Explicit Parallel Programming:
System Description

By Jim Gamble and Calvin J. Ribbens
TR 91-20

Explicit Parallel Programming: System Description®

Jim Gamblet and Calvin J. Ribbens
Department of Computer Science
Virginia Polytechnic Institute & State University

July 23, 1991

Abstract

The implementation of the Explicit Parallel Programming (EPP) system is described. EPP
is a prototype implementation of a language for writing parallel programs for shared memory

multiprocessors. EPP may be viewed as a coordination langnage, since 1t is used to define
the sequencing or ordering of various tasks, while the tasks themselves are defined in some
other compilable langnage. The two main components of the EPP system—a compiler and an
executive—are described in this report. An appendix is included which contains the grammar
defining the EPP language as well as templates used by the compiler in code generation.

1 Introduction

The purpose of this report is to describe the Explicit Parallel Programming (EPP) language and
system from the point of view of the system designer and implementor. A companion report
[Gamb 91] describes EPP from a user’s point of view. See also [Gamb 90] for a complete discussion
of the goals and findings of the FPP project. The remainder of this report is organized into two
main sections, the first describing the EPP compiler and the second the EPP executive. Regarding
the compiler, we devote a separate subsection to each of the three typical compaonents of translation:
lexical analysis, parsing, and code generation. The section on the executive summarizes the basic
tasks of the executive and then discusses in more detail the special issue of memory management.

2 EPP compiler

2.1 Lexical analysis

EPP performs lexical analysis with a combination of finite state machines (yes, plural), internal
program states, and through interfacing with parser data structures. Because EPP usually has
more than one language to process, it has one finite state machine used to process EPP code, and a
second finite state machine which processes generic source code. Both finite state machines convert
an input stream of characters into tokens and perform an initial typing of the token. The finite
state machine which parses FPP code has only 10 states. The small number of states 1s possible
because EPP restricts itself to logic sequence—the most structured and least variable part of any

*This work was supported in part by Department of Energy grant DE-FG05-88ER25068.
tPirst author’s current address: 1BM FSD, 9500 Godwin Drive, Manassas, VA, 22110.

language. The second, or source code, finite state machine has only 4 states. It is even smaller
than the EPP finite state machine because no analysis is performed on the tokens returned. Thus,
many of the tokens returned have the type ascii for ascii characters which might be illegal in EPP,
or white for white space. The second finite state machine has no error states; its job is simply to
pass all input on for later processing.

Certain lexemes in EPP can be defined to have a special type in the program. This is not unusual
in compilers, since languages like C and Pascal, among others, allow the user to define variable
types which may later be used to declare data items exactly as if the defined types were standard,
predefined types. It is perhaps a subtle point that the lexeme thereafter is typed differently than
it would be earlier in the program. This feature gives the EPP language added flexibility.

The finite state machine gives a token its initial type. Four types of tokens are redefined by
a subsequent typing. As with many languages, a sequence of letters and/or digits which begins
with a letter is typed as an identifier. Keywords are initially identified as identifiers, and must
be recognized as a keyword during retyping. Keywords are determined by a table look-up, which
makes the compiler more modular. Changes and additions to the list of keywords are done by
changing a table instead of reprogramming the finite state machine.

The EPP compiler may also redefine an identifier to be a source-identifier or an EPP-identifier.
These tokens represent names which were declared in the references section, and therefore may
be called from the current program. Source-identifiers call procedures written in source language.
EPP-identifiers call procedures written in EPP. The distinction is important since parsing proceeds
differently for each case. In the former case, the parser will be processing the argument list as
source code; in the latter case, the parser continues in EPP mode.

As with the languages mentioned before, EPP allows types to be defined. Unlike the languages
mentioned before, defined types in EPP are not defined by combinations of other types. One reason
for this is that EPP recognizes no predefined types. In order to be as flexible as possible, types
are defined simply by size and bounding (i.e., full word, double word). No other information is
needed, since further information only concerns semantic issues. The size and bounding are needed,
however, since EPP does allocate memory space.

Source code, which is an indispensable part of EPP programs, may appear in a few well delimited
contexts. At one point in the development of EPP, source code was allowed to appear without
delimiters, believing that the context would be sufficient for distinguishing between the two. In
practice, it was a simple matter to identify the start of source code; however, it was difficult to
reliably find the end of the source code. While the parser processes EPP code, it knows where to
expect source code. While parsing source code, the parser is really lost since it knows nothing of
the structure of the source language, nor can it rely on EPP keywords being unique—many are not.
So there was a choice. Either prepend every EPP statement with some unigque keyword, or delimit
the source code. The latter option was chosen as a less intrusive and less cumbersome option.

Source code may appear as a type declaration string, in which case it is delimited by quotation
marks. The delimiters allow types identified by unusual combinations of characters to be used.
Examples are “CHARACTER*12”, or “DOUBLE PRECISION”. Complicated types, such as might
define a record structure, can be handled neatly with constants.

Another context for source code is as controls and conditions for dynamic control structures.
Structures in this category are the if statement, the loop statement, the until statement and the
clone statement. The delimiters for the source code in these structures are parentheses, chosen
because many languages use parentheses to delimit logical conditions. Source code which is parsed
in this context is given the lexical type expressn meaning “expression”.

Another place which is a context for source code is as the argument list for a source identifier.
As with dynamic structures, source code in an argument list follows the tradition of being delimited
by parentheses. Identifiers are passed in the manner used by the source language. In FORTRAN,
this means that identifiers are passed by reference. The entire argument list is returned as a single
token and given the type arglist.

Finally, source code may appear as an invocation—a program unto itself. In such cases, the
source code is delimited by EPP keywords source and epp. The epp keyword is not necessary if
the source code immediately precedes an eppend. Within source programs, the keywords notord,
serial, concur, and eppend may be used to group source code statements into subtasks. The
entire source code, including line breaks and white space, is returned as a token having the type
source.

In all instances in which source code appears, it is given a special type and is passed in its
entirety to the parser, from which it will be included in an output source file. EPP has made
provision to handle tokens of any arbitrary length, so that long occurrences of source code are
not a problem. The programmer must be responsible, however, for the syntactic correctness of all
source code. In the case of FORTRAN, this will mean that statements must appear in columns 7
to 72, and continuation lines must have a continuation character in column 6.

2.2 SLR parser

The EPP compiler uses a simple LR (or SLR) parser because the EPP language is described by 2
context free grammar, and because the mechanism for parsing is a simple push-down automaton—
fast and easy to program. The context-free grammar for EPP has approximately 90 productions,
and approximately 80 symbols. None of the productions pertain to the parsing of expressions,
which permits the grammar to be as comparatively small as it is.

In truth, the language is not context-free because it has the classic if-else ambiguity, in which
an else following nested if statements could logically be paired with more than one if. Following
the lead of this classic problem, EPP resolves the conflict by pairing else with the nearest if. The
grammar used by EPP may be found listed in the Appendix.

The EPP grammar evolved over the period of time in which the EPP system programs were
written. The grammar has changed several times to accommodate changes in the EPP design.
The process of generating parse tables from the grammar was accomplished by a program named
Iranal. The output from lranal is in a Pascal format, but the format is regular enough that a few
UNIX tools (awk and sed) can produce the tables in C code automatically.

The parser is also responsible for reduction opera,tions—operationé which process information
found either on the stack or in global variables. Reduction operations build data structures, track
scope, build source code files, and build the logical sequence output file. The reduction operations
are partly responsible for the “unnatural” grammar of EPP. For example, the EPP grammar has
the following productions.

declare — gentype symlist
gentype — usertype

The token usertype is a terminal symbol in the grammar, so it would seem more logical to combine
the two productions into one.

declare — usertype symlist

However, this method would mean that the type is not known until a list of symbols has been
reduced to a symlist. At that point, all the symbols represented by symlist would need to be
reprocessesd to include the type information. It seemed simpler to have two productions, save
the type information upon reducing a usertype to a gentype (an action which occurs before
encountering any symbols in the list), and process each symbol fully when the symbol is encountered.

2.3 Code generation

The internal representation of the EPP program, as constructed by the parser, is a hierarchical
data structure dominated by a task list. Each task may optionally have a list of data areas, a tree
structure of type definitions, and a tree structure of external references. The data areas each have
a tree structure of data items (variables, arrays). The structure of the internal representation is
shown in Figure 1. As the compiler parses tasks, new task structures are added to and deleted from
the task list. Current scope is defined by the task list so that the first encounter of an identifier
in following the task list from the current task to the highest level task is taken as the intended
reference.

The EPP compiler actually produces two types of output code. The first type is text program
statements of FORTRAN (or other languages, to be implemented later). This output represents
the semantic actions of the program. The second type of output represents the logic sequence of
the program. In form, this part of the output is a file of data structures, linked hierarchically by
pointers. .

FORTRAN text is generated with several fill-in-the-blank templates. A separate template exists
for handling the different types of source code. The loop has its own template for testing and
incrementing loop counters. Similarly, the if, the clone, and the until have their own templates.
All the templates include code which enact data associations before giving program control to user
code. The templates and examples of their use appear in the Appendix.

The data association is a necessary part of each template, and the details of how it works will
be given later in this section. The data association is only one-half of the trick, however. With a
data association, the program has access to an amorphous piece of physical memory. In order to
function in the program, it must have a structure imposed upon it. The compiler does this in a
two-step process.

In the first step, the compiler reads through the list of data areas which are a part of the task
environment. The data structure which identifies the appropriate data areas is built by reduction
operations during compilation. As the program processes the list, it writes variable and array
declarations to the text file. In this way, the semantics of type declarations are passed to another
compiler. '

In the second step, the compiler rereads the same list, but this time generates a series of
equivalence statements, one per data item. The equivalences are written so that each data item is
correctly offset into the data area. An interesting aside is that the same identifier can be assigned
a different offset in two distinct programs, yet still reference the same piece of physical memory.
The feature responsible for this flexibility also allows that same data area to have different sizes in
two distinct programs.

The logic sequence in the data file is described by two major data structures—the process and
the invocation. These two structures relate somewhat like a direct object and verb, respectively.
A process is composed of zero or more invocations which are ordered according to the type of the
process. For example, a loop process has one invocation which is executed zero or more times. A
notord process has one or more invocations which may execute in any order. Each invocation is

current task

task

structure of

external references

task

task

structure of
type declarations

data area

N

\

top-level taék

structure
data area of
\ data items
\ data area

Figure 1: Internal representation of an EPP program.

linked to a single process and exists to store any arguments which are being passed to the process.
A diagram of the logic sequence structure is shown in Figure 2.

The data file may also include two minor structures, which are the data area list, and the string
which is used to store file names. Both structures are linked to the process structure. Certain
processes have semantic actions associated with them, in which case the process links to a filename
containing executable code to perform the desired actions. The data area list stores data areas
which were defined in the task corresponding to that process. The executive tracks the data areas
in order to give each process the proper scope at run time.

3 EPP executive

This section focuses on work done in the EPP executive. As most of the work for this project
concerns language design, compiler issues will still arise in this section, however. Curiously, the
executive required more time to implement than the compiler. A related distinction between the
two programs is that the compiler implements theoretical designs in fairly straightforward ways,
while the executive implements the solutions to difficult technical problems which are often system
dependent.

3.1 Basic tasks

A discussion of the workings of the executive follows after the definitions of two relevant terms. An
environment is a set of logical data areas and the structures imposed upon them. The run time
process tree is a data structure used by the executive to manage processes.

The executive executes four procedures repeatedly on the run time process tree. The queuing
task examines all tasks and queues any which may run. Queueing proceeds top-down, so that the
state of a task may prevent subtasks from being queued. The activation task finds all queued tasks,
provides each with its proper data association, and starts the task. In a full implementation, this
task would also determine whether a task runs immediately, or whether it waits for a more optimal
execution time—a decision which will be made by the load balancing logic. At present, all tasks are
scheduled in a first come, first served manner. The wake fask determines when tasks are officially
“finished”. It follows the rule that no task may be marked finished unless all subtasks are finished.
The janitor task walks through the run time process tree and prunes any finished tasks. As tasks
finish, other tasks may become ready to run. The program terminates when the run time process
tree is empty.

As the executive walks the process tree, it must create the appropriate environments for each
node. This is harder than one might think, since the tree is a dynamic structure. Fach node has its
own list of environments, since lists are deleted and augmented during the course of the program.
In addition, some environments must be created locally, while others need to be accessible to many
tasks. Some environments depend upon task parameters.

The executive handles all these problems by uniquely identifying each data area with an integer.
Every local data area requires a new integer. Global data areas are created once, and then identified
by that integer thereafter. A particular point concerns passing data areas to an EPP procedure.
Upon encountering a procedure, the executive must match the argument to an actual data area,
and then associate the identifying integer with the parameter. When entering a procedure, the
executive also must eliminate all other environments from the scope of the task, since procedures
do not inherit the scope of the calling procedure,

top-level
process

process

invocation

|

local
data area

l

filename

base-level
process

1

local
data area

/ arguments
‘invocation process invocation
Y
local
data area
4 Y
invocation invocation

Figure 2: Structure of the logic sequence file.

l

The current implementation of the EPP executive requires that the current directory have a
subdirectory named “epp”. The EPP compiler places all task images in this directory from which
they will be called by the executive when it decides to run that task. The directory also is used to
store the files needed for data associations. These will be recognized by the name “AREA” followed
by 4 digits. The names are generated automatically by EPP, and have no relation to any identifiers
in the EPP program.

3.2 Memory management

There are two memory management issues which require special attention: managing space for the
process run time tree, and the implementation of data associations. The process run time tree
data structure is the basis of the executive, and contains one node for each active task. As tasks
complete, the executive prunes nodes from the tree and returns them to a heap space. The heap
space is necessarily under explicit control of the executive (i.e., it allocates and tracks the heap
space on its own) because it was discovered that malloc! was using the same part of memory that
was set aside for data associations. This was not an avoidable coincidence. Whatever address is
selected as the start of data association space was automatically used by the linker as the start of
malloc space.

This section on memory management concludes with an explanation of how EPP handles data
agsociations—how a program includes that amorphous piece of physical memory into its task space.
Data areas not only accommodate data flow between cooperating processes, they facilitate commu-
nication between the executive and the independent processes. The data association requires that
EPP obtain a free page of memory from the system, and then learn how to access that memory.
Part of the executive’s responsibility is that it be able to pass the knowledge of how to access the
new page of memory to certain processes that it creates.

On the Sequent S81, where EPP was developed, we took advantage of the addressing procedure,
and a system routine known as MMAP to enact data associations. (Gould/SEL computers have a
similar system routine, and similar functionality would be required on other machines in order to
implement EPP.) Addressing—the process of translating a logical address into a physical address—
is a complicated process which involves a table known as the page table. In a simplified translation
procedure, a logical address becomes a physical address by a look-up procedure in the page table.
MMAP is a system routine which works by altering a task’s page table to point to some free page(s)
of memory. The value which MMAP enters into the page table is logically tied to a filename. Any
process calling MMAP with that filename will access the same page(s) of physical memory. The file
identified by the filename additionally serves as the swap space for that piece of memory. MMAP
takes as arguments a filename, an offset into the file, the size of the memory to include into the
task, and a start address in logical memory.

A data area can have different sizes if different structures are imposed upon it, but this is no
problem for MMAP. In this case, one program would change more page table entries to accom-
modate the extra memory pages. The additional entries, however, would refer to new physical
memoty, causing no overlap with adjacent data areas in a different program. The other program
has its own page table, which is not affected by changes to the first program.

Data areas of different sizes could be responsible for one identifier having different offsets in
distinct files. In this case, the identifier would have to “shift up” into memory. While the offset
would be different, the arguments sent to MMAP would change to accommodate the shift in

!malloc is a UNIX system routine responsible for dynamic memory allocation.

memory. MMAP would change a different page table entry in the two programs, so that the
appropriate logical address in each program would reference the same piece of physical memory.

References

[Gamb 90]

[Gamb 91]

Jim Gamble, Ezplicit Parallel Programming, MS Thesis, Department of Computer
Science, Virginia Polytechnic Institute and State University, 1990.

Jim Gamble and Calvin J. Ribbens. “Explicit Parallel Programming: user’s guide”,
Research Report TR 91-19 Department of Computer Science, Virginia Polytechnic
Institute and State University, July, 1991,

A SLR grammar

This section contains the symbols and productions of the SL.R grammar used by the parser in the

EPP compiler.

Terminal symbols:

eppend notord serial concur fortran
€pp source eppconst epptype eppass
eppstruct epprefs lexuntil lexloop lexclone
lexinit lexwhile lexinc lexindex lexif
lexelse lexid usertype lexsiring lexicon
arglist expressn colon Iparen rparen
COMmInAa equal $
Nonterminals symbols;
units unit nametype namedarea eppcode
constant typespec id_area decl_vars header
task extheader value declare langid
dataspex xrefs actions parains gentype
symlist assoc beginref refers sequencer
invox until loop clone if
ifelse param var array beginarea
refer invo beguntil loopctl clonectl
beginif dims areas initloop continue
increment index area
SLR grammar productions:
S — units
units —— unifs unit
units — unit
unit — nametype
unit — namedarea
unit —+ eppcode
unit — constant

nametype — epptype typespec
namedarea— id_area decl_vars eppend

eppcode —— header task

eppcode — extheader task

constant —— eppconst lexid equal value
typespec ~—— lexid lexicon lparen lexicon rparen lexstring
typespec —— lexid lexicon lexstring
id.area — eppstruct lexid
decl_vars — decl_vars declare
decl_vars — declare

header — langid lexid colon

task — dataspex xrefs actions
task — dataspex actions

task — xrefs actions

task — actions

extheader — langid lexid lparen params rparen colon
value —s lexicon

value — lexstring

declare — gentype symlist

langid — fortran

langid —+ epp

dataspex -—» dataspex nametype
dataspex — dataspex assoc
dataspex —— nameiype

dataspex —— assoc

xrefs — beginref refers eppend
actions —+ seguencer invox eppend
actions —— until

actions — loop

actions — clone

actions — if

actions —— ifelse

params —— params COmMa parain
params —— param

gentype —— usertype

symlist — symlist comma var
symlist — gymlist comma. array
symlist ~— var

symlist — array

assoc — eppass lexid

assoc —+ beginarea decl_vars eppend
assoc — id.area decl_vars eppend
beginref —— epprefs

refers —+ refers refer

refers —> refer

sequencer — notord

10

sequencer — serial
sequencer — concur

invox — invox invo

invox ~—+ invo

until — beguntil invo lexuntil Iparen expressn rparen
loop — loopctl invo

clone —— clonectl invo

if — beginif invo

ifelse — beginif invo lexelse invo

param — lexid

var — lexid

array — lexid lparen dims rparen

beginarea — eppstruct

refer — langid lexid lexstring

refer — langid lexid

invo — lexid Iparen arglist rparen

invo — lexid lparen areas rparen

invo — lexid lparen rparen

invo — task

invo — source

beguntil — lexloop

loopctl — initloop continue increment lexloop
loopctl — initloop continue lexloop

loopctl —+ continue increment lexloop

loopctl —— continue lexloop

clonectl —— initloop continue increment index lexclone
beginif — lexif lparen expressn rparen

dims — dims comma lexicon

dims — lexicon

areas — areas COInIna area

areas — area

initloop —- lexinit lparen expressn rparen
continne —— lexwhile Iparen expressn rparen
increment — lexinc Ilparen expressn rparen
index — lexindex lparen usertype lexid rparen
area — lexid

B Source code templates

This appendix contains the source code templates mentioned in Section 2.3. All templates are
included, with boxed pseudo-code to indicate where the compiler includes portions of user code.
The templates are presented in the order of data association code, loop code, until code, clone
code, and if code.

The data association code (see Figure 3) permits no user code. Its parameters are read at run
time. The function of this particular template is to call the procedures which in turn call MMAP
to enact the data associations.

11

character*80 eppil
integer eppZ

integer epp3
character*1l epp0(0:1)
common feppblock/ epp0
integer iargc

if (arge() .eq. 3) then
call getarg(2, eppl)
read(eppl, *) epp2
call getarg(3, eppl)
read(eppl, *) epp3
call getarg(1l, eppl)
call make cstring(eppl, 80)
call environment(eppi, epp2, epp3)
else
stop
endif

Figure 3: Data association template.

‘All dynamic control templates invoke special interface routines which ensure synchronous ex-
changes of information between the control process and the executive. Five routines are re-
sponsible for the synchronization: proc_putjunk, proc_get_sigi, proc_get_sig2, proc.set_sigi,
proc_set_sig2. The procedure proc_putjunk writes a value to the junk space of the calling pro-
cess. The procedures proc_get_sigl, and proc_get_sig? retrieve the value of the two flags sigl
and sig2, respectively, for the calling process. Proc_set_sigl, and proc_set.sig2 set values for
their respective flags.

The loop template is found in Figure 4. The clone template follows in Iigure 5. The template
for until is in Figure 6. Finally, the template for if and if-else appears in Figure 7.

12

logical epp4
integer eppb
integer epp6

|source code which is executed once before the loop starts|

epp4 = |continuation condition|
if (epp4) then
call proc_putjunk(1)
else
call proc_putjunk(0)
endif
call proc_set_sigl()
call proc.set.sig2()
do while (epp4)
call proc_get.sigi(epp5)
call proc_get_sig2(epp6)
do while ((epp5 .eq. 0) .or. <{(eppb .eq. 1))
call sleep(0)
call proc_get_sigl(epp5)
call proc_get_sig2(epp6)
enddo
[source code which executes after every iteration

eppd = Icontinuation conditioﬂ]
if (epp4) then
call proc_putjunk(1)
else
call proc_putjunk(0)
endif
call proc_set_sigi()
call proc_set_sig2()
enddo

Figure 4: Loop template.

13

logical epp4
integer eppb
integer epp6

|source code which is executed once before the loop startg]

eppd = |continuation condition|
if (epp4) then
call proc.putjunk(/index variable|)
call proc.set_sigli()
call proc_set_sig2()
endif
do while (epp4)
call proc_get_sigi(epp5)
call proc_get_sig2(epp6)
do while ((epp5 .eq. 0) .or. (epp6 .eq. 1))
call sleep(0)
call proc_get_sigl(epp5)
call proc_get_sig2(epp6)
enddo
Isource code which executes after every iteration

epp4 = |continuation condition]
if (epp4) then
call proc_putjunk(|index variable)
call proc_set_sigi()
call proc_set_sig2()
endif
enddo

Figure 5: Clone template.

14

logical epp4
integer eppb
integer epp6

call proc.putjunk(1)

eppd = .truse.

call proc_set_sigl()

call proc.set_sig2()

do while (epp4)
call proc get_sigi(epp5)
call proc_get_sig2(epp6)

do while ((epp5 .eq. 0) .or. ({epp6 .eq.

call sleep(0)
call proc.get_sigl(epp5)
call proc.get sig2(epp6)

enddo
eppd = |continuation conditionl
epp4 = .not. eppd

if (epp4) then

call proc_putjunk(1)
else

call proc_putjunk(0)
endif
call proc.set.sigi()
call proc_set_sig2()

enddo

Figure 6: Until template

logical epp4
integer eppb
integer epp6

epp4 = |logical condition|
if (epp4) then

call proc_putjunk(1)
else

call proc_putjunk(0)
endif

Figure 7: If, If-Else template

15

1))

