbps to 2.06 Mbps. The 1K case must have lower performance because each datagram

contains 1K of data, and the protocol reduces to stop-and-wait. The 2K case permits a datagram
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to be in transit while the receiving protocol stack processes a datagram arriving earlier. Because
the receiver is several times slower than the sender (A = 8.192 Mbps, u = 2.209 Mbps), increasing
the receiver buffer size to 3K does not significantly improve throughput, because as long as the
receiver can always find one packet in its receive buffer, the receive buffer size will not limit
throughput.

The D310 is a slow machine by today’s standards. Therefore we compare measured and
optimal throughput for an early RISC workstation, the DEC2100 (for which # = 4.2 Mbps) in
Figure 9. The sending machines are an unaltered Macll (A = 2.074), a DEC5000 slowed down
to A = 3.9 Mbps by inserting extra operations between each write, and an unaltered DEC5000
{A=9.04 Mbps).

For the unaltered MacIlI sending to the DEC2100 {(p = 2.03), Figure 9 shows that the mea-
sured throughput is nearly equal to the optimal throughput. For the slow DEC5000 sending to
the DEC2100 (p = 1.07), the measured throughput is about half of the plotted upper bound on
throughput. The TCP receive buffer is now the bottleneck. For the unaltered DEC5000 sending
to the slower DEC2100 (p = 2.15), throughput reaches the optimum, because the TCP receive
buffer is large enough to guarantee that the faster sender has deposited at least one datagram

between the times at which the receiver removes datagrams.

4 Conclusions

The primary factor limiting performance for bulk data transfer applications over LANs in
TCP/IP is the window flow control mechanism coupled with the strategy of setting the re-
ceiver advised window size to the currently available TCP receive buffer space. In fact, the
more closely matched in data rates that a sender and receiver are, the larger the performance

degradation becomes. Only after this bottleneck do the issues of time spent in memory copies
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and checksumming and the operating system and network adapter interfaces become important,
as reported by Cabrera et al. [2] and Clark et al.[5] Our measurements confirm what Clark ef al.
contend from statement counting: that the actual costs of executing the TCP and IP protocols
thernselves account for a very small amount of data transfer overhead.

Our measurements suggest that a file transfer between two hosts rated at  MIPs running
TCP/IP but with an optimal flow control mechanism could at best fully utilize a quiescent net-
work link with bandwidth 10z Mbps. This is encouraging, because when the current evolutions
of RISC computer and gigabit networking architectures reaches their limit, we may be left with,
in orders of magnitude, a 100 MIP workstation attached to and fully utilizing a gigabit network
link.

What is the “optimal flow control mechanism”? Our measurements reveal the following. If
the send and receive data rates are mismatched, TCP will probably operate near the optimum.
But when the rates are closely matched, TCP will operate far below optimum unless the TCP
receive buffer is properly sized;

The bottleneck analysis graphs (Figures 8, 9) show that with mismatched speed senders and
receivers, TCP/IP performs close to optimal. The degree of mismatch which is needed before
TCP/IP performs optimally varies. For the DECstation 21000 as receiver, the sender should at
least twice as fast or at most half as fast as the receiver. For the 12.5 MHz Intel 80386-based
DELL 310 PC as receiver, the sender should be at least four times as fast or at most one quarter
as fast as the receiver.

But when the send and receive rates are close, TCP will artificially limit throughput unless
the TCP receive buffer is carefully sized. Figures 8 and 9 show that throughput is cut in half
in the DECstation and DELL, due to inadequate TCP receive buffer sizing. The DELL 310 is

idle 45.3% of the time during a file transfer from an 80386-based IBM PS/2. The halving of
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throughput and high idle time arise only because of window protocol coupled with inadequate
TCP receive buffer sizing. An alternate flow control mechanism could do better,

An optimal flow control policy would “track” the upper bound curves in Figures 8 and 9.
Considering the case of a file transfer between two hosts that -do not communicate with other
hosts during the transfer, rate based flow control s ideal. In this case, one can measure the
maximum send and receive rates; A and i, of a host before attaching it to a network, just as we
did in our study. The value of X and 4 only change when the host itself is altered, for example
by increasing its memory or upgrading its processor or network adapter. A rate based sender
can.ask a receiving host for its value of # at connection establishment time, and then transmit a
rate that lies on the upper bound curve in Figures 8 and 9, namely max(A, g£), to achieve optimal
throughput.

In contrast TCP cannot operate on the optimal curve because the protocol provides no
way of learning or dynamically measuring A and g, although it might be possible to modify
the protocol to do so. To use the information, however, TCP implementations will need a
sophisticated algorithm to return receiver advised window sizes that could be larger than the
amount of available receive buffer space, but will limit the likelihood of buffer overflow.

Our study also suggests that memory could be used more optimally in a TCP implementation
which can learn about the relative speeds of senders and receivers, as rate-based flow control
requires. For p << 1 and p >> 1, for the experiments reported here, a receiver buffer equal to
just twice the maximum segment size is adequate to achieve optimal throughput.

Of course the fact that a transport protocol must adapt to varying traffic as connections on a
host are established and released, complicates the problem of designing a flow control mechanism
that tracks the optimal throughput curve. Further complication will arise in optimizing perfor-

mance for interactive traffic, in contrast to the file transfer application studied here. Our future
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research will investigate these problems in the framework of g large TCP window augmented

within which a rate based control operates,
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