An Agenda for Human-Computer Interaction
Research: User Interface Development
Processes and Methodologies
By H. Rex Hartson

TR 91-17

AN AGENDA FOR HUMAN-COMPUTER INTERACTION RESEARCH:

USER INTERFACE DEVELOPMENT PROCESSES AND METHODOLOGIES

H. Rex Hartson
Department of Computer Science
Virginia Tech, Blacksburg VA

This paper is the result of one working group in a workshop entitled "An
Agenda for Human-Computer Interaction Research: Science and
Engineering Serving Human Needs." The workshop, sponsored by the
National Science Foundation, brought together "20-25 of the most
prominent HCI researchers from the disciplines of computer science,
engineering, information science, psychology, and human factors along
with several NSF staff members." The workshop results, to appear in the
HCT literature, identify critical research issues and potential avenues for
assaulting them, along with necessary infrastructure recommendations
related to educational, professional, and facility problems. The overall
topical area was divided into five areas, each with an individual researcher
in charge of directing discussion and reporting on the area. The areas and
researchers in charge are:

Theory and taxonomy of HCI models Stuart Card

The interface development process Rex Hartson

IJO devices and interaction styles Rob Jacob

Software tools Dan Olsen
Computer supported collaborative work Judy Reitman-Olsen

This present paper is the report by the group chaired by the author on the
topic of the interface development process.

AN AGENDA FOR HUMAN-COMPUTER INTERACTION RESEARCH:

USER INTERFACE DEVELOPMENT PROCESSES AND METHODOLOGIES

H. Rex Hartson
Department of Computer Science
Virginia Tech, Blacksburg VA

i. INTRODUCTION

1.1 Background

The goal of many people working in the human-computer interaction (HCI)
area is better interactive software systems. How can HCI contribute to that
goal? One way is to produce systems with better interfaces. It is obvious
that HCI research will aid in this by offering ways to produce interfaces
with increased usability.

Another way is to develop new kinds of systems to support particular
kinds of work (e.g., group work). Here the nature of the application is the
direct subject of HCI research. A third way is based on the premise that
better software systems are influenced by their development process. The
development process is supported by tools, and there is also an HCI role in
improving the tools (especially their usability for their users, the interface
developers). In this paper we shall focus on the user interface
development process, and a research agenda for progress in this area.

Most of these research issues come under the general heading of
methodologies that prescribe and structure activities within the
development process. By methodologies, we mean theory-, principle-, and
model-based methods and techniques that have been validated to
determine their true effectiveness.

There is a need for both "big" and "little" research on HCI development
processes. Big research will bring about new theories and major
breakthroughs that change the way we think about the problems. Little
research is also needed to find solutions, often low technology solutions, to
pragmatic problems—essential to the transfer of technology from the

laboratory to the workplace. Finally, before proceeding, because some of
the terms used here have a similarity to terms in software engineering, it
i1s important to clarify that this paper is about HCI and user interface
development and not about development of software.

1.2 Justification

While development methodologies cut somewhat across the other areas,
especially across software tools to support interface development, they
also constitute an important research area in their own right. Methodology
is often the vehicle for a theory-based discipline to translate theory into
practice. In the original announcement of this workshop, the first
paragraph for "An Agenda for Human-Computer Interaction Research:
Science and Engineering Serving Human Needs" ends by saying (emphasis
my own): "The interactive Systems program [of NSF] has been aimed at
supporting the discovery of basic principles of human computer interaction
and the development of innovative software tools and methodologies."

Much of the current research attention seems to focus on HCI theory or
tools or product-oriented ideas, with less concern for methodology.
Development of user interfaces is the process where the discipline is put
into practice. Methodology draws together theories, models, approaches,
and processes and organizes them to act in concert to produce a highly
usable and functional product. Today most of these processes are still ad
hoc, resulting in quality that varies with the experience of the developers.
Thus, there is a need for HCI research in this area, to put these processes
on a solid scientific footing,

1.3 A Framework for Research in User Interface Development Methods

The various activities that comprise the user interface development
process lend themselves as topical headings in an outline for organizing the
subject. However, the danger in using them as such is the possibility of the
misconception that these activities can be cleanly separated in practice.
Such a clean separation is the premise of the phase-oriented "waterfall"
software development methodology, which we know does not work for
development of user interfaces. Some contend that it likewise doeg not
even well serve software engineering (Boehm, 1988).

On the other hand, although these development activities are intertwined
in an iterative cycle, the activities themselves are usually distinguishable
and so do provide a useful framework for structuring our discussion. This
framework serves well as g context for discussing and comparing various
development methodologies. 1In particular, few methodologies, if any,
apply to the entire spectrum of development activities. This framework

provides a yardstick for determining and comparing the coverage.

1.4 Organization of this Report

The sections of this report are, thus, organized around individual interface
development activities. In one sense considerable progress has been made
in many of these areas. But in another real sense, we have exposed only
enough to realize the need for real breakthroughs. Within each section
there are two subsections: an introductory subsection and a subsection to
highlight key research issues concerning that activity. The introduction
describes and defines the activity and motivates its importance to human-
computer interaction. This will often include a brief review of the current
state of the art, including references to related work in the literature,
where appropriate.

This report is not a survey, however. It is assumed that the audience is
the HCI research community, plus others who will benefit from being
informed about current HCI research directions and the importance of HCI
in computer science. Therefore, the review of related work largely
depends on a few representative references to existing work to serve as
pointers for readers in need of more detailed discussion, and no attempt is
made at completeness, as there might be in a survey.

The subsection describing key research issues provides an explicit list of
research goals and directions for progress in the future, the primary
purpose of this report.

1.5 Approach

It is fairly easy to distinguish, in user interface discussions, between
product and process. The product is the resulting interface design (and its
- implementation), including objects, their behavior, semantics, content,
style, and human factors of a given interface. What is reported here is not
about the product and, therefore, rules out most discussion about such
things as principles and guidelines for interface content (e.g., calling for

consistency), except when such guidelines might affect the process itself.
In this paper, rather, we focus on the process by which these things are
developed, integrated, and tested within an interface design,

For purposes of discussion, we should also like to distinguish between the
terms design and development. In this context the term "design" (used
here as a verb referring to a development activity) is unsed to apply
(somewhat narrowly) to the creative human mental problem-solving
activity used to synthesize tasks, objects, and features and put them
together to make up a new user interface design (used here as a noun to
refer to a product). We use the term "development” here as a broader
verb, encompassing design along with systems analysis, needs analysis,
user analysis, requirements analysis, task analysis, functional analysis,
task allocation, design representation/specification, rapid prototyping,
evaluation, design of an implementation model, programming, software
"manufacturing” (polishing/optimization), deployment, documentation,
maintenance, and iterative refinement.

The term development can apply in different ways to many parts of an
interactive system. Figure 1 shows one view of relationships among
various kinds of interface development within overall system
development. This diagram is intended as a means for organizing a
discussion of the topic area and not an architectural diagram of an
interactive system or user interface management system.

L | Interaction
Application styles Media, User
' interaction
software devices development
development
development (e.g., training)

Computer-based system development

Overall interactive system development

Figure 1. Relationships among interactive system development activities

Figure 1 shows that user interface development is part of a larger set of
development processes. From the outside in, we have overall interactive
system development, development of the part of the interactive system

4

that is computer-based, user interface development, user interface
software development, and abstract interaction development. Each of
these domains of development involves its own lifecycle with its own set
of processes, Except for projects to develop new computing systems or
workstations, user interface developers usually find that choices of
hardware and interaction devices are made independently. 1In this paper
we are interested in the highlighted areas of Figure 1: primarily the
domain of abstract interaction development, in the context of user
interface software development, and user interface development in
general, '

Some of the development activities mentioned just before Figure 1 apply
solely to development. of abstract interaction (e.g., task and user analysis),
some solely to development of interface software (e.g., programming), and
some apply to both (e.g., design and representation). To set the stage, we
see user interface development depending on two tenets in tension: on
one hand user interaction design is completely separate from software
design; on the other hand the interface is an integral part of an interactive
software system.

As shown in Figure 1, design of interaction with the user has two separate
and essentially different embodiments: the abstract interaction component
and the concrete software that implements the ‘interaction. Design and
development of the abstract interaction are different from design and
development of user interface software. The two kinds of activities
require very different skills, attitudes, perspectives, techniques, and tools,
Software is the implementation medium. In principle, this is only an
"accident" and the medium could have been, say, clay or Legos. The point
is that it is useful to be able to discuss user interfaces independently of
implementation, software, and programming. Design of the interaction
becomes part of the specifications or requirements for design of the
interface software. Software itself also breaks down (at least conceptually)
into interface software and non-interface (computational) software,
although that separation, as we know, can be elusive and difficult to define
at times,

The separation between user interaction and interface software must be
balanced against the fact that the user interface is part of an interactive
system, and its development ultimately must be treated as an integral part
of the overall system development process. To this end, some have
proposed a parallel between the interface development and software
methods-—e.g., (Draper & Norman, 1985).

2. ITERATIVE METHODOLOGY

2.1 Introduction

Although it is not always clear to developers, user interface development
must necessarily be iterative (Gould, Boies, & Lewis, 1991; Gould & Lewis,
1985; Hartson & Hix, 1989). Unlike software engineering, where
development can be top-down and correctness-driven, user interface
development must be self-correcting, That is, interface development must
be a form of trial and error activity, its correction depending on feedback
from evaluation. Iteration is employed in both software engineering and
user interface development because of our inability to account for all the
details at once. However, iteration is used in user interface development
for an additional reason. Although we do have some methods for
predicting software behavior, we cannot predict human user behavior.
And this need for iteration isn't just until we can know enough to get it
right the first time, " . . . but because in a design domain we can never
know enough" (Carroll & Rosson, 19835). However, the software
engineering of user interface software can be a top-down part of the
iterative user interface development process, as shown in Figure 2.

Here software engineering of the user interface software can be top-down
in the sense of matching the user interface software to the interface
software requirements as produced in each iteration of the abstract
interaction design.

As with most creative processes there is a need for an alternation of
synthesis and analysis (Hartson, et al., 1989). This is probably true, in
reality, for software engineering as well. In some of our empirical
observations of real world software engineers at work we noticed iterative
and alternating development activities but, because corporate standards
and methods required it, work was reported as having been done strictly
top-down. As a result of these observations, we proposed an iterative,
evaluation-centered "star" lifecycle instead of the linear "waterfall” process
of moving from one phase to another. Many times software engineering
activities are from the "inside out" with the major work being the
development of a good "impedance” match between what is at hand at the
bottom and what is expected at the top. To be effective, the developer
must acquire a comprehensive understanding of the connections of these
elements at all these levels. Understanding the development process
requires an understanding of how developers acquire this comprehensive

overview. The same appears to hold in HCI. To some extent, the same
probably holds in the development of any large design (e.g., the complete
design of a large building, the design of a large modern airplane).

— Software engineering of user interface,
performed for each iteration through
overall process, can be at least partially
top-down, correctness driven, matching
\ user interface software to its requirements

from abstract interaction design.

7\

— T

Design and Requirements Design and
Interaction redesign of for user implementation User interface
needs abstract interface of user interface software
interaction software software

Evaluation

{prototyping,
testing) of
user interface

\ -

NS

Overall process for interface must be iterative and self correcting,
and cannot be top-down.

Figure 2. [ierative user interface development process, containing
software engineering of interface software

Beyond these similarities, however, there are fundamental underlying
differences between iteration for software engineering and iteration for
user interface development. First, the most significant purpose for
iteration is very different, and that difference in purpose leads to the need
for completely different methods for carrying out and controlling the
iteration. A goal in software engineering is to achieve correct and
complete functionality. Iteration of a software design is used to ensure
that requirements are eventually correct and that data structures and
functional algorithms are correct and complete implementations fulfilling

the requirements. The kinds of iterative activities that apply include
formalization of requirements and axiomatic validation of implementation
to prove that design and coding of the programs and data structures meet
the requirements. Some iterations might be more bottom-up to design
data structures and put together details. Other iterations might be more
top-down in terms of structuring modules and routines into bigger
programs, sharing and reuse of routines, etc. Formative evaluation is done
to ensure the functionality is as complete as possible and that the software
is working correctly.

A goal in developing the user interface is to achieve high usability in the
way the system interacts with the user, including high learnability, high
user task performance, low error rates, and high user satisfaction. Here
task-based usability specifications are quantifiable inputs to the abstract
interaction design, stated in terms of human user performance goals. In
contrast, software engineering outside the domain of the user interface is
not concerned with usability specifications. Further, for user interface
development, testing is with human users, measuring user performance
and satisfaction; this kind of testing is not appropriate for software
engineering (outside the interface domain)., Development of the interface
component is deeply concerned with the psychology of the user; software
engineering is not.

This profound difference in the way development in each of the two
domains uses iteration is related to the first tenet of the two "tenets in
tension" discussed in the introductory section, that development of the
abstract interaction part is separate from software engineering.

2.2 Key Research Issues

A research agenda associated with the iterative approach includes finding
solutions to a combination of technical, management, and technology
transfer problems. Specifically, these problems include getting usability
out of the laboratory and on the front lines and finding ways to control the
iteration (i.e., knowing when to stop). New techniques are also needed to
ensure that the process is converging and not just iterating. And, of
course, there are difficulties with communication among the multiplicity of
separate, but cooperating, developer roles. Solutions to the problem of
convergence toward an improved design are tied to new developments in
formative evaluation, and this topic is discussed in more detail in the
section on evaluation.

Iterative feedback from evaluation to design must to be grounded in a
science base that connects features of a situated artifact (i.e., in a situation
of use) to psychological consequences for the user (Carroll, 1990: Carroll &
Kellogg, 1989). To illustrate, a system that offers examples for learning is
making certain claims about how people learn and what activities they
prefer. The nature of the examples makes certain claims about what
activities are typical in this domain. The design can also be grounded more
broadly in a psychological science base, which addresses the role of
examples in learning. This connection of evaluation activities to principles
can be used to help organize redesign effort. A developer can ask
questions regarding what is good about a new version of an artifact, and
what claims, which when analyzed, are true and important in determining
users’ experience and yet were untrue in earlier versions. Since artifacts
can be typed and abstracted, this analysis can also help cumulate further
science, allowing analysis for one artifact to be sharable with others.

3. SYSTEMS ANALYSIS

3.1 Introduction

Systems analysis refers here to activities such as needs analysis, user
analysis, requirements analysis, task analysis, functional analysis, and task
allocation. Just like everything else in HCI, these activities, too, are
iterative and interwoven with later activities such as design. It is obvious
that careful attention in these early stages of interface development should
lead to easier, faster, and more economical achievement of quality in the
final product. Nonetheless, most developers want to get past the early
activities as fast as possible and get on to the better understood parts of
the process such as design and evaluation.

Task analysis is an especially important component of this early analysis
activity. Task analysis appears to be more well developed and more
extensively practiced in Britain than here in the U.S. Yet there are
important reasons for approaching design from a user task orientation.
This is because the task domain is where the designer determines what
kinds of users a system will have, what the users wish to do with the
system, and how the users will go about performing functions with the
system. User-centered design must be driven with methods and
approaches that account for cognitive needs and limitations of the user in

the context of tasks. - (See the discussion of behavioral VS. constructional
domains in Section 5.1)

3.2 Key Research Issuyes

A great deal can be done to model and formalize systems analysis
activities, such as needs analysis and user analysis, and to include them
explicitly in development methodologies. Much of the bad design that
must be filtered out in the iterative process can be avoided early on, if the
real goals of the design and the characteristics of its intended users are
more thoroughly considered. This is an area of very little current HCI
research, an area open and ripe for more theory and codification of
techniques. For example, there is a need for observational empiricism up-
front as an input to requirements definition (in contrast to its more
obvious use in the later evaluation activity).

The early processes can have an enormous impact on the final product, and
on the ease and cost of reaching it. Yet these processes are among the least
well-defined and least formalized and are not well understood or
extensively practiced by the majority of user interface developers.
Specific areas for research include field studies of real development
projects, essential in defining these activities and the associated
developers' roles. These studies can be used to determine, through
observation and deduction, an operational mode] of what real interface
developers presently do, as well as what they should be doing. Only
through field studies of real interface developers can we hope to
understand the day-to-day operational requirements and constraints
placed on developers and the needs they have for methods and tools.

Of ail of the systems analysis activities, task analysis is one which may
benefit most from having a specific research agenda. Task analysis has
been poorly adapted into HCI from human factors. Tasgk analysis in HCI
has gotten lip service, and it has been used occasionally by some
practitioners (mostly those who knew how to do it in other settings). But a
specific prescriptive methodology for doing task analysis in user interface
development is lacking.

Enormous operation sequence diagrams are still used to give great detail
about specific paths through a task. But, because these are sample
execution traces (and, therefore, extensional), they are not easy to bring to
bear on the general design problem in HCL Because HCI design has such a
large domain of asynchronous task possibilities, it requires an approach

10

that is essentially intensional-—i.e., addresses all things that can happen.
Also, operation sequence diagrams typically represent information such as
"here the user makes a decision and, based on that decision, selects a menu
choice." But at that point, if designers understand what information is
needed to make the decision and what information is available, they would
be in a much better position to support what the user really wants to do in
that task.

There is a strong research mandate to find new ways to get a deeper
understanding of the user's tasks into the interface design, bringing task
analysis fully into the interface development process. Most task analysis
for interface development is done now mainly in terms of physical actions
a user makes in carrying out a task. An interface designer can do a much
better job of supporting the user in the performance of a task if the design
is based on a task analysis that also includes more of the cognitive,
memory, perceptual, and decision making actions. Specific research is
needed to find ways to model how information is acquired and utilized by
users while performing a task.

A valuable place to begin is a comprehensive review of task analysis
techniques, adapting, recasting, extending, and modifying them into a
form which would a priori be matched to the needs of the HCI
design/development process. What is learned can be used to build a
model (and a methodology based on the model) for task analysis within
the interface development process. This must then be validated by an
investigation of whether the result really is matched to the needs of the
design/development process.

There are, of course, some user modeling techniques that offer the needed
kinds of task operators. The GOMS model (Card, Moran, & Newell, 1983)
and the Command Language Grammar (Moran, 1981) provide an important
basis for task analysis in HCI. However, they need adaptation into the
development process, because in this role their purpose is less to support
analysis to predict user performance and more as a descriptive
representation of the task from a design/synthesis perspective. In the
design environment, our understanding of tasks is shallow. Here we need
to know more about the users' needs (cognitive, perceptual, information
processing, etc.) during the performance of a task and whether these needs
are supported in the design. Higher levels of abstraction are needed so
that less detailed task representations can be formulated more quickly
than allowed by the keystroke level of detail (Card & Moran, 1980)
normally associated with these performance prediction tools. Also more
emphasis needs to be placed on supporting the user in the task. For

11

example, Fitts' Law can be used to analyze mouse movement in a design or
the keystroke level model to analyze that kind of physical action, but the
most difficult part in understanding the user and the task may be in
questions about why the user is moving the mouse or making the
keystrokes.

As part of the task analysis research agenda, there is a need for research
on task taxonomies within HCI, Results can help with reuse of task
analysis in connection with a new task. At the present we do not have a
taxonomy to help us understand how tasks are related, The act of
taxonomizing in itself, by organizing and structuring our rapidly growing
HCI knowledge base, would be of great benefit. Taxonomies of tasks, user
classes, methodologies, interface objects, interaction styles——among others—
would be very useful to designers. Also matrices showing relationships
(e.g., tasks by methodologies) would have significant practical value. This
latter would include a structured, prescriptive methodological connection
from task analysis to design. Having done task analysis, the designer still
presently does not have a method for proceeding smoothly and naturally
to the design process, the subject of the next section.

4. DESIGN OF THE INTERACTION COMPONENT

4.1 Introduction

Probably as much has been said in the literature about user interface
design as about anything in HCI. In the carly days of HCI, much of it was
ad hoc folklore, "principles” for design without empirical basis. Probably
the most creative and individualized activity in the development process,
design is also the most difficult to understand and formalize. So we must
be content to make up for our ignorance through constant evaluation and
mid-course corrections. To really understand user interface design is to
understand design in general, a topic that has been studied for many
decades without yielding generally applicable formulae for success.

For the sake of clarity, it is important to emphasize that, in this paper,
discussion of the design activity is about design of the interaction part of
the interface and not design of the interface software. Design, even as we
have narrowly defined it here (see Section 1.5 on Approach), is a major
activity in the development process; it is where the substance and
appearance of the interface are synthesized. Because of its intimate
relationship to other development activities, most work in this area goes

12

beyond pure synthesis and often includes iterative and evaluation-related
aspects. The work by Carey (1982) and Rosson, Maas, and Kellogg (1987:
1988) are representative of the broad work in this area. In addition,
other papers appeared in the CHI '90 proceedings—on the task-artifact
cycle (Carroll, 1990), contextual design (Wixon, Holtzblatt, & Knox, 1990),
and use of "critics” (Fischer, Lemke, Mastaglio, & Morch, 1990). We need to
bring cognitive science to bear more directly on the user interface design
process. As Carroll (1990) puts it, a goal of HCI in the 1990g is "to produce
applied psychology that efficiently adds value to design work.,” Much of
what has been said here, of course, applies to the whole development
process (especially evaluation), but these. things are mentioned here
because they have a significant impact on design and re-design. These
ideas should be noted in the context of this workshop as important new
theory- and method-based directions being taken to provide direct
techniques for producing high usability designs.

Interface design is required at several levels of abstraction. At the main
level of abstraction, most applications are presented to the user as a
workspace (holding and displaying a document, spreadsheet, drawing, etc.),
plus a collection of the main application functions, These functions may be
accessed through pull-down menu choices, selectable buttons, palettes, etc.
One can call this the functional level of design because of the Iarge number
of application functions simultaneously available to the user. There is also
a level of abstraction below the functional level, which one could call the
articulatory level because it contains details about how functions are
invoked and applied, parameters supplied, etc.

4.2 Key Research Issyes

A key research direction for work to support the design process is faced
with unsolved problems regarding how the basic functionality of an
interactive system, in the functional level just discussed, is formalized.
Research is needed on formal modeling and representation at this
functional level. It is possible, for example, to represent an application
function formally as a mapping, with inputs and outputs, that transforms
the application product (e.g., document) into a new state. Such a
representation would Support composition of functions into larger
functions and would allow formal reasoning about the nature of the
application functions. It would also lend a strong foundation for desirable
interface characteristics such as consistency. A connection to research on
task allocation, which is used, for example, to decide which function inputs

13

are provided by the user and which by the system, would support these
essential considerations in the design process.

While most of the design effort for an interface goes into specific artifacts
and how the user interacts with them within a task at the functional and
articulatory levels of abstraction, there is another important level, possibly
above this functional level, which one could call the user strategy level
(Draper, 1989). If this level exists in an application, it contains a model for
helping the user ‘determine - strategies for carrying out higher level goals
and intentions. This is the level that deals with how to use the application.
Yet this level is not included in interface designs for most current
applications and, therefore, is a key area requiring research.

Another research goal in the area of interface design is to discover helpful,
unobtrusive, structured, and organized ways to integrate the use of
principles, gunidelines, standards, style guides, and design rules into the
design process without stifling creativity. To a designer, the guidelines can
be too voluminous (e.g., nine hundred and forty-four from Smith and
Mosier (1986)). It is especially difficult to translate a general, often
abstract, set of guidelines into specific, concrete design decisions. Perhaps
interpretation of the more general guidelines provides designers with
creative freedom, within the bounds of HCI ‘principles. We .are presently
far from knowing how to offer designers access to the right guideline for
the right use and how to deal with inconsistencies and vagueness within
the guidelines. Research issues include methods for offering the designer
assistance in understanding, searching, and applying design principles,
guidelines, rules, and standards. This need appears to go well beyond
what might be provided by, say, an expert system to suggest design rules
during the design process. Another issue is how best to communicate
design rules and ensure that they are observed. Modern graphic interface
designs may require several thousand rules for complete specification.
New tools and methodologies are needed to deal with these issues.

There is also a connection to task analysis. If design guidelines can be
classified into a framework that correlates to task characteristics,
knowledge that certain characteristics make more difference than others
regarding a specific kind of user performance could lead to helpful choices
of design guidelines that specifically address usability goals and the design
could be tailored accordingly. For example, if error-free performance is
most critical, then design guidelines most important for this characteristic
can be determined.

14

Another research directive for the design process is one resulting in shared
access to principal-based and empirically tested state-of-the-art design
features. While toolkits such as X Windows, Motif, etc. provide shared
access to interface objects, design of these objects is not strongly principle-
based or empirically tested. More importantly, these toolkit objects are
shared within software implementation environments. In addition, there
is a need for libraries of artifacts (e.g., scrolling list in a dialogue box) that
have been developed, tested, and refined—to be shared within a given task
environment, independent of software. This would lead to increased-
productivity by avoiding reinvention, by raising the level of abstraction in
design work, and by providing necessary information to allow artifacts to
be deployed successfully within interface designs. The work of Mackinlay,
Card, and Robertson (1990) is in this direction, but needs a translation to
put it into practice.

The design of help functions involves other research issues to be
addressed. Consideration of help for the user must be integrated
throughout the overall development process and not just an add-on at the
end, as is often done in present practice. At each activity in the
development process, starting with early predesign and into design, one
needs to think about how the structure of the interface influences the
ability of the user to get help. For example, simple task analysis would
reveal that it is not useful to remove the currently -on-going task to display
the help and then erase the help information when returning to the
original task. Usability specifications also ought to include use of help and
other built-in training functions.

Documentation is a further important direction in which HCI research is
needed to support the design process. Documentation needs of many kinds
and at many levels arise in the production of a new interactive system,
Computer scientists need to find effective ways to apply our their
technology (e.g., hypertext, information storage and retrieval techniques,
multimedia, CD-ROMs, browsing methods) to yield new ways of delivering
information about our systems, making this information more accessible
and more useful.

An important concept in writing manuals for users is that information on
handling error conditions must be a part of the context of the task in which
the error can occur (Carroll, 1984). This is in contrast to the typical error-
free treatment of task performance instructions with information on
handling errors remotely located and difficult to associate with a specific
task. There is a need for methods to embed error handling subtasks
directly into task descriptions for user documentation. The design process,

15

where considerations of error-related behavior are made, is the proper
place to capture this information.

Another aspect of the documentation issue is production of the
documentation itself. The iterative interface development process leads to
design changes, often frequent and rapid changes. The effort to maintain
currency of good user documentation can be overwhelming in the context
of this kind of fast changing development process. There is a need for a
fast-track connection, possibly through semi-automated methods for
producing user documentation directly from designs. To accomplish this,
the technique used to represent the interaction component of the interface
must include task descriptions and screen pictures/scenarios. Further,
task descriptions that document the interface design must include more
information useful for end-users (e.g., strategy information about why a
user does particular actions). Such a semi-automated process can lead to
at least an interim form of user documentation that is a complete and-
correct skeleton of technical content as it is known at a given point in the
design. Recognizing that automatically produced user documentation will
not meet final requirements for writing style and usability, at points when
the iterative change cycle is more stable and higher quality documentation
is desired, technical writers can craft the skeletal documentation into a
more finished product. Having both system and documentation translated
from the same design representation can lend high integrity to the match
between user documentation and the system. The connection between this
kind of documentation and design representation techniques is clear, and
those techniques are the subject of the next section.

5. DESIGN SPECIFICATION AND REPRESENTATION

5.1 Introduction

Like design itself, representation or specification (the process of recording
the design for analysis and communication among developer roles) is
needed both for the interaction component of the interface and for the
interface software: a behavioral representation for the interface and a
constructional representation for the software used to build the interface
(Hartson, Siochi, & Hix, 1990c). Design representation is important to the
interface development process because it is the means for understanding
and communicating the design among team members/roles, and it is where
much of the analysis of the design is done. For example, some kinds of
analysis can be accomplished by automatic processing of a design

16

representation expressed in a formal notation (Reisner, 1981). As another
example, mentioned earlier in the section on the iterative development
process, psychological design rationale can be included in design
representations for the purpose of analyzing psychological claims
embedded in interface designs.

The topic of design representation can be difficult to sort out, because
there are so many different kinds of representation techniques, each for a
different purpose. Each type of representation uses its own perspective to
describe the same thing: what is happening in the user interface. For
example, suppose the user clicks the mouse button when the cursor is on
an icon. This is seen from a behavioral view as a user action within a task,
but in a constructional view this is an input event received by the system,
and in an implementation view this can be seen as something that fulfills a
condition that triggers a function within a toolkit widget. When the icon is
highlighted, it is seen as perceptual feedback in the behavioral view, and
System response output in the constructional view, due to a default
function or perhaps a callback in the implementation view,

A storyboard scenario is usually thought of as behavioral, because it
depicts a procedure performed by the user. On the other hand, a state
transition diagram is constructional because it is based on a view of
interaction that casts the system in a role of waiting in some state for an
input which, when received from the user, causes a state change. In the
past the most common interface representation techniques have been
constructional (Green, 1985: Green, 1986; Hill, 1987; Jacob, 1985: Jacob,
1986; Olsen & Dempsey, 1983; Sibert, Hurley, & Bleser, 1988: Wasserman
& Shewmake, 1985: Yunten & Hartson, 1985).

Task analysis methods are behavioral and, therefore, have the potential to
be used for design representation. However, they were not originally
intended for this purpose, and would require some adaptation to be
suitable. For example, hierarchical task decomposition used in task
analysis does not usually carry procedural or temporal information.
Operation sequence diagrams represent only sample instances of
interaction. Scenarios are usually employed only informally to get an early
impression of look, feel, and behavior, but it is possible that they could be
modified to play a more formal part in design representation (Hartson, Hix,
& Kraly, 1990b). Other behavioral representation schemes include GOMS
(Card, et al., 1983), the Command Language Grammar (Moran, 1981), TAG
(Green, 1989), the keystroke model (Card, et al., 1980), action grammars
(Reisner, 1981), and the work of Kieras and Polson (1985). These,
however, are intended more for analysis (e.g., predicting user performance

17

of existing designs), than for capturing designs as they are developed.
Nonetheless, some of these techniques have seen some use for behavioral
design representation (e.g., GOMS).

At Virginia Tech we have been developing and using a behavioral
representation technique called the User Action Notation (UAN) for design
representation (Hartson, et al,, 1990c). The UAN is a task-oriented
notation that describes the behavior of the user and the interface during
their cooperative performance of a task. An interface is represented as a
quasi-hierarchical structure of asynchronous tasks. User actions and tasks
are combined with temporal relations such as sequencing, waiting,
interrupting, interleaving, and concurrency to describe allowable user
behavior (Hartson & Gray, 1990a).

Design rationale has also been recognized as an important part of the
design to capture as part of its documentation. If all team members cannot
be in the same room at the same time, there is a need to communicate
more than the outcomes of the design decisions; there is an additional need
to communicate the reasons why decisions were made-—a need than goes
beyond the design team to those responsible for maintenance, to avoid
repeating wrong design decisions. Documentation of design rationale is
also essential for analysis of psychological implications of an interface
design. '

5.2 Key Research Issues

One of the specific research challenges in this area is to find ways to record
design ideas with a representation technique that is interleaved with and
closely tied to the creative mental design process. How can we make it
easy for designers to read and create design representations without
distracting mental attention from the creative aspects of design itself?
Representation must be made to serve design, not interfere with it.

Among the research issues to be addressed is the search for entirely new
approaches to design representation. These techniques must be based on
sound principles (e.g., abstraction, step-wise refinement) that have been
successfully applied in other development domains.

Non-trivial designs are necessarily complex, but some complexity can be
controlled with well applied methods of abstraction and some can be
overcome with training (interface development certainly is a specialized
skill that will require training). It has been shown that some kinds of
design representations are easier to understand than others (e.g., graphical

18

over text where possible). The overall development process would benefit
from appropriate representation techniques.

Supporting software tools are crucial here. We have tools for prototyping
and for constructing, but not really tools for representing designs in the
behavioral domain (i.e., interface designs independent of software,
software toolkits, and programming aspects). The leverage needed to
make this design representation process less laborious, time consuming,
and distracting from design can be had only through software support
tools.

In addition to notations and techniques, there is a need for good methods.
In our research group we know how to apply our representation
techniques because we invented them. But we are offen struck by how
much trouble other people have in applying these techniques in the right
way, especially in the context of the overall design of a large system.

In this paper, we have given much discussion to behavioral techniques.
That is, in part, because they have received so little attention in HCI
research. Yet it is in the behavioral domain that the interface designer and
evaluator do their work. In addition, of course, the HCI community needs
to give attention to highly efficient and powerfully expressive

- constructional representation techniques, especially those suitable for
asynchronous interaction styles.

In our own work on representation techniques, we are very clear on at
least one thing: no single technique, view, or perspective is sufficient for
all purposes. Specific research is needed to answer questions about how
representation of a design can be distributed over various different
techniques to support the many developers and related roles that require
access to the same design but with very different views or perspectives
(e.g., appearance, behavior, temporal aspects, feedback perspective, etc.).

The architectural design of a building provides a useful analogy for this
need for multiple views. First, there is an obvious need for a side view,
front view, back view, plan view, perspective, each of which is a different
view of the same thing, viewed by the builders for a possibly different
purpose. But more importantly, the plumber needs a view that shows the
plumbing, the electrician needs a view that shows the wiring, and someone
else needs a view that shows the heating, air conditioning, and ventilation.
These are all projections of one single design, each oriented toward a
specific different need in the process of developing the building. This is
related to the concept of having different views of the same object (or

19

different parts of the same object) displayed in different windows in a
user interface. As changes occur to the object, the changes can be seen
occurring simultaneously in different ways in each of the views. The
broad range of views necessary for a complete and highly usable interface
design representation will surely demand powerful tool support within the
interface development environment.

There are also key research issues in psychological design rationale as a
part of design representation. These involve articulating psychological
theories—particularly claims about the user and the tasks—that appear in
the design. Representation is important here because it embodies the
design and is the medium through which one can ask questions about the
design. For this purpose design representation can be driven by user
interaction scenarios. The designer constructs a set of user interaction
scenarios, perhaps guided by predecessor artifacts, needs analysis, etc.
Then the scenarios are developed in detail, in terms of the kinds of events
and interactions that will occur, things that the user must do to take the
task to its conclusion. This is a concrete representation that can serve as
the basis for such analysis.

6. USABILITY SPECIFICATION

6.1 Introduction

An iterative development cycle, having no apparent end, can rightfully
cause management concerns about control. It is potentially a formula for
chaos to have no fixed order of activities and no milestone marks at the
end of phases. How does one know when the process is completed?
Answers are emerging from a method called usability engineering
(Whiteside, Bennett, & Holtzblatt, 1988), Usability specifications (Carroll,
et al., 1985), specific measurable criteria for user performance and
satisfaction, are stated during early development activities. Management
can approve parts of the design as user evaluation shows corresponding
usability specifications are met, Convergence to improved design is served
by techniques such as impact analysis (Good, Spine, Whiteside, & George,
1986), which involves measuring time spent by user subjects with
interface problems, focusing attention on parts of the interface design that
detracted from meeting usability specifications. We have successfully
applied many of these techniques in our own development projects and
have found them effective.

20

6.2 Key Research Issues

Key research issues in improving the process of creating and applying
usability specifications in the interface development process begin with
acquiring a better understanding of the true nature of usability itself. This
could lead to better ways of formulating usability specifications to address
more directly the usability problem in the practical arena of product
development,

User performance is a big economic factor, reflected in the fact that most
real world usability specifications are centered on objective aspects of user
task performance such as timing and error rates. Butf in the consumer
market place it is hard to escape the conclusion, based on how vendors
spend their resources, that subjective user preferences are also extremely
important. Yet we do not seem to know how to specify and obtain reliable
and useful measures of user preferences early enough to drive the design
process, short of spending enormous amounts of money on market
surveys. It does not appear that any other consumer industry (such as the
automobile industry) really knows this, either, but in those industries the
problem is simpler because the products (e.g., automobiles or cameras) are
much easier to identify and are in more constrained domains. '

7. PROTOTYPING

7.1 Introduction

Early literature contains descriptions of several approaches to user
interface prototyping, including IDS (Hanau & Lenorovitz, 1980), ACT/1
(Mason & Carey, 1981), FLAIR (Wong & Reid, 1982), and RAPID/USE
(Wasserman, et al., 1985). A survey of rapid prototyping is given in
(Hartson & Smith, 1991). User interface development is based on user
evaluation, and the information obtained in evaluation is required before
much time and effort are invested in design and hopefully almost none
invested in implementation. Thus, in order to have something to evaluate
at an early stage, a prototype is used in place of the real system.

Therefore, the closer a prototype can come to the appearance and behavior
of the real system, the more effective its contribution to the development
process. Many existing prototyping tools, however, are built around a
specific look and feel, making it difficult to deviate from the established

21

interaction styles. Current approaches to prototyping are also limited in
the range of applications that can be simulated,

7.2 Key Research Issues

Prototyping work has been viewed by many as pedestrian, but as almost
any developer who has used a prototype in the development process will
attest, there is a significant need for advancement of the state of the art. .
An important direction for progress is one that eliminates the distinction
between tools for rapid prototyping and tools for development of the real
system. The goal is graceful evolution from early prototypes to a version
of the real system without the discontinuity of a throw-away prototype.
Also, if the same tool is used for both prototyping and development, a
better match for look and feel and functionality results between the
prototype and the real system. The prototype is the real system, just in an
early stage of development. In software support tools the ability to both
interpret and compile the interface description is necessary. These tools
also need aids for mocking up the appearance of complex functionality
early on. For example, ways are needed to provide sample records to be
retrieved by an information system in a user task that involves retrieval.
The ability to connect a prototype to existing application functionality is
also important, to provide not just interface fagades, but whole-system
prototypes that can be tested with real user tasks.

8. FORMATIVE EVALUATION

8.1 Introduction

Formative evaluation means testing as part of the development process.
As such, formative evaluation is a pivotal part of the development
lifecycle, closing the loop for iteration. Evaluation can be empirical (by
user testing) or analytic. Empirical results can be qualitative (e.g., critical
incident analysis or protocol taking) or quantitative (e.g., numeric data),
objective (e.g., task performance metrics) or subjective (e.g., user
satisfaction measures). And testing must escape the confines of the
laboratory. Thomas and Kellogg (1989) warn that laboratory testing, while
a productive step toward addressing usability concerns, is not enough. In
particular, laboratory testing does not lead to the kind of "ecological
validity" that comes from rich, gualitative observations in real work
contexts with real users doing real tasks.

22

Analytic evaluation can depend directly on the design representation,
processing it according to a model (e.g., of consistency) and is used to
predict user performance without testing. Of course, testing is required to
validate the model. Reisner's (1981) paper on the Robart system is
definitive of this approach.

A cognitive walk-through for theory-based design (Lewis, Polson, Wharton,
& Rieman, 1990) is an evaluation method that focuses attention on-a
moment-by-moment analysis of the user's mental processes. Attempts
have been made to support that analysis- with some theoretical conception
of how information presented by the system and background knowledge
interact. The "artifact as theory" concept discussed under iterative
refinement in Section 2 is, of course, also a relevant part of the current
state of the art here in formative evaluation.

8.2 Key Research Issues

Although there is already a lot of discussion and motivation for this in the
literature, this is one of the areas that is ripe for new research in both
theory and practice. We do not yet know enough about what makes good
formative evaluation work and bad formative evaluation not work. At the
moment, formative evaluation may be more an art than a science. There is
a pressing need for new, more precise, techniques that are effective in
quickly assessing user performance. Many existing evaluation techniques
were contrived to fit a certain development situation in a certain
application domain. We need ways to formalize and codify evaluation
processes so they can be brought into an evaluation methodology
applicable across a broader spectrum of situations. There is especially a
need for techniques that can assign credit and blame, pinpointing why user
performance is not up to expected levels in terms of specific interface
design flaws and shortcomings (and suggested improvements for same).
Methods are also needed to manage the problem: of prioritizing, for
optimum allocation of finite future redesign effort, design problems
discovered in evaluation.

One key future research direction involves analytic evaluation, which
would benefit greatly from solutions to some difficult problems. Once a
task description is obtained from task analysis, there are analysis
techniques that have the potential for predictive capability. It is unlikely
that we will ever be able to even come close to automating all analysis of
interface designs. However, Reisner's early work (Reisner, 1981) has

23

shown that there are classes of design flaws amenable to analysis based on
computer processing of design representations. Because user actions at the
articulatory level are repeated in different combinations to make up all
higher levels of abstraction, actions at this level are especially suitable for
analysis technigues that predict and improve user performance. It is a
significant technical challenge to extend this type of analysis work, but the
benefits could be valuable, especially for real world designs that are too
large for an individual to understand at one time. For example, there are
big opportunities for other kinds of analysis to use the task -descriptions to
reveal (and thus support in the design) user cognitive and information
needs at each step in the performance of a task, but these analyses would
require capturing much more information about what users think about
the tasks, how they make decisions, how. they make use of information, etc.
Another kind of analysis using task descriptions could be based on
automatic processing of design representations to identify problems with
consistency, ambiguity, and implementability

Research in the area of formative evaluation needs to focus on iterative
evaluation techniques that, in fact, lead to convergence on a good, or at
least improved, design (as compared to a benchmark). Ad hoc random
probing is not sufficient in a product development environment.
Nonetheless, many approaches currently used in the real world are
unstructured and the resulting interface designs sometimes do not
converge on high usability. There are even cases where usability has
decreased with each iteration. Thus, a key research issue in this area is to
find a way to do evaluation so that it yields more than just a figure of
merit that says how well the product works, but one that also reveals why
it does not work as well as desired. This can be done in many ways. The
evaluator must look at strategies and task context of the user. How did
people who did well approach the task? What kind of things were they
doing when they succeeded? Or when they were slow or inaccurate? Of
which features did heavy use correlate with good or bad performance? It
often looks obvious afterwards, but no structured method really exists to
ferret out such information during evaluation.

As an example of why just passive observation is inadequate, consider the
case where a user makes a wrong choice from a menu. We can observe
that, but we cannot observe the reason why. Yet it is the reason why that
must be addressed in order to make the right adjustment to the design. On
one hand, the user may have the right idea of what is supposed to be done,
but the menu is misleading. On the other hand the menu may be clear, but
the user has the wrong idea of what to do. Sometimes verbal protocol
taken during formative evaluation can sort some of this out, but it is not

24

always the case that the user will know what the real problem is, or will
say the right thing for the evaluater to identify the cause of the problem.

Perhaps a structured combination of techniques is required. Maybe a
critical incident-driven principle-based structured verbal protocol method
can be used to address the question of why. Critical incident techniques
will identify situations where the question arises (e.g., the user did not
make the right menu choice). This method would then be designed to
follow up immediately with the appropriate principle-based ‘questions to -
ferret out the reason behind the user error and help interpret the reason
specifically in terms of redesign needs. The technique involves conducting
the verbal protocol in a specific structured way, as opposed to random
eavesdropping on the user, with the specific goal of finding the reason
behind the user problem. This permits a line of traceability from user
performance back through representation, design, and even to task
analysis. The cognitive walkthrough method is related to this line of
principle-based reasoning about the design (Lewis, et al., 1990).

Recent work by NYNEX and CMU (Gray, John, Stuart, Lawrence, & Atwood,
1990) exemplifies one direction that shows promise in attacking this
research goal of providing specific feedback from evaluation to _design.
~This work combines GOMS techniques with critical path methodology to
allow sensitivity analysis of designs by predicting the difference in user
performance for two different designs, and compares it to performance
measured in a field trial. The cognitive, perceptual, verbal, and motor
actions for a task, plus response time of the system, are represented on a
critical path timing chart. The method allows a determination of the effect
on user performance, given a change in task procedures or in keyboard
layout, that voice recognition is added somewhere, or that the system
response time is changed. The effect may be greater or smaller, depending
on whether the part of the task affected by the change is on a critical path.
This provides an explicit connection between design and user performance.
The method, now being validated, has potential for application to other
tasks and is ripe for use in real world applications,

9. MODELING

9.1 Introduction

Modeling and theory go hand-in-hand, providing the foundation upon
which we soundly build our techniques and tools. As scientific tools in HCI,

25

the topics of modeling and theory are treated in a scparate paper. The
scope of interest in modeling here is limited to its use specifically in the
development process. There are two kinds of models that are supportive
in this capacity: models of the system and/or software architecture and
models of interaction.

Architectural models are used to structure systems into more manageable
components for modularity and complexity control (e.g., (Green, 1985;
Pfaff, 1985)), often resulting in some kind of separation between: the
interface and computational components. The gains in modularity are
somewhat offset by a loss of cohesion, leading to further modeling
requirements to treat logical control and communication across module
boundaries (Coutaz, 1985; Coutaz & Balbo, 1991; Hartson, 1989; Hurley &
Sibert, 1989).

While modeling of human-computer interaction will have some overlap
with the paper on "Theory and Taxonomy of HCI Models," it is also
important here because it shows up directly in methods (and tools) for
interface development. Modeling of interaction is used to identify, define,
and characterize each of the basic components (entities, objects, artifacts,
phenomena, actions, parameters, etc.) of interaction and to guide the
designer in building up the interface components, providing an orderly
way of approaching the various features and abstractions within a
structured framework (Foley, Gibbs, Kim, & Kovacevic, 1988).

9.2 Key Research Issues

HCI work so far in modeling to support interface development has been
limited and not widely transferred to practitioners. Further work in this
area is, indeed, a key research direction. The alternative is to continue
interface design as an unorganized attack that can casily lead to an
overwhelming sea of detail. In contrast, a model-based development
process can make use of built-in semantic knowledge of the constituent
parts and pieces of an interface and can direct the designer's attention to
these in an orderly manner.

Other kinds of semantic models of interaction are also needed to capture
the meaning of user actions in terms of their effects on interface and
application objects and deal with objects, relationships, constructional
connections to the application, and behavioral connections to the task,
These models are needed to bridge the gap between the task-oriented
behavioral world of the user and the constructional object- and toolkit-

26

oriented world of interface software, and beyond into the non-interface
world of a system's computational software. The meaning of a user action
can, for example, be expressed in terms of the comprehensive effects of
that user action. For an action on a complex interface object, the semantics
can involve complicated interaction among its components. For example,
consider the dialogue box for specifying a file to open in a Macintosh
application. Operating within this dialogue box, the user can take actions
that have effects on files, directories, scrolled lists, selection, ejection of
disks, switching of active volumes, etc. Linguistic models (used mostly
with the older typed command language interaction styles) identify and
process tokens and other information occurring at semantic, syntactic,
lexical, and pragmatic levels (Foley & Wallace, 1974). Now there is a
continging research need for better models of asynchronous interaction
styles.

10. CONNECTIONS TO OTHER PAPERS

Just as we do with interface designs, we have divided the large topic area
of future HCI research into subareas to achieve some degree of modularity.
And as it happens with interface designs, this also leads to problems of
where to draw lines that separate the modules and how to express
connections among them. This section provides some cross references to
the subareas of other papers in hopes of showing relationships among the
subjects involved.

10.1 Software Engineering

At the beginning of this paper, we claim that the goal of HCI work is to
help produce better quality interactive systems. We know the user
interface has much to do with the quality of a system, in particular its
usability. But there is obviously more to a system than its interface, and
the discipline of software engineering shares the goal of better systems
with HCI, which it pursues via many directions, including requirements
specification, formal program verification, reusability, and maintainability.

There are HCI concerns within software development as well as for
software end-users, including usability issues for software tools (e.g., CASE
tools) in development environments. Also developers of the non-interface
(computational) component of application software must grapple with the
connection to the user interface, seeing the problem from their side of the
system.

27

Since the design of the interaction component of a user interface maps into
a specification for design of interface software, there are also strong
software roles in interface development. These include the need for
software design and implementation models to structure this mapping,
design and implementation of interface software, use of toolkits, and
development of new and more suitable toolkits. In particular there is a
need to provide tools and toolkits (e.g., I/O support libraries) that offer a
better match to the interaction styles and devices used and needed by
interface designers. And, again, the maintenance- issue arises; how do
changes to the interface affect the software?

10.2 Software Interface Development Tools

Interface development tools bear a very strong relationship to the
development activities discussed here. We need tools to support the full
range of interface development activities, not just construction of interface
software. If tools provide the support environment for the process, tool
developers must understand the process. Tool developers have not always
been tuned to the whole process (e.g., software engineers often overlook
task analysis).

Development activities occurring later in the process tend to be better
understood and are easier to support with software tools. This trend is
casy to see in today's CASE (Computer Aided Software Engineering) tools.
Tools are also needed to support early activities of interface development
are needed. There are few, if any, interface development tools to support
user needs analysis, requirements analysis, and task analysis. Perhaps
some of these can be adapted from existing software engineering tools
oriented to up-front systems analysis. There is a similar lack of tools to
support the creative parts of design and tools to capture design
representations. We begin to find available tools only when we consider
the need to move the representation to a prototype and then to move to
the real system. Here is, for example, where most of the work on UIMS
has been directed so far. However, many of the tools we do have for
prototyping and implementation are still rudimentary and often difficult to
use. Also, since many of these tools are now being used to generate
interface code, some of the design of the implementation model for
interfaces is now being rolled back into the design of those tools. Even
prototyping tools, which are probably the most commonly available of all
interface development tools, need to be much more powerful and need to
be model-based.

28

Finally, as we pointed out in the section on design representation,
representation must be made to serve design and not interfere with it
The kind of complexity control needed to accomplish this can be provided
only by interactive tools. In particular, there is a need for tools to
represent designs in the behavioral domain (i.e., interaction designs
independent of software, software toolkits, and programming aspects).
The leverage needed to make this design representation process natural
and not too laborious will rely heavily on interface development tools.

10.3 Modeling and Theory

There are many kinds of modeling and theory work. The paper addressing
the topic of "Theory and Taxonomy of HCI Models" is concerned with
models on the science side of HCI, while in this paper we are concerned
with models on the development side. The difference is that the approach
in this paper has to do with modeling as applied within a project for the
development of a specific application product. The approach of the other
paper is more theoretical, looking at models for furthering our
understanding of HCI in general.

One way research in the area of theoretical models can help with
development is by providing models of application domains (e.g., word
processing, scientific applications) to fold into the design process. And, of
course, we always look to the theoretical work in search of enabling
concepts and theories, to find missing links, to find what we need to make
it all work.

10.4 Computer Supported Cooperative Work (CSCW)

While there will always be individual development efforts, there is a trend
within larger development efforts toward a team approach where the team
is composed of various, sometimes specialized, roles. This kind of closely-
couple collaborative work is the subject of CSCW research and much of that
work centers on communication of various kinds. Documentation (in the
broadest sense and including representation) of the design is central to this
communication. If only two or three developers are involved,
documentation can be somewhat informal and can be supplemented by
informal communication channels. For a larger team effort communication
needs dictate that documentation must be more formal and more complete.
Also, since the documentation is an account of the state of the design at
any given moment, practical methods are used for version control to

29

determine who can "check out" what parts of the design documents and
what kind of changes are authorized by whom. Checking out a part of the
design document temporarily locks out any changes from other team
members. Further, since the process is iterative, a group member might
get the same document back several times, with mandates for new
changes. This leads to the need for formal ways for the group as a whole
to agree on when they are done with some piece of the design.

‘Another concept, called simultaneous engineering (a concept taken from.
the automotive industry), requires all interested parties to work together
in the same room (either physically or remotely via teleconferencing) to
speed up the communication process. Situations where questions must be
answered before design decisions can be made or where rapid feedback of
constraints and problems (e.g., cases where user needs or implementation
costs rule out a design feature) is needed can bring about more rapid
convergence. It prevents someone from going too far in a non-productive
direction before reaction from the others will get the design back on track.
Specific work has begun, in fact, by CSCW researchers on software
engineering and system development as an application area of CSCW. We
look to further work in this area for results to apply in the team
development environment for user interfaces.

11. INFRASTRUCTURE NEEDS

Note: Since there is a Separate paper on infrastructure needs, this can be
considered as an input to that.

User interface development, like interactive system development of which
it is part, is an in-the-large process. Research in this area will necessarily
involve empirical observation and measurement of in-the-large activities.
Very few such large scale project-oriented empirical studies have been
done (Alavi, 1984: Boehm, Gray, & Seewaldt, 1984), because of the
resources required and because of the scarcity of opportunities within real
projects. It is not just a question of money and other resources; in the real
world where timing is critical in project management, researchers will not
find enthusiasm for any study that could interfere with an already
difficult, crammed, and sometimes stressful development process and put
it in danger of being even slightly delayed. There is great economic
pressure not to meddle with an established real world process, however
inefficient and ineffective it may be.

30

The success of a large project-based study, then, depends on making the
right connections with people who are responsible for project management,
cultivating an understanding of the need for and potential payoff from
such a study, and convincing people that the study will not interfere with
getting the product to market on time, For university researchers, at least,
these requirements mean a kind of university/industry cooperation rarely
possible these days.

Other infrastructure requirements related to future HCI research include .
support of HCI research by computer science departments and universitics
themselves. Even a modest usability testing laboratory needs hardware,
software, network connections, soundproofing, video cameras, video
monitors and mixers, money to pay subjects, and—the biggest need of all—
staff for building and maintaining test bed systems and prototypes to test.

12. THE FUTURE

We perceive the present state of the art of user interface development as
being one in which there are many theories, methods, and techniques
emerging and beginning to be tested for attacking isolated development
steps. These isolated steps include task analysis, design, prototyping,
evaluation, and iterating to improve the design, for example. However, the
overall process is still often quite ad hoc and not well integrated.

In the future we need a more formal, structured basis for progress in HCI
research. This kind of growth and maturation is natural to the lifecycle of
a new technology; the same thing happened as structured programming
evolved in the early days of software engineering. We will see steady
progress as we understand more about the problem. Hopefully, we will
also see quantum leaps that will carry us forward even more decisively.
We are glad to be part of it

ACKNOWLEDGEMENTS
The author wishes to thank the following people for inputs to the paper
and for reading and commenting on various drafts. Each of these people

contributed significantly to the ideas and words herein.

Within the workshop group:
Deborah Boehm-Dayvis

31

Clayton Lewis

John Carroli

Thomas Landauer

Judith Reitman-Olson

John Hestenes

Jon McKeeby (student aide)

Outside the workshop group:
Deborah Hix
Roger Ehrich

REFERENCES

Alavi, M. (1984). An Assessment of the Prototyping Approach to
Information Systems Development. Communications of the ACM, 27(6),
556-563.

Boehm, B. W. (1988). A Spiral Model of Software Development and
Enhancement. IEEE Computer, 21(3), 61-72.

Boehm, B. W., Gray, T. E.,, & Seewaldt, T. (1984). Prototyping vs.
Specification: A Multi-Project Experiment. Proceedings of Seventh
international Conference on Software Engineering, New York: ACM &
IEEE, 473-484,

Card, S. K., & Moran, T. P. (1980). The Keystroke-Level Model for User
Performance Time with Interactive Systems. Communications of the
ACM, 23, 396-410.

Card, S. K., Moran, T. P., & Newell, A, (1983). The Psychology of Human-
Computer Interaction . Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

Carey, T. (1982). User Differences in Interface Design. IEEE Computer,
15(11), 14-20.

Carroll, J. M. (1984). Minimalist Design for Active Users. Proceedings of

Human-Computer Interaction—Interact ‘84, Amsterdam: North-Holland,
39-44,

32

Carroll, J. M. (1990). Infinite Detajl and Emulation in an Ontologically
Minimized HCI. Proceedings of CHI Conference on Human Factors in
Computing Systems, New York: ACM, 321-327.

Carroll, J. M., & Kellogg, W. A. (1989). Artifacts as Theory-Nexus:
Hermeneutics Meets Theory-Based Design. Proceedings of CHI
Conference on Human Factors in Computing Systems, New York: ACM, 7-
14,

Carroll, J. M., & Rosson, M. b. (1985). Usability Specifications as a Tool in
Iterative Development. In H. R. Hartson (Ed.), Advances in Human-
Computer Interaction (pp. 1-28). Norwood, NJ: Ablex.

Coutaz, J. (19853). Abstractions for User Interface Design. IEEE Computer,
18, 21-34,

Coutaz, J., & Balbo, S. (1991). Applications: A Dimension Space for User
Interface Management Systems. Proceedings of CHI Conference on
Human Factors in Computing Systems, New York: ACM, 27-32.

Draper, S. (1989). Personal communication.

Draper, S. W., & Norman, D. A, (1985). Software Engineering for User
interfaces. IEEE Transactions on Software Engineering, SE-11, 252-258.

Fischer, G., Lemke, A. C., Mastaglio, T., & Morch, A. 1. (1990). Using Critics to
Empower Users. Proceedings of CHI Conference on Human Factors in
Computing Systems, New York: ACM, 337-347.

Foley, J., Gibbs, C., Kim, W., & Kovacevic, S. (1988). A Knowledge-Based User
Interface Management System. Proceedings of CHI Conference on
Human Factors in Computing Systems, New York: ACM, 67-72.

Foley, J. D., & Wallace, V. L. (1974). The Art of Natural Graphic Man-
Machine Conversation. Proceedings of the IEEE, 63(4), 462-471.

Good, M., Spine, T., Whiteside, J., & George, P. (1986). User Derived Impact
Analysis as a Tool for Usability Engineering, Proceedings of CHI
Conference on Human Factors in Computing Systems, New York: ACM,
241-246.

33

Gould, J. D., Boies, S. J., & Lewis, C. (1991). Making Usable, Useful,
Productivity-Enhancing Computer Applications. Communications of the
ACM, 34(1), 74-85,

Gould, J. D., & Lewis, C. (1985). Designing for Usability: Key Principles and
What Designers Think. Communications of the ACM, 28(3), 300-311.

Gray, W. D., John, B. E., Stuart, R., Lawrence, D., & Atwood, M. (1990). GOMS
Meets the Phone Company: Analytic Modeling Applied to Real-World - -
Problems. Proceedings of INTERACT '90—Third IFIP Conference on
Human-Computer Interaction,

Green, M. (1985). The University of Alberta User Interface Management
System. Computer Graphics, 19(3), 205-213.

Green, M. (1986). A Survey of Three Dialog Models. ACM Transactions on
Graphics, 5(3), 244-275.

Green, T. R. G. (1989). Task Action Grammar, presented at the British
Computer Society HCI Specialists Group Day Meeting on Task Analysis,
May, London. No proceedings.

Hanau, P. R, & Lenorovitz, D. R, (1980). A Prototyping and Simulation
Approach to Interactive Computer System Design. Proceedings of Design
Automation Conference, New York: ACM, 572-578.

Hartson, H. R. (1989). User-Interface Management Control and
Communication. [EEE Software, 6(1), 62-70.

Hartson, H. R., & Gray, P. (1990a). Temporal Aspects of Tasks in the User
Action Notation, To appear in Human Computer Interaction.

Hartson, H. R., & Hix, D. (1989). Toward Empirically Derived Methodologies
and Tools for Human-Computer Interface Development, International
Journal of Man-Machine Studies, 31, 477-494,

Hartson, H. R., Hix, D., & Kraly, T. M. (1990b). Developing Human-Computer
Interface Models and Representation Techniques. Software—Practice and
Experience, 20(5), 425-457.

Hartson, H. R., Siochi, A. C., & Hix, D. (1990c). The UAN: A User-Oriented

Representation for Direct Manipulation Interface Designs. ACM
Transactions on Information Systems, ,

34

Hartson, H. R., & Smith, E. C. (1991). Rapid Prototyping in Human-Computer
Interface Development. Interacting with Computers, 3(1), 51-91.

Hill, R. (1987). Event-Response Systems — A Technique for Specifying
Multi-Threaded Dialogues. Proceedings of CHI+GI Conference on Human
Factors in Computing Systems, New York: ACM, 241-248.

Hurley, W. D., & Sibert, J. L. (1989). Modeling User Interface-Application
Interactions. IEEE Software, 6(1), 71-77.

Jacob, R. J. K. (1985). An Executable Specification Technique for Describing
Human-Computer Interaction. In H. R. Hartson (Ed.), Advances in
Human-Computer Interaction (pp. 211-242). Norwood, NJ: Ablex.

Jacob, R. J. K. (1986). A Specification Language for Direct Manipulation User
Interfaces. ACM Transactions on Graphics, 5(4), 283-317.

Kieras, D., & Polson, P. G. (1985). An Approach to the Formal Analysis of
User Complexity., International Journal of Man-Machine Studies, 22,
365-394.

Lewis, C., Polson, P., Wharton, C., & Rieman, J. (1990). Testing a
Walkthrough Methodology for Theory-Based Design of Walk-up-and-
Use Interfaces. Proceedings of CHI Conference on Human Factors in
Computing Systems, New York: ACM, 235-241.

Mackinlay, J., Card, S. K., & Robertson, G. G. (1990). A Semantic Analysis of
the Design Space of Input Devices. 5,

Mason, R. E. A., & Carey, T. T. (1981). lProductivity Experiences with a
Scenario Tool. Proceedings of COMPCON ‘81, New York: IEEE, 106-111.

Moran, T. P. (1981). The Command Language Grammar: A Representation
for the User Interface of Interactive Computer Systems. International
Journal of Man-Machine Studies, 15, 3-51.

Olsen, D. R., Jr., & Dempsey, E. P. (1983). Syngraph: A Graphical User
Interface Generator. Computer Graphics, 1 7(3), 43-50.

Pfaff, G. (1985). User Interface Management Systems. Berlin: Springer-
Verlag,

35

Reisner, P. (1981). Formal Grammar and Human Factors Design of an
Interactive Graphics System. JEEE Transactions on Software Engineering,
SE-7, 229-240.

Rosson, M. B., Maass, S., & Kellogg, W. A. (1987). Designing for Designers: An
Analysis of Design Practice in the Real World. Proceedings of CHI+GI
Conference on Human Factor in Computing Systems, New York: ACM,
137-142.

Rosson, M. B., Maass, S., & Kellogg, W. A. (1988). The Designer as User:
Building Requirements for Design Tools from Design Practice.
Communications of the ACM, 31(31), 1288-1298,.

Sibert, J. L., Hurley, W. D., & Bleser, T. W. (1988). Design and
Implementation of an Object-Oriented User Interface Management
System. In H. R. Hartson (Ed.), Advances in Human-Computer
Interaction (pp. 175-213). Norwood, NJ: Ablex.

Smith, S. L., & Mosier, J. N. (1986). Guidelines for' Designing User Interface
Software (ESD-TR-86-278/MTR 10090). The MITRE Corporation,
Bedford, Mass.

Thomas, J. C., & Kellogg, W. A. (1989). Minimizing Ecological Gaps in -
Interface Design. /EEE Software, 6(1), 78-86.

Wasserman, A. 1., & Shewmake, D. T, (1985). The Role of Prototypes in the
User Software Engineering Methodology. In H. R. Hartson (Ed.),
Advances in Human-Computer Interaction (pp. 191-210). Norwood, NIJ:
Ablex.

Whiteside, J., Bennett, J., & Holtzblatt, K. (1988). Usability Engineering: Our
Experience and Evolution. In M. Helander (Ed.), Handbook of Humna-
Computer Interaction (pp. 791-817). Amsterdam: Elsevier North-
Holland.

Wixon, D., Holtzblatt, K., & Knox, §. (1990). Contextual Design: An Emergent
View of System Design. Proceedings of CHI Conference on Human
Factors in Computing Systems, New York: ACM, 329-336.

Wong, P. C. S., & Reid, E. R, (1982). FLAIR—User Interface Dialogue Design
Tool. SIGGRAPH Computer Graphics, 16(3), 87-98.

36

Yunten, T., & Hartson, H. R,
Notation (SUPERMAN) fo
R. Hartson (Ed.), Advance
281). Norwood, NJ: Ablex

(1985). A SUPERvisory Methodology And
r Human-Computer System Development. In H.
§ in Human-Computer Interaction (pp. 243-

37

