Software Quality Measurement:
Validation of a Foundational Approach

By James D. Arthur, Richard E. Nance,
Gary N. Bundy, Edward V. Dorsey, and Joel Henry

TR 91-16*

*Cross-referenced from Technical Report SRC-91-002, published May 1, 1991, by the Systems
Research Center and Department of Computer Science at Virginia Polytechnic Institute and State
University, Blacksburg, Virginia 24061.

Work supported by the Joint Logistics Commanders through the Systems Research Center under
contract number N60921-89-D-A239 BOOA,

ABSTRACT

This report discusses the first year findings of a proposed three year investigation
effort that focuses on the assessment and prediction of software quality. The research
exploits fundamental linkages among software engineering Objectives, Principles and
Attributes (the OPA framework). Process, code and document quality indicators are
presented relative to the OPA framework, with elaboration on their individual roles in
assessing and predicting software quality. The synthesis of an Ada code analyzer is
discussed as well as proposed complementary tools comprising an automated data
collection and report generation system.

Key Words and Phrases: Simulation quality assessment and prediction; software
engineering objectives, principles and attributes; software quality indicators, process
indicators, code indicators, document quality indicators.

10.

11.

13.

13.

Table of Contents

Inroduction ..cccccccnriinmeni s teessseesereseeeesnnrrrsresniesesasaRRRRe s s ee s b araaaenes 3
Task Statement: YEAT OMNE .ccuureiecrcimimemnisinimmsssinssssssmemimsaeiesiannsssssssssbassasnssssssnnsanssens 4
Refinement and Extension of the Tndicator Definition ...cuieeroreronsienieneniecesesimissisiesinins 5
3.1 Process Indicatorsceeoenn TP OO U TRUP P TPR 6
3.2 Documentation Quality INQICALOTS ..ivcvrioieriresmresin e rec s e s sssieseas e b asaannes 13
3.3 Code INGICATOTS .rereireeemsrernnrmesssnsietsssmsstt s s bt bbb pr b bt s sn et cecan st b sasacns 21
Completion of the Ada Ahalyzer and Report GENCIAUOT ...vvviererssrersaressescsssescmsmsssssnsisssrreses 29
Site Selection for the Validation PrOJECt .vccccccvvisssimsrmreimismosiesssemcniesasenesseeerensissssssnssas 31
Summarization and Futtre PIANS .occiiiiiiisnsrmenieniiisniissrssssnssessrrssssss s sssssssse sssssseness 32
6.1 Year One: Completed WOIK .covviiiiiiiimisscernmnrrnniseessssssssssistssssmssss s st asssssnssssses 32
6.2 Year Two: Current ReSearch .ueeeeccecmiiimmnnmsnmsriiiissssscstesasssomesss st assstassssanss 33
6.3 Years Three and Four: Future PIANS iicrcicnirrmsnsssse e sanssnesn e raesssssnansens 33
REFEIEIICES 1evvvvrsesssonessssnemsanssssersasmessaresnssssssaredbbsabissasssissrsssntsstansassneddsssansssnnassstenssasrens 35
Appendix A - Process INQICAIOIS .uiccvesiissnsenscsiieismmnsnirssessinisinn s o ssssssas s sas s 39
Appendix B - DQI HiCTaTChY .uoeeerircossensiressressisinrnnensssseasie s sisssssnsssssss s sosssnssisssnsnsssns 48
Appendix C - Document Quality IRdICAtOIS ..ouiiiimiisi et 52
Appendix D - Ada Code INQICAIOTS evveereescrerosismsssmsesimmitsssssss s s ssssrnssme et sessasssasans 83
Appendix E - Ada Analyzer User Manual i 110
Appendix F - Site Selection CharaCteriSticscvimimmssmmmemsimsinnssssnesmienssisssssniennesseseans 137

1. Introduction

The critical nature and long life expectancy of today's complex software systems mandate the production of
quality software products [PARD85]. Past and current experiences have shown that product quality cannot be
retrofitted, but instead, must be built into a product from the beginning. Perhaps one manifestation of failure to
instill quality has been the substantial cost of maintaining a product after deployment. Estimates of the

proportionate cost after development range from 50% to 80% [HALDSS].

Insuring that quality is built into a product, however, raises the following question: How does one measure
product quality, beginning with requirements specification, and continuing through deployment? Current aitempts to
assess software quality through the use of product metrics alone have met with significant criticism. Such efforts
have been described as being narrowly focused and providing measures that are often based on questionable metrics
[KEAJ86]. Research efforts that address software quality assessment primarily from the process perspective are
suspect too. For example, the Assessment of Contractor Capability entails an examination of the development
process to assess the maturity level [HUMWS?]. Cei‘taihly such an assessment can be a significant aid to
improving the process, but maturity in definition does not guarantee effectiveness in execution, to produce the

consequent high quality product.

Insurance that quality is being built into a product requires (1) the recognition that the software development
process is governed by speific principles, (2) those principles are supportive of clearly defined project objectives,
and (3) those executing the process are doing so with the knowledge and understanding to reflect detectable attributes
in both the development process and consequent product. This is the basic premise that has guided a software quality
assessment approach, termed the Objectives/Principles/Attributes (OPA) framework. In several papers and
presentations over the past six years the authors have contended that the OPA framework represents

« aractable approach for assessing and predicting product quality through the use of measures that reflect the

quality of both the software development process and the products of the process, and

+ an approach that admits to scientific validation through statistical analysis and unit comparisons employing
predicted and observed quality rankings.

In support of the approach stated above, the authors have proposed a four-year research investigation that focuses
on establishing a validated procedure for assessing software quality,. ~Within the OPA framework, steps toward

realizing a software quality assessment procedure are [ARTIS0]:

(1) the formal definition of software guality indicators,
(?) the development of an automated analysis tool,

(3} the identification of a software development project suitable for and amenable to the collection of data for
computing software quality indicators,

(4) on-site data collection, experimentation, and refinement of the software quality indicators, and
instrumentation of the development process utilizing a test set of software components, and

(5) validation of the assessment and predictive capabilities through a statistical analysis, using both the test
set and an experimental set.

Year one of the proposed four year effort focuses on the first three steps outlined above. The remainder of this report
discusses the findings relative to those three steps, followed by a brief description of the major research directions for

the current (second) year investigation,

2. The Task Statement : Year One

The set of subtasks presented below outline the separate research directions for year one of the Software Quality

Measurement project. They also reflect, in order, the subjects addressed in the following major sections.

Subtask 1: Refing and Extend the Indicator Definitions: Review the design indicators for document

assessment capabilities and extend as necessary to reflect the standards and guidelines for the anticipated

validation project. Modify and extend design indicators to reflect the specific capabilities of Ada.

Subtask 2: Modify and Extend the Automated Analyzer: Augment and extend the internal analysis procedures

of the analyzer to reflect the completed software quality indicators - exploiting both design and management

indicators. Extend the report generator procedure (back end) of the analyzer to accommodate the software
engineering objectives of maintainability and reliability. Design, code and test the langnage analysis

procedures specific to Ada (an Ada implementation is intended). System test the entire analyzer.

Subtask 3: Select the Validation Project: Develop a set of selection criteria for project/site qualification.
Investigate candidates with project sponsor and mutually agree on at least one, with a second (backup) only

if funds permit.
Each of these subtasks are individually addressed in the following sections.

3. Refine and Extend the Indicator Definition

An indicator is a directly measurable surrogate for a concept that is not directly measurable. For example, the
concept of "cultural opportunity” cannot be measured d_irectly, but indicators such as the number of galleries,
museums or exhibits per square mile can be measured and reflect the extent to which cultural activities are supported,
in a relative _if not an absolute sense.” Most important is the validity of indicators; that is, an indicator measure
should be undeniably linked to the concept that it purports to measure, and the measure should necessarily and

sufficiently capture the intended characteristics of the concept.

From the perspective of software quality, the authors desire indicators that allow one to assess current product
quality and to predict the quality of a product "down stream”, The OPA framework suggests that such indicators be
derived from observable properties of (a) the software development process, (b) supporting documentation', and {(c)
code. The research effort for this first year has focused on completing the definition of code indicators and on

making significant progress toward the formulation of documentation and process-related indicators.

* The number of display activities (galleries, museums, exhibits) per square mile might provide a comparative indicator of
which of two communities offers more cultural opportunities of this type.

3.1 Process Indicators

To create a quality product, the appropriate steps must be performed (or processed) effectively throughout the
software development, That processing is accomplished through the proper use of defined sets of tools, methods, and
practices that together produce a deliverable software product [HUMW89]. To meet quality goals the development
process must be instrumented at selected points to provide measures that convey the appropriateness and effectiveness
of those tools, methods, and practices, thereby providing an indication of the quality being achieved int the deliverable

product. Process indicators:

» assimilate such measures to predict the presence or absence of quality in the final product,
- gauge the level of quality being instilled by the development process, and

= provide predictive indications of product quality, e.g., faulty or missing activities in the development
process.

3.1.1 Process Indicator: Background and Development

Process activity measnres play a crucial role in the identification and formulation of process indicators. Initial
research efforts focusing on activity measures is described by Rosson [ROSC88], who advances measures supporting
the definition of management indicators. Rosson’s management indicators are associated with activities like design
reviews, code inspections, as well as characteristics reflecting operational behavior and maintenance activities.
Rosson’s work, however, concentrates on measures obtained at acquisition time and during deployment. Process
indicators, on the other hand, employ data sampling throughout the software development process and provide
constant feedback as to the quality of the product being produced. Viewing the similarities and differences between
management indicators and process indicators provi:des a consistent, well-defined approach for identifying and defining

process indicators.

The initial step in formulating process indicators and relating them to quality measurement and prediction has

been to identify salient characteristics particular to all such indicators. In short process indicators:

need not satisfy a rigorous mathematical proof, rather, the values from the indicator metrics should provide
evidence of the presence or absence of quality in the final product,

can represent metric values extracted or derived from data items, and

mast have an undeniable and natural linkage to an objective, principle, or attribute defined by the OPA
framework.

Recognizing the necessity of such characteristics, the formal identification and definition of process indicators

are achieved through a sequence of steps:

®
@
&)
@)

&)
(6)

identifying specific activities within the development process,
recognizing the intended impact of each activity on the software product under construction,
relating each activity to a specific entity in the OPA framework,

proposing a measurement approach for assessing the presence or absence of quality imparted on the
product by each activity,

proposing and refining a metric for each process indicator, and

identifying process instrumentation points for capturing the necessary metric data.

Preliminary application of this sequence to development activities confirms the feasibility of the procedure. Care

must be taken, however, when applying step (3) to insure that a natural, intuitive linkage to the OPA framework is

established.

3.12

Research Status

Research focusing on process activities, and in particular process indicators, is a new and relatively recent

endeavor within software metrics. In such an undeveloped research endeavor, unforeseen yet critical questions can

arise, demanding answers before additional "mainstream” progress can be made. The investigation of process
g P

indicators is no exception. As described below, the formal definition of process indicators requires a framework for

relating process activities and perceived process indicators to the software development life-cycle model.

The Process Indicator Life-cycle Relationship Model

Early in the rescarch effort, the authors realized that progress was being impeded because several important

issues remained unresolved. These issues can be stated as follows:

+ How do process indicators fit into the waterfall life-cycle model of software development?

« What is the relationship between process indicators obtained during different phases of software
development?

« How does one over time integrate the refinement of process indicators into the prediction process?

Clearly, a framework relating process indicators within and among software development life-cycle phases is

needed to resolve these issues. Such a model is proposed and discussed below.

The life-cycle model shown in Figure 1 relates process activities and corresponding quality measures across the
software development life-cycle. In particular, the authors draw atiention to the boxes containing various subscripted

Fs. These boxes represent families of process indicators applicable within and among phases of the development

process. The notation in Figure 1 is as follows:

» FR - intraphase requirements quality functions,

» Fp - intraphase design quality functions,

« Fc - intraphase code quality functions,

« FRD - interphase requirements/design function,

« FpC - interphase design/code quality functions, and

» Fpel - process activity functions spanning the entire process.

Requirements

doc - F a
Activities
T
F
D
Design
d
- F
D OPA
2
8 1 | (Activities
2 F
g 0o
o Code
5 8
) =t
doc FC _g
o
Deliverables '
doc
B F . %=1 Qualty of final
product

Figure 1:
Process Indicator Life-Cycle Relationship Model

For each family instance, metric values computed for indicators are linked to the OPA framework. The OPA

framework provides an aggregation mechanism for all measures within each family of functions. In turn, the

aggregated values provide a prediction of quality of the {inal product.

The domain of each indicator within an jntraphase family of indicators {e.g., FR, FD, and F() is a process

activity or an intermediate product of the development effort. These indicators have a common range, i.e., objectives,

principles, or attributes defined by the OPA framework. The domain of each indicator within the interphase family
of functions (e.g., FRD and Fp() is an activity (or collection of activities) denoted by a transition function T,
Effectively, the interphase functions provide the capability to "refine" predictive calculations from a preceding phase

by using data elements from past and current activities.

In the aggregation process the most recently measured indicators have a more significant impact on quality
assessment than those obtained eatlier in the life-cycle. That is, the impact of phase dependent process indicators on
the prediction of product quality diminishes as the development effort proceeds. Aggregation supports a time-

sensitive view of the product quality effected in the development process.

Because the proposed framework employs the conventional waterfall model of software development as its basis,
it easily supports the aggregation of process indicators by life-cycle phases. Moreover, because the framework
distinguishes between inter- and intra-phase, indicators can be developed (a) within each family of functions without

concern for the impact on other life-cycle phases and (b) independently of previously developed indicators.
Process Indicator Development

Our investigation of process indicators begins with the consideration of activities in the requirements phase of
the development life-cycle. Many of these activities focus on identifying and succinctly stating the desired set of
requirements. Consequently, obtaining meaningful measures in the early stages of the requirements specification
process is difficult. Recognizing this fact, the authors have concentrated the investigation on identifying indicators
utilizing data generated after the software specification review, i.e. after the requirements are fixed. Thus far three
prospective indicators are identified in the requirements phase, two of which cannot be measured until after the

requirements are fixed:

+ Requirements Defects related to the attribute of Early Error Detection,

« Added Software Functionality related to the principle of Decomposition, and

10

= Reguirements Testability related to the attribute of Early Error Detection.

Initial research has also led to the identification of process indicators that span multiple phases of the

development process, €.g.,

= The creation of Software Development Folders (SDFs) related to the attribute of Traceability, and

» The updating of SDFs related to the attribute of Visibility of Behavior.

In addition to process indicators reflective of software development activities, the authors note other indicators
claimed by others to impact product quality. In particular, Bochm su géests that development personnel experience is
an important factor in the quality of sofiware [BOEB81]. Similarly, Abdel-Hamid [ABDT89] describes personnel
turnover as a major factor affecting software quality. Following these observations, two prospective indicators in the

personnel area are currently under investigation:

» Personnel Experience and its impact on Visibility of Behavior, and

« Personnel Turnover pertaining to the introduction and detection of errors, i.e., Early Error Detection.

Activities within the design phase are also being examined for characteristics that might suggest other
indicators. For example, the thoroughness of the design review process significantly impacts early error detection.
Activities related to defect detection, system and specification changes, and the work-force organization are among

other factors being considered,

Appendix A provides additional information on prospective indicators. A more detailed description of the

indicators are given, together with an explanation of their importance and approaches to measurement.

11

Data Acquisition

Recognizing that proper data acquisition methods are crucial to the validation effort, the authors have initiated a
search for published articles describing data collection procedures, techniques, tools, and experiences. This review is

important for several reasons:

« procedural errors reported by other researchers should be avoided,
* data must be properly validated to assure understanding and accuracy, and

* the data acquisition procedures must be defined to assure the integrity of the data.

Basili [BASV84] and Ross [ROSN90] provide excellent suggestions and insights relative to all three reasons

described above.
3.1.3 Fumre Research

The Process Indicator Life-Cycle Model provides one framework for describing the relationship among process
indicators throughout the software development life-cycle. The identification and definition of indicators applicable
to the requirements specification and design phases have led to a better understanding of their relationships to process
activities and to the OPA framework. Much work still remains, however, to understand and exploit process

indicators for assessing and predicting product guality. Future research directions are outlined below.

Process Indicators: Clearly, the continued identification and formulation of process indicators within and across
life-cycle phases is needed. The immediate task is indicator development focused on the high- and low-level
design phases of the development process. These indicators are expected to be slightly different from those
developed thus far. In particular, two indicators associated with requirements phase activities rely on
downstream data for measuring software quality. Indicators related to design activities and process trends,
are expected to use data acquired during the design phase, and thereby permit better software quality

prediction immediately following an activity.

12

Metric Data Acquisition: The acquisition of pertinent data at the selected validation site is also a primary
concern, An on-site examination of the existing configuration management system, software development
process and personnel organization is necessary to determine when and where data shouid be acquired.
Techniques required to validate metric data must also be determined. Basili and Weiss [BASVS84] outline

basic procedures for achieving such goals.

Data Recording: Finally, an automated system for recording data must be addressed. Previous metric validation
projects warn against the recording of data in a prose-based format (as opposed 10 a forms-based) because the
inherent ambiguity of the English language can lead to misunderstanding between the writer and the reader.
Moreover, the probable delay in formally generating the paper report can lead to inaccurate recording. An
automated recording system also provides a more reliable method for analyzing process data.

3.2 Documentation Quality Indicators

Software development documentation can be divided into three temporal components: requirements
specifications, design specifications, and code. Components in each phase are refinements of their predecessors (e.g.,
- the high-level design is a more detailed version of the requirements specifications). The program (code) is an
executable project specification. Subsequently, one can infer that documentation is the blueprint from which a
software product is built. Document characteristics such as accuracy, completeness, and usability are crucial,
especially when one considers that 50 to 70 percent of the total software life-cycle costs are atiributed to maintenance
activities [HALD88], Unlike hardware and software products, technical documentation does not admit so readily to

methods and criteria for evaluating its adequacy.

The Objectives/Principles/Attributes (OPA) [ARTI86] framework provides a basis for assessing documentation

quality relative to accuracy, completeness and usability. The followin g2 sections describe an approach consistent with

that framework,

13

3.2.1 Document Quality Indicator: Background and Development

Document quality indicators (DQIs) are employed to assess the adequacy of software documentation. A DQlis

triple whose principal components are: 2 quality, a factor of quality, and a quantifier. These three components form a

hierarchical relationship that provides successive levels of refinement, attaching specific meaning and significance to

each individual indicator. Appendix B illustrates the hierarchical relationship among qualities, factors of qualities,

and factor quantifiers. Qualities are at the root of each tree, quantifiers are the leaves, and factors are the intermediate

elements refining the qualities.

Documentation Qualities: At the topmost level of the DQI hierarchy are the gualities of adequate

documentation. These qualitics are abstract by nature and serve to convey the broader meaning of adequate

documentation. Currently four qualities are deemed necessary for adequate documentation [STEKSS]:

ey
@

(3)

@

Accuracy - the consistency among code and all documentation components for all requirements,

Completeness - the existence of all documents required by a set of standards, and the presence of all
required components for each of these documents,

Usability - the suitability of the documentation in terms of the case of extracting needed information,
and

Expandability - the capability of the documentation to be modified in reaction to changes in the
system (ease of modification).

The efforts to this point address only the first three; no plans exist to include expandability,

Factors of Qualities: The intermediate levels of the DQI hierarchy represent fuctors of qualities. These factors

are a more specific qualification of the qualities, supplying refining details for the abstractions identified at

the quality level. Factors serve to decompose the qualities into smaller, more comprehensible units,

14

Quantifiers: The leaves of the DQI hierarchy represent the quantifiers of adequate documentation. Quantifiers
convey the measurable characteristics of the documentation. This level of the DQI hierarchy is the basis

from which assessment criteria are formed.

Separately, the qualities, factors, and quantifiers have individual and diverse meanings associated with them.
Considered as quality-factor-quantifier triples however, they form distinct indicators of document quality. Viewed
from a top-down perspective, qualities are more abstract than either factors or quantifiers, but tend to convey the
more high-level characteristics deemed desirable in software documentation. Measuring the extent to which such
qualities are achieved, however, requires the introduction of factors that decompose and refine qualities into less
abstract, specific, and manageable units. Nonetheless, similar to quaﬁﬁes, factors are not readily amenable to direct
measurement. Hence, factors too are further refined through the introduction of quantifiers, which are directly

measurable,
3.2.2 Research Status

Because "adequate” documentation has many facets, the development of an effective procedure for assessing
documentation quality is necessarily an evolutionary process, with each enhancement building from and contributing
to understanding this difficult problem. What has evolved is a three phase process for developing an automated
approach for assessing the adequacy of documentation, while maintaining consistency within the OPA framework.

Those phases are described below with references to appendices where appropriate.
Phase 1: Identifying and defining the documentation quality indicators (DQIs).
Using the work of Stevens as a basis [STEKSS], the current thrust of Phase 1 is to examine and completely

define each proposed DQI therein and to develop new DQIs when appropriate. A "completely defined” DQI is one for

which the following steps have been completed:

15

0y

2

3

)

Identification and Definition of the DOI. Individual characteristics of documentation that contribute to
documentation quality are identified and related to specific DQIs, As discussed later, each DQI takes the

form of a quality-factor-quantifier triple.

Determination of Rationale for Inglusion. A justification statement is developed, outlining specific

reason(s) why the DQI is important to documentation quality, and thereby warranting further

consideration.

Identification of M ment Aj h. The approach to measuring the relationship between a DQI and

document quality is identified along with the data elements needed to perform the measurement.

Definition of Appropriate Metrics. Using data elements specified by the measurement approach, a
numerically-valued expression (or metric) is defined, reflecting an assessment based on the rationale for

inclusion.

Tables 1a and 1b provide a list of DQIs relative to the documentation quality to which they are related and

illustrate the extent to which each definition is complete. For example, Table 1a lists Percentage of Missing

References as an indicator of Documentation Completeness. Table 1a also indicates that all four of the above

mentioned steps have been completed for this particular DQL

Several DQIs listed in the Tables have a "contingency footnote" associated with them to indicate that the current

state of development is contingent on the resolution of a specific condition. Additionally, the "automation

feasibility" column contains a rating reflecting the anticipated level of difficulty in automating the evaluation of the

corresponding DQL Although yet to be completed, a scale similar to the following is anticipated:

F = Fully automatable,

S = Semi-automatable,

16

* NC = Not currently automatable, and

+ U= Automatability undeterminable at the current time.

In determining the scale value for each DQI, the measurement approach is examined to identify the required
primitive data items. The feasibility of automatically extracting each itern is examined and then, based on those
findings, an automatability rating is determined. Assignment of automation feasibility ratings is currently being

performed.

In summary, as indicated by Tables 1a and 1b, 80 percent of the DQIs are completely defined; the remaining
DQIs are in various stages of refinement. Appendix C provides an expanded discussion of each individual DQI,

including the measurement approach and the rationale for each approach.
Phase 2: Integrating the DQIs into the OPA Framework,

The primary task in Phase 2 is to identify the relationship between the DQI hierarchy and the OPA
(Objectives/Principles/Attributes) framework for software quality assessment. Currently, the qualities of adequate
documentation are being considered analogous to the attributes defined in the OPA framework. Identifying principles
guiding the development of quality documentation still remains a goal of this research effort. Several principles

- defined by the current OPA framework, however, appear applicable to documentation, e.g. Concurrent
Documentation and Abstraction. Nonetheless, they too need to be re~examined relative to their explicit contribution
to the realization of quality documentation. The task of integrating DQIs within the OPA framework is currently

being pursued.
Phase 3: Developing an automated system for assessing the DQIs.

Once the DQIs are defined, steps to implement an automatic documentation assessment procedure can begin.

From a pragmatic perspective, the measurement of several DQIs relies on project specific details, usually related to

17

Table 1a: Developmental Status of Documentation Quality Indicators

L]
81 o
ol 3| 3
gl1a|e
1518
Elola
= S| sle =
S Sl 8= =
5 215! 5|8 2
o o |2]lala)legle b2
o W |l E2|<|<|als o]
8 o Si§l=lz(28]= o
= S olo|a|l el @] E c
= 5 o |2 o|EIEIR|S 2
o 2 2ol 2| g|la]|@ =
E £ , ' E13lsl 2l alele E
3 = Documentation Quality 218)12|G|3lE[E S
o] 3 . ElojE|lo|lo(2|2 g
a o Indicator Sisiocisl=2{=|{= <
1 Requirements Supported by Design
5 1 Design Supported by Code
= Design Utikity
o
S Code Utllization
<
2 Factual Consistency
Invarience of Concept
Percentage Domain Coverage
% Adherence to Standards
=
Refinsment Enunciation
TBD /TBS
Percentage Missing References
Percentage Appropriate References
nigi

1 The correspondence between life-cycle stage and the metric parameter j has yet to be defined.

2 Two possible metrics exist for this indicator, involving computation (a) per section or (b) per
fact. A decision needs to be made regarding which metric is more appropriate,

18

Table 1b: Developmental Status of Documentation Quality Indicators

Documentation Quality

Contingenicies

Bocumentation Quality
Indicator

Undefined

Measure Defined

Rationale Complete

Measurement Approach in Progress

: Measurement Approach Complete

Metric Development in Progress

Metric Complete

Automation Feasibility

USABILITY

Keyword Consistency

Acronym Usage

Abbreviation Usage

Completeness of TOC

Correctness of TOC

Format of TOC

Bottomn-Up Traceability

Top-Down Traceability

Completeness of Index

Correctness of Index

Format of index

% Domain Coverage (intra-doc)

Text Conciseness

Formulated Readability

Term Uniqueness

Glossary Completeness

Crder of Glossary

Adherence to Standards

Simplicity / Modularity

Redundancy Appropriateness

Adequacy of Print

Format Appropriateness

Format Consistency

Module Appropriateness

19

documentation format requirements. Whenever such cases arise, the formulation of a metric follows the assumption
that the documentation products specified in DoD-STD-2167A apply. The authors note, however, that the theory

and rationale underlying the DQIs is to be kept as domain independent as possible.

Research by other professionals supports the feasibility of the assumption that systems exist which permit
antomatic documentation assessment through currently proposed DQIs. For example, the assessment of formulated
readability (as it relates to usability) has been studied by [FRYE6S], [MCCG87], [VERCS0], [BARIZ0}, and
[DRUA 85]. Additionally, assessing DQIs that require keyword lists is discussed in {CHUKS0] and [SALGS9].
Based on preliminary work, the authors are confident that an automated assessment procedure is both feasible and

tractable,
3.2.3 Future Goals

The current set of DQISs is based on measures that utilize data primitives directly related to the targeted concepts
~ to measure. In addressing the pragmatic issue of computing effective DQIs, however, the authors recognize that
some data primitives are difficult (if not impossible) to collect. Current research efforts focus on reassessing DQIs
relative to approximation measures, i.., formulations that approximate the originally defined metric or measurement
approach. The authors do not anticipate extensive use of approximation measures, and perceive a clear advantage

over the alternative of ignoring the DQI completely.

The timetable for the next six months of effort is shown in Figure 2. The definition of the DQIs (Phase 1),
should be complete by the end of August 1991. Implementation of an automated system (Phase 3) is currently
targeted for a late November completion. The integration of DQIs into an OPA framework is an on going effort and -

is tentatively targeted for a June completion.

20

o T D O R O O RO O N Ay oy g o O OO

] | I I
ALLTLLLLLALLAALLEAN AN AU LN R NN

o S s e

Jan Feb Mar Apr May Jun Jul Aug Sep -~ Qct

PN OPA Framework Design
Automation of Data Collection

Figure 2:
Documentation Quality Assessment Timetable

3.3 Code Indicators

Developing measures of software (code) quality has been a continuous challenge in computer science and
software enginecring, A literature survey of metrics reveals that many metrics are available for measuring software.
Some well documented metrics include Halstead’s Software Science [HALM77], McCabe’s Cyclomatic Number
[MCCT76], and Henry and Kafura’s Information Flow [HENS81]. A major criticism of many of these metrics is
the lack of a “clear specification of what is being measured” [KEAJ86]. Another author notes that a desirable

attribute, missing from most metrics, is that sofiware metrics should “empirically and intuitively describe software

behavior” [ETIL87).
A first step in addressing such criticisms can be found in Arthur and Nance’s Objectives, Principles, Attributes

(OPA) framework for software quality assessment [ARTI87]. The OPA framework defines a set of linkages that

relate the achievement of software engineering objectives to the use of principles, and the use of principles to the

21

presence or absence of desirable attributes, This section describes the results of applying the OPA framework to Ada

and the subsequent derivation of metrics that support a quality assessment of Ada code.
Similar to the DQI development, the synthesis of code indicators also follows a well-defined set of steps:

= identifying, classifying and categorizing Ada constructs,

+ understanding the rationale for including specific language components in the definition of Ada,

» assessing the importance of each languagt; component from a software engineering perspective,

» identifying the impact of component usage on desirable soﬂ:ware engincering attributes, and finally

+ identifying code properties and attribute pairs that serve ashindicators, and formalizing meirics based on

measurement approaches that reflect individual property/attribate relationships.

The research presented below describes the first step relative to the complete Ada language. For purposes of

illustration and brevity, the remaining four steps are applied (o one significant Ada component: the package.
3.3.1 Background and Research Results

The five steps outlined above provide a basis for tailoring the OPA framework to reflect characteristics
particular 1o specific programming languages. Application of all five steps is completed for an Ada-based effort.
The following sections individually discuss each of those steps, starting with the identification of critical Ada
language components and ending with a discussion of the metrics directly related to the software engineering

attributes defined by the OPA framework.
Step 1: Identifying, Categorizing and Classifying Crucial Language Components

The first step in defining an OPA-based procedure for assessing the quality of an Ada-based product is to identify

those Iangnage components deemed necessary and crucial 1o the assessment process. Such first steps often involve a

22

categorization scheme that permits a language to be analyzed at the individual component level and then to be viewed
from analytical perspectives based on aggregated components. In concert with this approach, the initial
categorization scheme employs partitioning criteria proposed by Ghezzi and Jazayeri [GHECS82]; that is, the
partitioning of language components along sbecific functional boundaries. In particular, an Ada program can be

viewed as possessing data types, statement level control structures, and unit level control structures.

Based on suggestions of Wichmann [WICB84b], Ada language constructs can be further pattitioned relative to
constructs defined in Pascal, That is, within functional boundaries an Ada construct can be further delineated based
on whether it has a Pascal counterpart; and if not, whether it can be easily added to Pascal, or represents a new
language feature having a significant influence on the language desiéﬁ issues. Data aggregates, user-defined types,
looping, and decision constructs are members of the first set. Partial array assignment, exit statements, and named
loops are representatives of the second set. Packages, generics, tasking, and exception handling are each members of
the third set. The Pascal oriented categorization is particularly significant because it allows extension of previous
research results reported by Farnan [FARM87] and Dandekar [DANAS7], so that research focuses on those language

constructs and semantic components found in the Ada language but not in Pascal.

Assuming that Farnan and Dandekar have necessarily and sufficiently analyzed conventional language

constructs, the critical Ada language constructs requiring additional examination are:

* Data Types
- Strings

- Record Discriminants

« Statement Level Control Structures
- Partial Array Assignments
- Exit Statements

- Named Loops with Exits

23

- Block Structures

* Unit Level Control Structures
- Subprograms
Default Parameters, Name Overloading, Parameter Passing
- Packages
Specification
Body
- Generics
- Tasking
Concurrency Specification

- Exception Handling.

The authors recognize that the above categorization does not cover all Ada specific language components, but stress
that the intentions are to examine only those that are most prominent from a software engineering perspective.
Bundy [BUNG90] offers a more detailed explanation of identifying, categorizing, and classifying Ada language

constructs with respect to software quality assessment within the OPA framework.
Step 2: Understanding the Rationale for Component Inclusion

Before employing code structure analysis as part of a software quality procedure, one must acquire a firm
understanding of why particular language constructs have been included in a language definition. In some cases, the
rationale might simply be that a specific capability is needed, e.g., looping. From the perspectives of software
engineering and software quality assessment, however, of particular interest is the rationale for including constructs
like generics, packages, and block structures that are purported to support desirable product design and development
capabilities. For Ada, the language designers have provided the Rationale for the Design of the Ada Programming

Language [ADARS4]. Published papers describing research and development efforts and books describing usage

24

techniques provide additional insights into the proposed uses of Ada language components. Using packages as a
representative example, the next paragraph outlines the type of information the authors have sought in synthesizing

an adequate understanding for including particular language elements in the definition of Ada,

According to [ADARS4] packages are one mechanism through which the programmer can group constants, type
declarations, variables, andfor subprograms. The intent is that the programmer will use packages 1o group related
items. From a software engineering perspective, this particular use of packages is appealing because it promotes
code cohesion [ROSD86]. Packages are also a powerful tool in supporting the specification of abstractions. The
ability to localize implementation details and to group related collections of information is a prerequisite for defining
abstract data types in a language. Again, from a software engineeﬁné perspective, the capability to specify abstract
data types and to force the use of predefined operations to modify data structures promotes reliability, portability, and

maintainability.
Step 3: Assessing Component Importance from a Software Engineering Perspective

To exploit the OPA framework one must determine each individual component's contribution to the
achievement of desirable software engineering objectives, its support in the use of accepted software engineering
principles, and/or its ability to impart desirable software engineering attributes to the encompassing product, The
authors note that the impact of a component on product quality can be beneficial or detrimental. For example,
operator overloading generally enhances program readability [WICH84a, GHECR2]. If used indiscriminately,

however, it can have the opposite effect [GHECS2].

From an Ada standpoint, the literature abounds with citations attesting to the "software engineering goodness”
of Ada language constructs. In particular, Ada packages are extremely important in achieving a quality, software
engineered product. Ada packages support four definitional abstractions: named collections of declarations,
subroutine libraries, abstract state machines, and abstract data types. One particular abstraction, abstract data types,

is fundamental to supporting the software engineering principle of information hiding [ADARS84]. That is, packages

25

defining abstract data types provide the type declaration for an abstract data type and methods for manipulating the
data type. What is hidden from the user is the sequence of coded instructions supporting the manipulative
operations. Also, the user is forced to modify the abstract data type through the specified operations. This form of
information hiding is particularly beneficial when maintenance is required because it tends to minimize the "ripple
effect” that change can have. As also discussed by Booch {BOOGS83, BOOG87], packages are crucial in supporting

modularity, localization, reusability, and portability, all of which are highly desirable from a software engineering

perspective.
Step 4: Identifying the Impact of Component Usage on Desirable Software Engineering Attributes

In the third step described above language components are associated with rather abstract software engineering
qualities like maintainability, reliability, information hiding, and modularity. To implement an assessment
procedure within the OPA framework, however, those language components must be aligned with less abstract
entities, i.e, the software engineering attributes. This fourth step in the metric development process is crucial in that
it establishes such linkages by identifying the impact(s) of each language construct on one or more (less abstract)
software engineering attribute. This fourth step is illustrated below by considering the impact of packages relative to

selected software engineering attributes,

As a basis, the authors examined the four proposed uses of packages in linking package properties to software
engineering attributes. For example, packages that contain only type declarations indicate code cohesion [ROSDS6].
The other three proposed uses are packages to define abstract data types, packages to define abstract stase machines
and packages to define subprogram units. Although all four of these uses induce desirable attributes in the developed
product (see [GANJ86, EMBD88, BOOG87], respectively), improper use of packages can also have a negative
impact on the desirable product attributes. For example, the use of packages to group type declarations has
diminishing returns when too many type declarations are exported. This misuse hinders ease of change because

program units must be unnecessarily checked for possible impacts caused by changes to declaration packages.

26

Consider as a detailed illustration of the above, the use of packages to define abstract data types (the authors
will refer to such packages at ADT packages). The benefits (relative to the inducement of desirable software
engineering attributes) of ADT packages are enhanced cohesion (functional and logical), a well-defined interface to the
ADT, and enhanced ease of change for program units "withing" the ADT package. The improved cohesion results
from the grouping of the ADT declarations and access operations within one package. A well-defined ADT interface
is achieved by using the package specification to house the subprogram specification for each ADT and then using
private or limited private types to restrict access to the ADT. From a different perspective, because of the
capabilities provided by packages, the use of ADTs has additional beneficial effects in terms of reduced code
complexity and improved readability. Without further elaboration, 1t suffices to say that the definition of ADTs

through packages embraces the use of abstractions that hide superfluous details from the ADT user.
Step 5: Ideniifying Properties, Defining Indicators, and F. ormulating Measures and Metrics

The fourth step of the metric development procedure describes the impact that component uses and abuses have
on the software engineering attributes. Step 5 identifies and formally links product properties (language elements)
to software engineering attributes. Because each identified property undeniably reflects either the presence or absence
of a specified attribute, the authors refer to the property/attribute pair as an indicator. Building on the relationship
between the property/atiribute pair, a measurement approach and supporting metric is defined. These three activities
ar¢ being discussed together, as a single step, because they are intrinsically tied together. To illustrate Step 5 of the
metric development procedure the remainder of this section focuses on the identification of properties indicative of

the presence of the attribute cohesion relative to the use of packages in defining groups of subprograms.

To begin the process one identifies those properties associated with the use of packages to define subprogram
units and the attribute(s) that usage affects. In the cohesion example, the task is to identify characteristics that a
cohesive package would exhibit. One such characteristic is the utilization of subprograms defined within a package.
In particular, each program unit that “withs” the package of subprograms utilizes a percentage of the subprograms.

A very low utilization suggests that the subprograms grouped by the package are not as closely related (or

27

functionally cohesive) as they should be. A very high utilization suggests that the subprograms are closely related

or functionally cohesive.

The description presented in the previous paragraph suggests the identification of a property, the establishment
of a link between a particular property and attribute, a measurement approach and a supporting metric, In particular,
the property/attribute indicator is the “definition of packages that export subprograms relative to its positive impact
on code cohesion.” Hence, to effectively measure the cohesiveness of packages that export subprograms, one must
examine the utilization of the subprograms by “withing” units. Intuitively, if the subprograms are sufficiently
related, any unit that “withs™ the package will use a majority of the subprograms. The indicative metric, calculated

on a per package basis, is given with the following formula:

package subprograms
Sub Package referenced
Utilization "Withs"
to a Sub
Package

(total # of "withs"} * (#'of subprograms in the package specification)

(Note: Sub Package refers to a package that exports subprograms)

The analysis of packages that define abstract data types and of packages that define abstract state machines provides
similar results. Appendix D lists all proposed code indicasors and their measurement approaches. For additional
detail the authors refer the reader to [BUNGS0].

32 Code Indicators: A Summary

The Objectives, Principles, Attributes framework provides a formal basis for defining a software quality

assessment procedure relative to Ada-based products. Currently the authors have identified 66 automatable indicators:

28

8 are based on data type information, 12 exploit properties of statement level structures, and 46 reflect characteristic

assessments of unit level constructs like packages, subprograms and so forth.

Because Ada is designed to support software engineering activities, evaluating Ada code for the achievement of
objectives, use of principles, and presence of attributes is important to both developers of Ada-based products and the
purchasers of Ada-based products. Instrumental to the proposed assessment procedure are the indicators and metrics
reflecting the impact of Ada and the development of the Ada analyzer to facilitate the automated assessment process.

The latter topic is discussed below.

4.0 Extending the Ada Analyzer and Report Geherator

Experience has taught that manually collecting the data necessary to compute the defined metrics is labor
intensive and error prone. Correspondingly, a major research thrust has focused on the development of an automated
system for assessing the quality of Ada products. The existing report generation system consists of three software
tools that examine Ada code and produce a report detailing the presence of desirable software engineering attributes in

the product, the use of principles, and a projected achievement of software engineering objectives,

As implied above the system has been intentionally designed to separate language particulars from the actual
metrics values being calculated. The intent of this design decomposition is to promote extensibility. As illustrated
in Figure 3, one can collect data from several soarces and use the same report generator to compute metric values and

to analyze the data. The three components of the current system are;
» the Ada Analyzer - ADALYZE,

= the Data Extractor - DEX, and

+ the Report Generator - RGEN.

29

ADALYZE is a language dependent analyzer that accepts Ada programs as input and produces data items that
support metric computations. Effectively, ADALYZE is a "compiler” that generates several language sensitive data
files. In particular, these data files contain information reflective of Ada language characteristics, e.g. the number of
packages exporting subprograms, The language sensitive data files are then passed to the data extractor (DEX). The
function of DEX is to transform the language sensitive files into a more universal format, i.e. one that is primarily
language independent. Because the data file created by DEX is in a language independent format (structured by metric
data needs), only one metric computation program is needed regardless of the language being analyzed. Figure 3

illustrates how the assessment process is performed when components of more than one language are to be analyzed.

Source . Language Data Extractor
Code Analyzer for language
So Language Data Extractor
Cou;:e Analyzer ’ for Ia:l(guage Report Generator
(Metrics Calculations)
Source Language Data Extractor
Coke Analyzer for language
Figure 3
Overall View of Information Flow

Structured to exploit knowledge of required metric computations, the report generator (RGEN) reads the language
independent files created by the data extractor and produces (a) a summary of the data elements and (b) a report
reflecting the OPA hierarchy among attributes, principles, and objectives. Reflecting the current system architecture,
Figure 4 illustrates a more detailed view of the relationship among the computational components and depicts how
information flows between those components. For additional details about the analyzer and report generator, the

authors refer the reader to the user manual in Appendix E,

30

Nh
Dara
— e
Collector
SubPrograms

Tasking

Metric
Report
Report - Gm&g:mr

Figure 4
Detailed Diagram of Information Flow in the Ada Analyzer and Report Generator

5.0 Site Selection for the Validation Project

The set of desirable site characteristics, prepared on April 11990, is shown in Appendix F. The set includes
five (5) project level criteria, eleven (11) site specific criteria, and thirty-six (36) criteria related to software
development activities. Project level criteria focus on desirable characteristics of the proposed software system to bo
used in the validation effort, Sample project level criteria include the desire for the system development effort to be a
new initiative, Ada-based, deployment within 18 months, and consisting of 10,000 to 50,000 source lines of code.
Site specific criteria address capabilities and characteristics that are desirable of and generally applicable to a software
development effort. For example, formal review processes, employment of a configuration management system, and
an established provision for electronic document preparation are among the desirable site specific characteristics,
Finally, categorized according to software development phases, the criteria associated with software development
activities include desirable process activities like formal requirements specifications and review, preliminary design

and review, and the production of expected products from such activities, e.g., review documents.

31

The set of site selection criteria is to be used as a basis for assessing the adequacy of a site and project for
supporting the proposed validation effort. The authors recognize and stipulate that no one site is expected to meet alf
of the stated criteria. Site selection is achieved through an examination of criteria that each proposed site meets and a

tradeoff assessment relative to those criteria.

6.0 Summarization and Future Plans

6.1 Year One: Completed Work

The process indicator effort focuses on the entire software life-cycle and utilizes data items reflecting
development activity trends and characteristics of products stemming from those activities, An examination of
requirements activities and associated products is complete. The authors are currently examining activities associated
with the design process and several phase-independent characteristics like personnel profiles and staffing levels,
Concurrently, the authors are investigating a modified software life-cycle model that supports a characterization of
the relationships among process and product characteristics within and among the software development life-cycle

phases.

From the perspective of document quality indicators, an initial set of 36 indicators and 33 supporting metrics
have been defined. Current research is addressing the computational tractability of the proposed indicators and the use
of approximation measures for those indicators that require data items which are difficult {or impossible} to collect.
Additionally, the authors are re-cxamining each DQI relative to its linkage to OPA framework. This re-examination

is also forcing the authors to broaden the current definition OPA entities and linkage set.

As discussed carlier, the formulation of code indicators is complete, Although more than 100 have been
identified, only 66 are automatable. The Ada analyzer and report generator exploits the definition of these 66 code

indicators in their task to produce reports that attest to the quality of Ada code. The code analyzer and report

32

generator are complete and have been tested on several data sets, each comprising several thousand source lines of

code. One error has been found: it is currently being addressed. A independent verification and validation of the

analyzer and report generator is deemed desirable and will be pursued if time and monies permit.

6.2 Year Two: Current Research

Research directions for the current year include an extension of current work as well as the initiation of new

efforts.

6.3

Process Indicators: The authors continue to work toward the refinement of currently identified process
indicators and search for new ones. In particular, efforts are focused on high- and low-level design activities,
development trends and phase independent characteristics that impact product quality.

Automated Document Analysis: The formal identification and definition of documentation quality
indicators are nearing completion. Subsequent research efforts must address the collection of necessary data
elements and the synthesis of a document analyzer. The authors expect to complete both the definition of
DQIs and a corresponding document analyzer by the end of year two.

Site Selection and Examination: Crucial to the validation effort is the selection of a validation site in the
near future. Following the site selection, the authors anticipate several site visits {0 examine the software
development process and to identify potential instrumentation points for data collection.

Instrumentation of the Development Process: Following site selection and examination, an SRC/VPI team
is expected 1o initiate an instrumentation and indicator refinement phase, This effort will require the on-site
presence of SRC/VPI personnel for extended periods of time.

Initiation of Data Collection: the collection of selected validation data is anticipated during the latter part of
year two.

Years Three and Four: Future Plans

Based on the characteristics of the potential validation site being considered, year three is expected to yield

sufficient validation data to initiate preliminary statistical studies. The authors anticipate the substantiation (or

refutation) study of selected validation hypotheses during the latter part of year three and the first part of year four,

33

The primary efforts during year four, however, will focus on further refinement of predictive indicators and the

collection of additional management indicators that support and solidify validation resnlts.

34

References

[ABDT89] Abdel-Hamid, T., “The Dynamics of Software Project Staffing: A System Dynamics Based Simulation
Approach,” IEEE Transactions on Software Engineering, Vol. 15, No. 2, February 1989, pp. 109-119.

[ADARS3] Reference Manual for the Ada Programming Language, Ada Join Program Office, ANSI/MIL-STD-
18154, 1983.

[ADARFS84] Rationale for the Design of the Ada Programming Language, Minneapolis, MN: Honeywell Systems
and Research Center, 1584,

[ARTI86] Arthur, J., Nance, R. and Henry, S., “A Procedural Approach to Evaluating Software Development
Methodologies: The Foundation,” Technical Report SRC-86-008, Systems Research Center, Virginia Tech,
1586.

[ARTI®7] Arthur, J. and Nance R,, “Develdping an Automated Procedure For Evaluating Software Development
Methodologies and Associated Products,” Technical Report SRC-87-007, Systems Research Center and
Department of Computer Science, Virginia Tech, 1987.

[BARJS0] Barry, J. “Computerized Readability Levels,” JEEE Transactions on Professional Communication,
vol. PC-23, no. 2, June 1980, pp. 88-90.

[BASV84] Basili, V. and Weiss, D., “A Methodology for Collecting Valid Software Engineering Data,” JEEE
Transactions on Software Engineering, Vol. 10, No. 6, November 1984, pp. 728-738.

[(BOEBS1] Bochm, B., Software Engineering Economics, Prentice-Hall, 1981.

[BOOGS3] Booch, G., Software Engineering with Ada, Menlo Park, CA: The Benjamin/Cummings Publishing
Company, 1983,

[BOOG8T] Booch, G., Software Componenis with Ada, Menlo Park, CA: The Benjamin/Cummings Publishing
Company, 1987. '

[BROF75] Brooks, F., The Mythical Man-month, Addison-Wesley, 1975.

35

[BUNG90] Bundy, G., “The Objectives, Principles, Attributes Approach for Measuring Software Quality in Ada
Based Products,” M.S. Thesis, Computer Science Department, Virginia Tech, July, 1990,

[CHUK90] Church, X. and Hanks, P., “Word Association Norms, Mutual Information, and Lexicography,”
Computational Linguistics, vol., 16, no. 1, March 1990, pp.22-29.

[DANAS7] Dandekar, A., “A Procedural Approach to the Evaluation of software Development Methodologies,”
M.S. Thesis, Computer Science Department, Virginia Polytechnic Institute and State University, September,

1987.

[DRUAS5] Drury, A. “Evaluating Readability,” IEEE Transactions on Professional Communication, vol. PC-23,
no. 4, December 1985, pp. 11-14. '

[EJIL87] Ejiogu, LEM O., “The Critical Issues of Software Metrics—Part 0. Perspectives on Software
Measurements,” SIGPLAN Notices, Vol. 22, No. 3, March 1987, pp. 59-64.

[EMBD88] Embley, D. and Woodfield, S. “Assessing the Quality of Abstract Data Types Written in Ada,”
Proceedings: 10th International Conference on Software Engineering, April 1988, pp. 144-153.

[FARMS87] Farman, Mark A., “The Automation of a Set of Code Metrics for Pascal,” M.S. Project, Computer
Science Department, Virginia Polytechnic Institute and State University, September, 1987.

[FRYE68] Fry, E. “A Readability Formula That Saves Time,” Journal of Reading, vol. 11, no. 7. April 1568,
pp. 313-516, 574-578.

[GANJ86] Gannon, J. D., Katz, E. and Basili, V., “Metrics for Ada Packages: An Initial Study,”
Communications of the ACM, Vol. 29, No. 7, July 1986, pp. 616-623.

[GHECS82] Ghezzi, C. and Mehdi Jazayeri, Programming Language Concepts, New York, John Wiley & Sons,
Inc., 1982.

[HALDS8] Hale, D.R., and Haworth, D.A., “Software Maintenance: A Profile of Past Empirical Research,” IEEE
Conference on Software Maintenance, Vol. PC-23, No. 2, June 1980, pp. 87-88.

36

[HALM77] Halstead, Maurice H., Elements of Software Science, New York: Elsevier North-Holland, Inc., 1977.

[HAMCS5] Hammons, Charles and Paul Dobbs, “Coupling, Cohesion, and Package Unity in Ada,” Ada Letters,
Vol. 4, No. 6, May/Tune 1985, pp. 49-59.

[HENRS81] Henry, Sallie and Dennis Kafura, “Software Structure Metrics Based on Information Flow,” IEEE
Transactions on Software Engineering, Vol. 7, No. 5, September 1981, pp. 510-518,

[HUMWS7] Humphrey, W., “A Method for Assessing the Software Engineering Capability of Contractors, “
Technical Report CMU/SEI-87-tr-23. Software Engineering Institute, Camegie Mellon University, September
1987.

[HUMWS9] Humphrey, W., Managing the Software Process, Addisoﬁ-Wesley, 1985.

[KEAJI86] Kearney, J., Sedimeyer, R., Thompson, W., Gray, M., and Adler, M., “Software Complexity
Measurement,” Communications of the ACM, Vol. 29, No. 11, November 1986, pp. 1044-1050.

[MCCG87] McClure, GM. “Readability Formulas: Useful or Useless?,” JEEE Transactions on Professional
Communication, vol. PC-30, no. 1, March 1987, pp. 12-15.

[MCCT76] McCabe, Thomas J., “A Complexity Measure,” IEEE Transactions on Software Engineering, Vol. 2,
No. 4, December 1976, pp. 308-320.

[PARD8S] Parnas, D., “Software Aspects of Strategic Defense Systems,” Communications of the ACM, Vol
28, No. 12, December 1985, pp. 1326-1335.

[ROSC88] Rosson, C., Management Indicators: Assessing Product Reliability and Maintainability, Technical
Report SRC-88-011, Systems Research Center, Blacksburg, Virginia.

[ROSD86] Ross, Donald L., “Classifying Ada Packages,” Ada Letters, Vol. 6, No. 4, July/August 1986 , pp. 33~
65.

[ROSN90] Ross, N., “Using Metrics in Quality Management,” IEEE Software, July 1990, pp. 80-85.

[SALG89] Salton, G., Automatic Tex ing: Th formation, Analysi Retrigval of Information
Computer, Addison-Wesley Publishing Co., 1989.

37

[SHUKS88] Shumate, Ken and Khell Nielsen, “A Taxonomy of Ada Packages,” Ada Letters, Vol. 8, No. 2,
March/April 1988, pp. 55-76.

[STEK88] Stevens, K.T., "A Taxonomy for the Evaluation of Computer Documentation," Master’s Thesis,
Virginia Tech, 1988,

[VERC80] Vervalin, C.H. “Checked Your Fog Index Lately?,” IEEE Transactions on Professional
Communication, vol. PC-23, no. 2, June 1980, pp. 87-88.

[WICB84a] Wichmann, B. A, “Is Ada 100 Big? A Designer Answers the Critics,” Communications of the ACM,
Vol. 27, No. 2, February 1984, pp. 98-103.

[WICB34b] Wichmann, B. A., “A Comparison of Pascal and Ada,” Comparing and Assessing Programming
Languages, Englewood Cliffs, NJ: Prentice-Hall Inc., 1984,

38

Appendix A

Measures for Process Indicators

(Metrics not incluﬁed)

ok DRAFI‘ L2 23 3G dkesksk DRAFT *%%

The Process Indicators presented in this Appendix have the following form:

Process
Property:

Impact of the
Property:

OPA Entity
Affected:

Justification:

Measurement

Approach:

Metric:

The measurable characteristic of a development process that has an
affect on the quality of the resulting product,

The specific impact of the process property on the development process and the
product is described.

The specific objective, principle, product attribute or process attribute affected by the
process property is stated in this section,

The justification of why and how the stated process property impacts the OPA entity
is presented in this section. A logical, intitive argument is made for linking the

process property to the OPA entity.

This section presents a measurement approach that captures the affect a process
property has on a product or process attribute,

Although preliminary metrics for the following -process indicators have been

formulated, they are not included in this report because they are still being refined
and, subsequently, are not finalized.

LR DRA_‘F'I‘ ¥k 40 LS DRAFI‘ ek

Process
Property:

Impact of the
Property:

OPA Entity
Affected:

Justification:

Measurement

Approach:

Proposed Process Indicators

The addition and deletion of requirements following the Software
Specification Review (SSR).

Functionality added or deleted following the SSR adversely affects the decomposition

decisions made during high level design of the system.,

Design Decomposition

Requirements decomposed along functional or hierarchical boundaries are adversely
affected by the addition or deletion of funétionality following the Software
Specification Review. New functionality must be integrated into a design along
previously determined design boundaries. The added requirement is broken down
along existing decomposition boundaries, negatively affecting the uniformity of
decomposition at each level. The new functionality increases coupling among
existing design modules because implementation of this new functionality requires
the correctness of all modules which support the added requirement. Testing of the
new requirement is also made more difficult. Deletion of requirements reduces the
functionality of the design modules affected. This narrowing of functionality reduces
the benefit of decomposition by leaving functional boundaries around design modules

_ with newly restricted functionality.

The measurement approach is to calculate the total number of design boundaries
affected by the addition and deletion of requirements, tempered by the total number of
design boundaries in the design.

Hoolek DRAFI‘ * ¥k 41 ek DRAF’I‘ Rk

Process
Property:

Impact of the
Property:

OPA Entity
Affected:

Justification:

Measarement

Approach:

Proposed Process Indicators

The detection of requirements defects after the Software Specification
Review (SSR).

The detection of requirements defects following the SSR is evidence that requirements

errors were not detected early, before the design phase, in the development process.

Early Error Detection

One purpose of the Software Specification Review is to contribute to the detection of
errors carly in the development process. All errors present in the Software
Requirements Specification are assumed to have been discovered during this Review,
The detection of requirements defects after the Software Specification Review implies
that requirements defects ﬁave propagated to design and code. Errors that have
propagated in this way reduce the actual number of errors which should have been
detected earlier (before design and coding). The extent to which Early Error Detection
has been achieved can be judged by (a) the number of defects found following the

Software Specification Review and (b) when those defects were found

The measurement approach is to weight number of defects detected per month by the
number of months elapsed since the SSR. Heavier weight is given to those defects
which have been present in the requirements for a longer period of time. The
weighted number of defects is tempered by the total number of requirements specified.
The monthly metric values are then averaged to obtain the quantitative (time-

sensitive) impact of requirements defects on early error detection.

* ¥k DRAFI‘ Hedkedke 42 L2 £ DRAFT %%

Proposed Process Indicators

Process
Property: The recording of requirements that are not testable.

Impact of the

Property: Untestable software requirements do not allow early error detection to be achieved in the
product.

OPA Entity

Affected: Early Error Detection

Justification: Requirements should be sufficiently defined in order to minimize the number of

requirements that are not testable. Requirements that are not testable cannot be verified
until they are deployed. The software realization of these requirements must be
implemented and installed before any testing can be performed. This clearly decreases

the overall amount of early error detection possible in the software product.
Measurement

Approach: Divide the number of requirements which are not testable by the total number of

requirements.

L L] DRAF'I‘ Hokok 43 Aok DRAFI' dedeck

Process
Property:

Impact of the
Property:

OPA Eatity
Affected:

Justification:

Measurement

Approach:

Proposed Process Indicators

Design review completeness

The completeness of the design review process significantly impacts the extent to
which early error detection is reflected in the product.

Early Error Detection

All design modules should be reviewed during the critical design review. Those
design modules which are not reviewed, due to time shortage, oversight or intentional
omission, detract from the extent of early error detection achieved in the product.
These units have not been examined thoroughly for the presence of errors. This type
of incompleteness results in portions of the product where detection of errors has not
been fully achieved, |

The measurement approach is to reduce the level of early emor detection achieved in
the system relative to the number of references to design modules not reviewed during
the design review. That is, for each reviewed module, reduce the level of early error

detection imparted on the product by the percentage of unreviewed modules referenced.

*Fk DRAFT ¥k 44 wekw DRAF’I" kK

Process
Property:

Impact of the
Property:

OPA Entity
Affected:

Justification:

Measurement

Approach:

Proposed Process Indicators

The updating of software development folders (SDFs).

SDFs are a repository containing change documentation for each module over the
lifetime of the module. The recording of changes documents the functional history of
the module.

Visibility of Behavior

Software development folders should be updated each time a design or code module is
changed. Design or code modules that do not have this one to one update
correspondence exhibit a gap in the historical documentation needed for understanding
the functionality and internal behavior of the design or code module. Updates to a
design or code module that are not documented in the module’s SDF reduce the
ability to retrace the functional and structural change history of the design or code
module over the module’s lifetime,

The measurement approach is to assess the extent to which the system exhibils
visibility of behavior by calculating the percentage of updates to each module that are
documented in the module’s corresponding SDF.

Ak DRAF‘F Seokoke 45 ek DRAFI" Ak desk

Process
Property:

Impact of the
Property:

OPA Entity
Affected:

Justification:

Measurement

Approach:

Proposed Process Indicators

The creation of Software Development Folders (SDFs)

A SDF should exist for a module when the module is added to the existing system in
order to record the need for creating the module.

Traceability

Software development folders should exist when a design or code module is initially
included in the configuration management system. This immediate creation of a
SDF satisfies the necessary condition for recording the motivation for creating the
module. Modules added to design without corresponding SDFs do not have the
repository for information critical to tracing the module’s history. Effectively, there
should never exist a design or code module without a corresponding SDF. Design or
code modules that do not have an SDF do not satisfy the necessary condition for
recording the historical information needed to insure module traceability.

The measurement approach is to reduce the amount of traceability present in the
product by the number of weeks each design or code module does not have a
corresponding SDF. That is, traceability is reduced by the percentage of a module’s
existence during which no corresponding SDF existed.

#% DRAFT #% 46 *** DRAFT **+

Process
Property:

Impact of the
Property:

OPA Entity
Affected:

Justification:

Measurement

Approach:

Proposed Process Indicators

The involvement of unacclimated personnel in the development process.

Development personnel which are not acclimated to the development process and the

target product are more error-prone.

Introduction of errors/Addition of unacclimated personnel

A key part of the principle of Life-Cycle Verification is the reduction of the number
of errors in the product during the early phases of the software development. This
reduction is achieved in part by construction of the intermediate products by technical
staff familiar with the historical background of the process and product.
Unacclimated personnel involved in an ongoing project require a four to twelve week
period to become acclimated to product requirements, the development process and the
existing organization. During this time the unacclimated personnel are engaged in the
production and review of the product. Unacclimated personne! are more error-prone
than acclimated personnel, introducing errors in the intermediate products.
Unacclimated personnel are less effective than acclimated personnel in recognizing

errors in the product during production

The measurement approach is to increase the number of errors introduced in the
product proportional to the number of unacclimated personnel involved in the

development process.

ek DRAFI" ¥k 47 e e ok DRAFI‘ Feke

Appendix B

Documentation Quality Indicator Hierarchy

(Preliminary Version)

xkk DRAFI‘ ek e 48 L ET DRAFI‘ ke

REQUIREMENTS
REALIZATION

REQUIREMENTS
SUPPORTED BY
DESIGN

DESIGN
REALIZATION

DESIGN
SUPPORTED BY
CODE

ACCURACY

NECESSITY OF
DESIGN/CODE

DESIGN CODE
UTILITY UTILIZATION

CONSISTENCY

FACTUAL
CONSISTENCY

CONCEPTUAL
CONSISTENCY

INVARIANCE OF
CONCEPT

49

WHLSAS 40 WALSAS 4O
AONHIIIIANS AONHIDOHANS

SINHWNDO0A HAGD

ONIMDVAL
NOLLVOIAIdOW

DNISSTA % A LYI4dOUddY % Sal/agql, NOILVIONINA

/_\ B

TVELNHYHAAYE TVNOLLISOdJWOJ)HG

SATHSNOILVTIY
EINHNNDO0A

SSUNHLATIINGD

HOIVHAAOD %

HOVIHAOQD
NIVINOA

50

USABILITY

READABILITY
INTRA-DOCUMENT /
LOGICALTRACEABILITY COMPLETENESS LOGICAL PHYSICAL
o TEXT CONCISENESS
Na &oz,»mz ADEQUACY
OVERAGE FORMULATED READABILITY OF PRINT
FORMAT
TERM CONSISTENCY BOTTOM-UP ADHERENCE TO STANDARDS CONSISTENCY
TRACEABILITY SUFFICIENCY OF FORMAT
SUFFICIENCY OF TOP-DOWN GLOSSARY APPROPRIATENESS
TABLE OF CONTENTS TRACEABILITY MODULE
TERM UNIQUENESS APPROPRIATENESS
SIMPLICTY / MODULARITY
REFERENCES %mmwﬂng. OF
REDUNDANCY
APPROPRIATENESS
TBD/TBS % MISSING SUFFICIENCY OF INDEX ‘
% APPROPRIATE TERM CONSISTENCY _
ACRONYMS ABBREVIATIONS

KEYWORDS

51

- Appendix C

Measures for Document Quality Indicators

(Metrics not included)

*ir YR ART dkdkk 52 w¥k YRAFT ¥¥%%

Each document quality indicator presented in this Appendix has the following format:

Property:

What is measnred:

Rationale:

Measurement

Approach:

Metric:

The name given to the property of the documentation which is assessed and
evaluated using the measurement approach described under the measure
heading.

A brief description of the property being measured.

The reason(s} the assessment of this particular property is germane to the assessment of

documentation quality in general.

The approach taken to evaluate this documentation property, including the data collected,
the methods used to collect the data, and the way(s) the data is used to render an evaluative

measure of the property in question.
Although preliminary metrics for the following documentation quality indicators have

been formulated, they are not included in this report because they are still being refined
and, subsequently, are not finalized.

**x YVRAFT ek 53 ok DRAI.‘."I‘ ek

Proposed Document Quality Indicators

Property: Percent Appropriate References

What is measured: The proportion of references made within the documentation which are deemed appropriate

OF necessary.

Rationale: Unnecessary references are a waste of the user’s time because time spent tracking down
irrelevant or insignificant reference could be better spent pursuing important information.

A low score in this indicator could be indicative of:

» a “jumbled” or disorganized documentation process, or

» overkili on the part of the documentation team (how much is too much?).

Measurement

Approach: References made throughout the documentation are collected in a table containing the
subject and the location(s) referenced. The referenced locations are then assessed for
appropriateness by determining the amount of relevant information present at the
referenced location. Such an assessment can be implemented by consulting the linkages
derived through a keyword indéxing procedure to determing if two referencing or co-
referencing subjects are “related” (0 one another. The ratio of appropriate references to the

total number of references is evalnated.

The references can be collected by noting section numbers not corresponding with the

current section.

LTS DRAFI‘ k%K 54 *4k% IR ART F¥*

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Percent Missing References

The proportion of missing references to the total number of existing references in the

documentation.
A “missing” reference is defined as:

« areferenced section that doesn’t contain the subject referenced, or

« the lack of a reference where one would be appropriate.

This measure shall take into account only the first type of missing reference; determining

where a reference should be is not antomatable.

Documentation that has sections which are inaccurately linked together is not only less

useful, but less complete than documentation which is linked literally as well as

hierarchically.

A table of references is constructed, including the referenced locations. Each cited location
is checked to determine if the topic it is purported to cover is actually present at the
location, The measure is the ratio of the number of missing references to the total number

of references.

Aok DRAFI‘ Aok ok 55 *kk YR AT *¥*

Property:

‘What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Abbreviation Usage

The degree to which abbreviations are used in a well-defined and consistent manner.

Abbreviation usage is helpful to the user of a document only if the abbreviations are well-

defined and used in a consistent manner.

Each abbreviation used in a document will be checked for the following:

« definition at initial usage, and that

« each usage of the abbreviation is in a similar context (i.c., has the same meaning).

The measure is computed by combining the scores obtained by evaluating the above

characteristics.

The meaning of an abbreviation is simply its verbose form. For ¢example, m.p.h stands
for "miles per hour”, and should not be used in the same document as meaning “multiple

pay days”. This would be an instance of inconsistent usage of an abbreviation.
Abbreviations can be identified by the following characteristics:
» words ending in a period (.) that are not followed by 2 spaces and capitalized words.
{problems: typing errors and proper nouns can cause a preceding word to appear

as an abbreviation), and

» groups of letter-period-letter-period sequences (e.g. m.p.h.).

*¥xx DRAFT Heskeok 56 4 deske DRAFr Jesietk

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Acronym Consistency

The degree to which acronyms are used in a well-defined and consistent manner.

Acronym usage is helpful to the user of a document only if the acronyms are well-defined

and used in a consistent manner.

Each acronym used in a document is checked for the following:

» definition at initial usage,

+ definition in the gIosséry or acronym list accompanying the documentation, and
that

+ each usage of the acronym is within a similar context (referred to below as a “proper

use”).
The measure consists of a combination of the evaluations of the above characteristics.
The meaning of an acronym is its verbose form, For example, SRC “means™ Systems
Research Center. Once SRC has been used in this context, it should not appear anywhere

in the same document(s) intending ancther meaning, e.g. State Regulatory Commission.

This would be an instance of inconsistent usage of an acronym.

e DRAI:'I‘ *kk 57 EEL DRAFT ki

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Adequacy of Print

The adequacy of the display techniques used in the documentation.

The readability of a document is affected by its physical attributes as well as the way in
which the content is presented, Line length, character size, highlighting and use of white

space are all influential in the physical readability of a document.

For each of the categories mentioned in the rationale, a measure is computed as
appropriate. Each of these measurements is compared against accepted standards from the
literature and ranked accordingly. These measures will remain separate so that the nature

of a deficiency can be readily identified.
Optimal character size has been stated to be 8-10 points, depending upon the font used. A
judgement as to where in this range the empioyed font lies can be made on a per

document basis with little loss of generality.

Highlighting techniques, such as bold typeface, italics, and underlining will be noted, but

a means to determine the appropriate use of such techniques has yet to be developed.

LEE] D‘RAFI‘ ook 58 ik TYRAFT Hesdede

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Adherence to Standards

The degree to which documentation is in accordance with the specified documentation
standards.

This measure is similar to Domain Coverage, but the emphasis is more focused on

format than content.

Consistent use of standardized methods enhances the ability of user(s) of the

documentation to comprehend the information presented.

A list of required items (e.g. TOC, index, acronym list) is compiled by referencing the
particular documentation standard in use. The documentation is then examined to
determine the extent to which each item is present. By using a weighting scheme to

assign relative importance to each item being considered, an overall score is calculated.

»% YRAFT Rk 50 Sk DRAFT #**

Proposed Document Quality Indicators

Property: Bottom-Up Traceability

What is measured: The extent to which the claimed functionality of a code component is designated by

successively higher levels of specifications through design to requirements,

Rationale: From any level, a path of designated components at successively higher levels of
specification should be defined to promote ease-of-change. This applies particularly to the
objective of maintainability. In order to update/correct/change a code module, the
maintainer might need to reference the design specification that motivated the code

module’s creation. Further, reference to the requirement specification might also be

Necessary.

Measurement

Approach: This measurement approach uses three sets as its domain. These sets are:
Base sets (determined from raw data);

1 = requirements (ry) sét forth in system specification,
d = design specifications (dsj) from design documentation, and
¢ = code modules (cm;) used to implement design.

Derived sets (calculated from Base sets):

cd = code modules that support some design specification. Sets of (cmy, dsj)

pairs, and

dr = design specifications that support some requirement specification. Sets of
(ds; 1y pairs

cdr=cd JOIN 4 de-dr ds dr, or (cm;, dsj, 1) triples, where (cmi’ ds,)isa
member of ¢d, (dsy, rk) is a member of rd, and dsj =ds, = dsy, where x

=y,

The set cdr represents code modules reflected in both design and requirements.

*xx YRAFT k¥ 60 ek DRAF’I‘ sk

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Code Utlization

The degree to which the existing code modules are necessary to fulfill the design
specifications set forth in the design documentation.

Code that supports no design specification is superfluous, possibly the remnant of a
previous design specification which has since been deleted or a ‘utility’ module
constructed in advance and never used. Such code may actually be useful, but appears to
be superfluous as a result of insufficient documentation. Poorly documented code
modules can create difficulties during maintenance. Also, new errors might appear as a
result of repairs made to a code module that has an undocumented influence on another
portion of the product. For these reasons, the utilization of code modules must be both
maximized and documented.

A set-based approach is used to assess this property. First, a set of all code modules,
Cyotal i8 constructed. Next, a ;ubset of Cinearr Cused 1S constructed. C,o.q contains

only those code modules that support the implementation of some design specification(s)
(i.e., a code module must support a valid design module to be a member of C,,..4)-

Perhaps D, (see Design Utility) could be used as the set of valid design modules.

The cardinalities of these two sets are used to calculate the proportion of necessary code
modules relative to all extant code modules, Note that a low value could indicate either

poorly documented code, or the existence of unnecessary code modules.

Aok DRAFI" ek 61 e DRAFI‘ ¥k

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Completeness of Index

The extent to which the index includes all keyword occurrences in the documentation.

A good index enables the user to selectively read a document by noting the Iocation of
important topics within the text of the document. In order to provide a complete coverage
of the important topics contained within a document, the index must include as many

keywords as possible. _

Completeness of the index is assessed by listing the number of eniries in the index and
comparing this list to a list bf topics that should be covered in the index. The list of
“should be’s” might be compiled automatically by extracting terms from a document that
arc deemed important by some evaluation criteria (e.g., frequency of occurrence,
occurrence in the TOC). Deductions are made for each omitted entry, using a weighting
scheme reflecting the importance of the omitted term, Similar deductions are made for

entries that do not list all occurrences of the topic.

ek DRAF'I‘ sk ok 62 ek DRAFT e ek

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Completeness of Table of Contents

The extent to which all important topics contained in the documentation are included in
the table of contents.

If a table of contents is to be of assistance to the user of a document, it must be
complete. This means that the table of contents should include all topics that are of
sufficient importance that have a section of the documentation has been dedicated o them.
If important topics are not included in the TOC, then the table of contents loses

effectiveness as a reference tool.

Completeness is measured by evaluating the extent to which all sections and subsections
are contained within the table of contents. The reasoning behind this is that if a topic is
important enough fo warrant a separate section within the documentation, then an entry in

the table of contents is warranted as well.
Sections and subsections can be counted by parsing the document set and counting each
section/subsection heading. If possible, a hierarchy should be established, consisting of

sections, followed by subsections, followed by sub-subsections, etc.

The measurement approach combines the degree of inclusion of sections and subsections

with an applied weighting scheme to give more importance to more essential sections.

Aok DRAFI‘ ;AR 63 %% YR AET *%*

Property:

‘What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Correctness of Index

The accuracy with which the index cites locations of terms.

A good index enables the user o selectively read a document by noting the locations of
important topics within the text of the document. If an index misleads a user with respect
to the location of a term within the text of a document, the user suffers losses of both

time and confidence in the documentation.

Correctness is an assessment of the accuracy of the entries (i.e., if the index says
missile warning system appears on page 22, does it?). Deductions are made for

erroneous entries, perhaps accounting for the degree of error committed in each case.

A more important facet of correctness is the significance of each term presented at the
location(s) specified by the index (i.e., is the term actually discussed, or does it just make
a cameo appearance?). This can be assessed by determining whether the observed term is

used as the subject of a sentence on the page noted within the index,

Each entry is checked for accuracy of location and citation significance at the location
cited.

*xk DR AFT sk 64 ***% DRAFT ok

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Correctness of Table of Contents (TOC)

The accuracy with which the TOC cites the section locations and titles.

If a table of contents is to be of assistance to the user of a document, it must correctly
guide the user to the location of the desired section. Inaccuracies of this nature cause
wasted time and effort, and thereby diminishes the effectiveness of the TOC as a reference
tool.

The following criteria for TOC correctness are evaluated:

» Does the section begin at the location specified by the TOC?
« Does the section heading concur with the title cited in the TOC?

These criteria are assessed by comparing the entries of the TOC with the document body

for accuracy.

deokk DRAF’I‘ Ak 65 Rekk DRA_’F‘T skexkok

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Design Supported by Code

The degree to which the design specifications are realized by the code (implementation).

To accurately reflect the product it describes, each design specification must be realized by
some code module(s).

This property can impact the objective of correctness in either a positive or a negative
manner. If the design is inaccurately represented by the code, then the requirements that
the design represents are not met, thereby negatively affecting product correctness. In the
reverse direction, if all of the design specifications are realized by the code, then the
resultant code should be as correct as the design.

The following sets are constructed in order to measure the existence of design support

present in the code:

D jeg = the set of design specifications that support some requirement(s), extracted

from the design documentation. (See D,; .4 in the description of the Design

Utility indicator), and
D g = the set of design specifications found to be supported by the code.

These two sets are intersected to determine the extent to which the code accurately
represents the design. Only utilized design specifications are considered for Dyg,c; no

credit is or should be given for code in support of superfluous design.

ddek DRAFI' e s e 66 *kk DRAFI' dedk ke

Property:

‘What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Design Utility

The extent to which design specification(s) fulfill a requirement specification.

In the course of project development, requirements are changed, added, and deleted from the
original set of requirements specifications. If a requirement is removed or changed, then
the corresponding design specification(s) should be removed or changed to reflect this
action. Design specifications that are not updated properly become a catalyst for
confusion during both the implementation and maintenance stages of software

development.

A set-based approach is used to assess this property. First, a set of all design
specifications, Dy is constructed. Next, a subset of Dy1. Dygag is constructed.

D ;g4 SOntains only those design specifications that support the development of some

requirement specification(s) (i.e., the requirement supported must currently be valid).

The cardinalities of these two sets are used to calculate the proportion of the existing
design specifications that have utility with respect to fulfilling requirements.

EE L] DRAFT ek 67 sk TYR AT %k

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Percent Domain Coverage

The degree to which the items required by the documentation standard (i.e., sections,

modules, documents) are present within the documentation.

Standards are defined with a specific purpose in mind: to insure that those items deemed
“necessary and sufficient” are present in a product. Such items are necessary to insure that
(a) the product can be utilized in a straightforward manner, and (b) all needed information
is present. Therefore, all items required by the documentation standard should be present
if the product is to be considered complete.

Given a standard (e.g. DoD-STD-21674A), evaluate the documentation set for
completeness of coverage relative to the items required by that standard.

Ak DRAFT ek 68 S e DRAF'[‘ ek

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Format Appropriateness

The suitability of data presentation style or layout, i.e., the the most proper choice and

use of charts, graphs, tables, and other graphic presentation formats.

The presentation methods used to convey information directly impacts the user's
comprehension level. Selection of the best (worse) method to display information can

enhance (hinder) document comprehension.

The appropriateness of tables, graphs, and charts is difficult to determine. Nonetheless,
one¢ method is to note situations in conventional text (i.e., prose) that could better be

represented in an alternate format, For instance:

List - long sequence of <phrase, phrase, phrase,...>,
Table - list of <phrase,...value, phrase,...value,...>,
Graph - multiple occurrences of phrases of the form <FROM x TO y> within a

passage, where x and y are numerical in nature.

The text is examined for the presence of such instances, and the ratio of inappropriate

representations to all such representations is examined.

ek DRAFI‘ EE L 70 *ogk DRAPT **kk

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Format Consistency

The application of a consistent format over all items within the same class (e.g. an index

is in the class of indices) and within or among document set(s),

Once an item format has been observed, the reader has a priori knowledge of what to
expect for additionally related items. Usability is enhanced by the consistent use of a
format.

Key re-occurring items of software documentation are sampled and an intra-class
comparison is made. The proportion of those items using a consistent format is
calculated on a per class basis; each class is weighted by its overall contribution to
document usability. These figures are then summed to determine the overall consistency

measure with respect to formatting,

K DRAFI‘ dodedk 71 Mk DRAFI‘ Ak

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Format of Table of Contents (TOC)

The application of a formatting scheme to the TOC that conveys the maximum amount

of information about the document as possible, while maintaining ease of use.

The user of a document should be able to determine the content, hierarchical organization,
and component length(s) of a document by perusing the TOC. The format used in
presenting the information contained within a TOC directly affects the user’s ability to
perform the above actions,

The TOC is evaluated for the presence of the following attributes:

« use of keywords in section titles,

« use of meaningful indentation,

» use of different typefaces (including sizes) to convey hierarchical organization of
section,

» use of section numbers in section entries, and

= use of a single column for page numbers.
Each of the above attributes is assignéd a significance value, reflecting its relative

importance in the TOC formatting scheme. If an attribute is determined present, its

significance value contributes to the Format of TOC metric value.

ke sk DRAFT #*%* 72 kW DRAFI‘ Ak

Property:

‘What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Factual Consistency

The degree of consistency across documents with respect to “facts” (i.e., file names,

enumerations of items, efc.). Webster defines a fact as:

* an assertion, statement, or information containing or purporting to contain

something having objective reality.

For purposes of this indicator, a “fact” is a definitive or specific statement/term that has a
specific value associated with it.

Differing values across documents implies inaccuracy, and hence, misleads the user.
Conflicting values across documents can lead to confusion, poor assumptions, and lack of

faith in other documents.
For each document section, create a table of “facts”, where each fact is represented as a
<variable, value> pair,

One measurement approach is to compare the sets of facts among related sections of the

documentation (i.e., sections pertaining to the same requirement) as follows:

Facts In Common (FIC) = the set of facts shared across related sections,
Congistent Meaning (CM) = the set of all facts in FIC that have the same value, and
where

Factual Consistency = cardinality of CM divided by the cardinality of FIC.

“Relatedness™ of sections is determined by traceability links calculated through the Top
Down Traceability indicator.

sk DRAFI" *dek 69 gk DRAI:T ki

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Textual Clarity

The ease with which a document is comprehended by the user.

If users are to effectively use documentation, they must be able to comprehend it.

The reading grade level, 2a measure of the amount of education necessary to acquire an
understanding of the documentation, is calculated through the use of an established

readability evaluation formula or combination of formulas. This readability level is then
compared with the reading level of the anticipated user group of the documentation.

#+% DRAFT *** 73 *#% DRAFT *+*

Proposed Document Quality Indicators

Property: Glossary Completeness

‘What is measured: The degree to which the glossary contains appropriate entries.

Rationale: A good glossary enables the user to find definitions of terms specific to the project.
Accordingly, the reader can browse a document without being unduly concerned about
missing the definition of a term/acronym at its first usage. A complete glossary contains
all explicitly defined terms that a reader might need (project specific terms, acronyms,

abbreviations).

Measurement
Approach: Completeness of the glossary is determined by checking if all project-specific terms,
" abbreviations and acronyms are defined in the glossary. This list can be compiled
manually or through an automated analysis of the documentation (One possible location
where such terms might be collected is in the entries of the table of contents; another
location is the first sentences of paragraphs.). Deductions are made for each omitted

entry, augmented by a term frequency weighting scheme,

*%x YR AFT *¥* 74 ek DRAF'I‘ A

Proposed Document Quality Indicators

Property: Invariance of Concept

What is measured: The extent to which the idea or meaning of each requirement is preserved at the

design/fcode levels of documentation,

Rationale: Differing meanings across documents implies that the meaning of a requirement has
possibly been misconstrued. This can lead to a requirement that is unsupported, even

though the documentation states otherwise.

Measurement _

Approach: Related sections of documentation (i.c., sections related across requirements, design, and
code) are checked to determine if the central idea of the requirement is preserved at
successively lower levels of abstraction. To effectively assess invariance of concept, an
“invariance of concept” measure is constructed to evaluate the similarity of related

sections based on the common use of keywords.

vk DRAFT Fodek ‘75 ik DRAFT Hodkek

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Keyword Consistency

The degree to which keywords are used consistently across all portions of a document

set.

A keyword is any word specific to a project, or to computer science in general (acronyms
and abbreviations excluded).

The use of keywords in a documentation set should be consistent with respect to their
meaning throughout the documentation. Usability is greatly diminished if such is not the
case. Effectively, the user can easily become confused by conflicting uses of a keyword

within the documentation,

A list of keywords is constructed. Associated with each keyword is a collection of the
contexts in which the keyword is used throughout the documentation text. Each context
is compared for consistency of meaning with the other contexts in which the same
keyword is used.

Ak DRAFT ek 76 W4k DIRAFT *%*

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Module Appropriateness (Module Apparentness)

The suitability of the physical division of text modules at varying levels of magnitude

(i.e., sections, documenits, chapters) within the documentation.

Usability of documentation is enhanced if the reader can determine information about the
structure/content of a document through simple perusal, as opposed to searching for

detail.

Documents should begin on a new page, péragraphs and sections should be delimited by a
consistent number of blank lines, indentation or possibly selected typefaces. The measure
shall account for the most important of these, spacing. A general rule is that as module
level increases, so should spacing. This rule is reflected in the following evaluation

criteria;

Text: double-spaced,

Paragraphs: 2 * Text = 4-spaced,

Sections: 2 * paragraphs = 8-spaced (6-spaced acceptable), and
Documents, Large Sections: New page.

#kk DRAFT **+* 777 #%* DRAFT %%#

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Order of Glossary

The use of an alphabetical ordering format in the glossary.

A good glossary enables the user to find the definitions of terms specific to the project.
This enables a reader to scan the document selectively without having to be anduly
concerned about missing the definition of a term/acronym. The order of the glossary
should be alphabetical because such a format greatly enhances the search process by
paralleling the intuition of users.

The glossary is examined to determine if alphabetical ordering is employed. If some other

ordering scheme is employed, the evaluation is altered accordingly.

*kk DRAFT ek 78 e ek DRAFT ***

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Order of Index

The use of an effective ordering scheme in the index.

A good index enables the user {0 selectively read a document by noting the location of
important topics within the text of the document. The format of an index should
contribute to document usability by providing efficient and convenient access to
important terms/topics within a document. The ordering scheme of an index assists in

determining the extent o which effective access can be achieved.

The order of the index should be alphabetical because an alphabetical format enhances the
searching process. The nse of an alphabetical scheme is evaluated, including the
possibility of nested lists under general topics contained within the index. There may be
other effective means of ordering, and if encountered, these means will be evaluated for

their utility.

ek DRAFI‘ ok 79 *%x RAFT ***

Property:

What is measuared:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Redundancy Appropriateness - Inter-section (stand-alone quality)

The appropriateness of the amount of information repeated within a section of the

document,

Certain background information should be present within each section of a document. -
This characteristic enables the user to selectively read a document without needing to re-
read each of the sections that hicrarchicaily precede the selected section. An exception
exists when the background is very lengthy or involved, in which case references o the

appropriate sections should be present.
Throughout the documentation, topics are identified and recorded along with the locations
of where the topics are discovered Topics are then examined to determine:
= the total number of times a topic is repeated within a group of related sections, and
» the degree of repeated coverage for each topic relative to the rest of the topics in the

documentation.

Using the above information, the appropriateness of the redundant information is

assessed.

whx DRAFT **% 80 %% DRAFT #%*

Property:

‘What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Specification Refinement (Refinement Enunciation)

'The refinement of specifications from high level documents to low level documents,

That is, as specifications progress from requirements through design to code, one expects
abstractions to be refined to less abstract terms,

As the documentation proceeds from one level of specification to the next, more detail is
expected; as lower level documents are used to construct the next, a more concrete level of

specification is realized (e.g., design is used to create code).

Alarger amount of detail necessitates larger quantities of text. Therefore, an indication of
the increase in detail is determined by assessing the amount of text dedicated to describing
the same topic from one level of specification to the next. The increase in text is

compared to an expected increase, and the ratio of actual increase to the expected increase

- is calculated.

Rk DRAFT *%% 81 Aok DRA_F’I‘ ek ok

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Requirements Supported by Design

The degree to which the requirements set forth in the system specification document are

present in the design documentation.

In order for a document to accurately reflect the product it describes, all requirements must
be represented in the design documentation. A design that does not include ail
requirements increases the probability of product defects because inaccurate design

documents will later be used to implement the product in the form of code.

The following sets are constructed in order to measure the existence of requirements

support present in the design:

Rreq = the set of all requirement specifications, extracted from the requirements

documentation.

R geg = the set of requirement specifications found to be supported by the design

documentation.

These two sets are intersected to determine the extent to which the design accurately
supports the requirements. The current stage of the development life cycle is also

considered by weighting incomplete support more heavily as the development life cycle

progresses.

Ak DRAF'I‘ dedk e 82 ek DRAFI‘ ek

Property:

What is measured;

Rationale:

Measurement

Approach;

Proposed Document Quality Indicators

Simplicity/Modularity

The appropriate division or decomposition of documentation such that a single theme is

expressed by each section/subsection of a document.

This concept should propagate in a bottom-up manner. That is, the theme of a section
should be an aggregation of its subordinate sections,

In reading a document, comprehension is enhanced if the reader has only a limited, small
number of related topics to consider at a time; ease of reading is enhanced, thereby
decreasing reading time,

Each section is ranked by its hierarchical level, as determined by the number of periods in
its section number (i.e., section 5 has level 0, while section 5.1.4 has level 2). The
sections occupying the least abstract (i.c., the highest numbered) level(s) are analyzed for
simplicity by evaluating the number of topics covered. (High level sections containing
more than one theme should be reevaluated for partitioning into separate sections.) Lower
level sections should be composed of topics related to the subordinate sections.
Modularity evaluation determines the extent to which information in a given modute can

be attributed to topics in its subordinate modules.

3k D‘RAF‘I‘ Aok 83 3k DRAFI‘ * ok

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

TBD/TBS (To Be Defined/To Be Specified)

The amount of references to a later time in project development (¢.g. *10 be defined ...”,

“to be specified ...”) that occurs within the documentation.

The existence of TBDs and TBSs decreases the ability of a user to determine necessary

information from the documentation because references leave gaps in the documents.

In order to assess this quantifier, phrases of the form “TBDYTBS” must be counted.

TBD/TBS staiements are appropriate at many times during the development of software
documentation, but the ones that remain unresolved over time detract from the accuracy,
completeness, and nsability of the documentation. The persistence of TBD/TBS phrases
from one baseline to the next is an indicator of the non-resolution of information. Such
persistence is measured by comparing the number of TBD/TBS phrases in the current
documentation and comparing this to the number of TBD/TBS phrases in the

corresponding sections from the previous baseline documentation.

ook DRAFT *kk 84 e e fe DRAFI‘ ok

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicator

Top-Down Traceability

The degree to which requirements are designated in successively lower levels of

specification from design through code.

If the requirements cannot be followed through design to implementation, the usability of

the documentation is diminished.

This measurement approach uses three sets as its basis. These sets are:
Base sets (determined from raw data):
r = requirements (r;) set forth in system specification,

d = design specifications (dsj) from design documentation, and
¢ =code modules (cmk) used to implement design.

Derived sets {calculated from Base sets):

rd = requirements supported by design documentation. (r;, dsj) pairs,
dc = design specifications supported by code documentation. (dsj, cmy) pairs, and
rdc=rd JOINrd_ ds=de.ds dc, or (ri, dsj, cmk) triples, where (ri’ dsx) is a member

of rd, (dsy, cmk) is a member of dc, and dsj =ds, = dsy, wherex =y,

The set rdc represents requirements reflected by both design and code documentation.

Wk MYRAFT *%* 85 ik YR ART #%%

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Term Uniqueness

The extent to which (significant) terms are used in a document to convey the same

meaning in similar contexts,

The association of multiple meanings with a term given similar contexts invites reader
confusion, particularly when the term is used in an atypical (i.e., project specific) or

unfamiliar manner,

Each instance of a term is recorded, along with its meaning and a representation of its
context {context here applies in a general sense, perhaps encompassing an entire section
of a document in some cases). Comparisons across term instances to determine
uniqueness of meaning within a context are made, and a calculation is derived. These
calculations are then combined (o render an overall assessment, reflecting the consistency

with which a term is used in a particular context,

ke DRAFT *#*% 86 Fokdke DRAFT' ke

Property:

What is measured:

Rationale:

Measurement

Approach:

Proposed Document Quality Indicators

Text Conciseness (Succinctness)

The succinciness of the documentation text; or, “does the author use just enough text to

completely cover the topic at hand, and no more?”

Each document should state the necessary information as briefly and as succinctly as
possible so that the effort required to retrieve information from the documentation is
minimized. Verbosity hinders this process because the user must “cut through the fat” to

comprehend the meaning of the passage.

A succinct passage of text is characteristically rich in meaningful terms. Such terms are
usually keywords of a document. Thus, the proportion of keywords to “noise” words

indicates the succinctness of a passage.

A further indication of succinctness (or lack thercof) is the frequency with which passive
voice is used. Passivity in a document detracts from succinctness, and should be avoided.

The two characteristics mentioned above are measured and combined to provide an

indication of the succincmess of the documentation.

Hookk DRAF'I‘ stk e 87 e e e DRAF"I" Pk

Appendix D

Measures for Ada Specific Indicators

(Metrics not incluﬂed)

Bk DRAFT ek sk 88 *xk DYRAFT %%

Property:

Attribute;

Rationale:

Measurement

Approach:

Metric:

Each code indicator presented in this Appendix has the following format:

The measurable code characteristic used in computing a measure reflective
of its direct relationship to desired software engineering attribute.

The software engineering attribute being assessed.

The reason(s) the assessment of this particular property is germane to the assessment of

the software engineering atiribute.

The approach taken to evaluate the code/attribute relationship. Discussion includes the
data collected, the methods used to coflect the data, and the way(s) the data is used to

render an evalnative measure of the property in question.
Although preliminary metrics for the following code indicators have been formulated,

they are not incleded in this report because they are stifl being refined and, subsequently,
are not finalized.

ko DRAF’I‘ Rk 89 ek YR ART ¥k

Property:
Attribate:

Rationale:

Measurement

Approach:

Property:
Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Record Discriminants
Complexity (+)
A factor in reducing complexity is the ability to use abstractions. Record discriminants

encourage the accurate modeling of data types and allow more succinct abstractions to be

made than are possible using “conventional” records.

The measure for this indicator is the number of discriminant types defined relative to the
number of user defined types defined. (Per Unit)

Use of Record Discriminants
Early Error Detection (+)
Implementing record discriminants requires detailed data-structures earlier in the life cycle,

exposing weaknesses in previous documents.

The measure for this indicator is the number of discriminant types relative to all user
defined types. (Per Unit)

%% DRAFT EE S Q) kk DRAFT ¥%**

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach;

Proposed Code Indicators

Use of Block Statements
Cohesion (+)

Block statements are an additional control structure provided by Ada. By binding code
into control structures (block statements are one such control structure), the code cohesion
is improved because such bindings usually imply that statements are functionally related.

This indicator utilizes global program measures as well as measures at the subprogram
level. All subprograms are examined to determine an average lines of code per blocking
structizre across the entire program. From this the expected number of blocking structures
for individual subprograms can be computed. The measure uses two ratios: (1) the
expected number of blocking structures divided by the actual number of blocking
structures tempered by (2) the total lines of code enclosed by blocking structures divided
by the total lines of code of the subprogram. (Per Unit, excluding Tasks)

Use of Block Statements
Complexity (+)

Block statements are a control structure provided by Ada. By using block statements fo
break code into smaller units, the complexity of the code is reduced.

This indicator utilizes global program measures as well as measures at the subprogram
level. All subprograms are analyzed to determine an average lines of code per blocking
structure across the entire program. From this measure, the expected number of blocking
structures for a particular subprogram can be computed. The measure uses two ratios: (1)
the expected number of blocking structures divided by the actual number of blocking
structures tempered by (2) the total lines of code enclosed by blocking structures divided
by the total lines of code of the subprogram. (Per Unit, excluding Tasks)

ek DRAFT %% 91 0k DRAFI‘ Aok

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Block Statements
Readability (+)

Block statements are an additional conirol structure provided in Ada. Block siatements aid
readability by partitioning code into smaller related units. This partitioning results in
smaller blocks of code that need to be considered as a unit by the reader, hence improving
the understandability and readability of the code.

The measurement approach for this indicator utilizes a measure across the entire program
as well as measures at the subprogram level. All subprograms are analyzed to determine
an average lines of code per blocking structure across the entire program. From this
measure, the expecied number of blocking structures for a particular subprogram can be
computed. The measure uses two ratios: (1) the expected number of blocking structures
divided by the actual number of blocking structures tempered by (2) the total lines of code
enclosed by blocking structures divided by the total Iihes of code of the subprogram. (Per
Unit, excluding Tasks)

Use of Both Default Parameters and Positional Notation

Complexity {-)
A parameier list in positional notation that has utilized a default parameter gives the

reader the impression that something has been left out. This adds to confusion, and

hence, complexity.

The measure for this indicator is the number of omitted parameters relative to the total

number of parameters possible in all calls using positional notation. (Per Unit)

dedek DRAF'I‘ ek 92 ek DRAFI‘ EE L

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Both Default Parameters and Positional Notation
Readability (-)
It is more difficult to read a program containing calls utilizing positional notation that

have omitted parameters. It appears to the reader that something has been left out,

The measure for this indicator is the number of omitted parameters relative to the total

number of parameters possible in all calls using positional notation. (Per Unit)

Definition and Use of Default Parameters for Stable Values
Complexity (+)
Parameter values that remain relatively stable for the entire program can be given defanlt

values. By defining and using a default value for a parameter, there is less information for

the programmer to keep up with, hence, reducing complexity,

The measure for this indicator is the number of subprogram calls where defaults are
defined and used, relative to the number of subprogram calls where default values are
possible. (Per Unit)

%% DRAFT #*+ 93 wix DRAFT *++

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Definition and Use of Default Parameters for Stable Values
Readability (+)
Reducing the amount of superfluous information benefits the reader of a program, By

using a default parameter value for stable values, the reader need only consider the
parameter when necessary.

The measure for this indicator is the number of subprogram calls where defanlts were
defined and used relative to the number of subprogram calls where default values were
possible. (Per Unit) ‘

Definition of Default Parameters

Well-Defined Interface (+)

When default values are defined, it conveys additional information about the module’s
interface This improves the clarity of the interface.

The measurement approach for this indicator is the number of parameters defined with

defaults relative to the total number of parameters. (Per Unit)

Wk DRAFI‘ kN 94 ek DRAFT %%

Property:

Attribute;

Rationale:

Measurement

Approach:

Property:

Aftribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Parameters with Name Notation

Complexity (+)

Because of the self documenting feature of subprogram calls using name notation, the
overall complexity of the program is reduced.

The measure for this indicator is the average number of parameters from subprogram calls
using name notation and having more than five parameters. (Per Unit)

Use of Parameters with Name Notation
Readability (+)
The self documenting feature of subprogram calls using name notation inherently

improves the readability of the program.

The measure for this indicator is the average number of parameters from subprogram calls

using name notation with more than five parameters. (Per Unit)

*#k DRAFT *%* Q5 %% DRAFT #i*

Property:

Attribute:

Rationale;

Measurement

Approach:

Property:

Attribute;

Rationale:

Measurement

Approach:

Proposed Code Indicators

Mixing the Order of Parameter Lists

Complexity (-)

Mixing the order of the parameter lists contributes to incomprehensibility and confusion.
This adds to complexity.

The measure for this indicator is the number of subprogram calls where the order differs
from the subprogram specification relative to the total number of subprogram calls. (Per
Unit)

Mixing the Order of Parameter Lists

Readability (-)
Mixing the order of the parameter lists is confusing to the reader and hence, reduces the

readability of the program.,

The measure for this indicator is the number of subprogram calls where the order differs
from the subprogram specification relative to the total number of subprogram calls. (Per
Unit)

kK DRAFT #*%% 96 ok DRAFI‘ ek

Property:

Attribute:

Rationale:

Measarement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Both Positional and Name Notation in one Subprogram Call

Complexity (-)

Using both forms of parameter notation in one subprogram call is confusing and hence,

increases the overall complexity of the program.

The measure for this indicator is the number subprogram calls using mixed notation

relative to the total number of subprogram calls. (Per Unit)

Use of Both Positional and Name Notation in one Subprogram Call

Readability (-)

Using both forms of parameter notation in one subprogram cail is confusing to the reader
and hence, reduces the overall readability of the program.

The measure for this indicator is the number subprogram calls using mixed notation

relative to the total number of subprogram calls. (Per Unit)

*ok DRA‘F’I‘ Aok 97 %k DRAFI‘ ok

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approeach:

Proposed Code Indicators

Overloading of Subprogram Names
(Does not Include Overloading through Generics)

Readability (-)

Overloading of subprogram names reduces readability as the number of overloaded names
increases. One subprogram name that refers to two or more subprogram definitions
causes understandability problems in two main areas: (1) differences in the parameters of

the subprograms and (2) differences in the semantics and functionality of the

subprograms.

The measurement approach for this indicator is the number of unique overicaded
subprogram names relative to the total number of unique subprogram names. Intuitively,
readability is extremely low if half of the subprogram names are overloaded. Therefore, a
factor of two is used in the measure. (Global)

Definition of Declaration Packages
Cohesion (+)

One use of packages is to group related constants and types (i.e. declarations). This
grouping is logically cohesive (related items) and procedurally cohesive (physically in one
package).

Program units that “with” a declaration package actually reference a percentage of the
declarations. A high perceniage (or utilization) is indicative of very related items becanse
they were necessary and used in the same program unit. The measure for cohesion is the

average utilization for all declaration packages in the program. (Per Declaration Package)

ek DRAFI‘ ook 98 ek DRAP"I‘ deskk

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Definition of Declaration Packages
Ease of Change (+)

The isolation of declarations into one cohesive package aids ease of change because units
that may be impacted are easily identified.

The measurement approach for this indicator is to measure the reduction of the scope
(percentage of units that must be checked) and weight the reduction by the significance of
the scope reduction (percentage of code that must be checked). (Per Declaration Package)

Insufficient Decomposition of a Declaration Package
Ease of Change ()

Insofficient decomposition of declaration packages results in more work during
mainienance activity. Program units must be unnecessarily checked for possible impacts
caused by changes to declaration packages.

Declaration package utilization is a measure for the degree to which declarations in a
package are utilized. It is also a measure for the percentage of iters that must be checked
for possible changes that actually need to be checked. Temper this measure by the
significance of the package (total number of declarations relative to all declaration

packages) to obtain a measure for ease of change. (Global)

®kk PYRAFT ¥k 99 ANk DRAFI‘ kR

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Definition of Packages that export Subprograms
Cohesion (+)

The isolation and localization of related subprograms into one package provides for
logical, functional, and procedural cohesion. Functional cohesion is the strongest, and

hence, the most important,

To measure the cohesiveness of packages that export subprograms, relate the utilization
of the subprograms by “withing” units. Intuitively, if the subprograms are sufficiently
related, the majority of “withing” units will need to use most of the subprograms. (Per

Subprogram Package)

Definition of Packages that export Subprograms

Well-Defined Interface (+)

A package provides an interface to the subprograms it exports through the package
specification. All “withing” units must use this interface to use any of the subprograms.
Other than subprogram specifications, the package specification may contain constants,
type declarations, variables, and exceptions.

One factor in assessing the quality of a package interface is the number of objects being
exported. The objects considered are variables and subprogram specifications. The clarity
of the interface is directly related to the Hrair limit, i.e. five subprograms is the optimal
number. Because of the damaging effect of global variables, zero is the optimal number
of variables in the package specification, The second factor is global variable references
external to the package. It is through these references that information flow occurs that is
not documented in the package specification. Due to the major impact of these references,

their weight will be twice that of the first factor. (Per Subprogram Package)

ek DRAFI‘ sosdede lm *%k DHRAFT ¥+

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Aftribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Definition of Packages that export Subprograms
Ease of Change (+)

By grouping subprograms together in packages, it is possible to localize code for a group
of functionally related subprograms. This creates modularity, resulting in an
improvement for ease of change. The placing of the logically related subprograms
benefits ease of change by isolating implementation details, thus reducing the “ripple
effect.”

The measurement approach for ease of change is to measure the total number of
subprograms defined in subprogram packages relative to the total number of subprograms
in the program. The significance of these subprograms is weighted by the significance of
the subprograms (TLOC of the subprogram packages relative to TLOC). (Global)

Units which “with” Packages that export Subprograms
Complexity (+)

“Withing” packages that export subprograms reduces the overall complexity of the
program by reducing the amount of work associated with the program. Instead of having
to look at the body of the package, a user need only look at the package specification to
use any subprogram exported by the package.

The measure for the reduced work associated with a unit is the total lines of code of the
“withed” package specifications relative to the total lines of code of the “withed” package
bodies. (Per Subprogram Package)

e e DRAFI‘ Kk 101 ek DRAFI‘ %k

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Units which “with” Packages that export Subprograms

Readability (+)

“Withing” packages that export subprograms benefits readability. This benefit occurs
because there is simply a subprogram call rather than a subprogram definition and a

subprogram call. Every distinct subprogram call to a subprogram from a package benefits
the readability of the code.

The measurement approach for this indicator is the number of distinct subprogram calls to
subprograms from packages relative to the total number of distinct subprogram calls.

(Per Subprogram Package)

Definition of Packages that are never “withed”
Complexity (-)

Defining packages that are never “withed” adds to the amount of code in the program
withount adding utility. This adds to the work associated with the program, or the

program complexity.

The measure for this indicator is the number of packages that are never “withed” relative
to the total number of packages. (Global)

$okdk YR AT *** 102 *dk DYRAFT %

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Definition of Parameterless Generics

Complexity (-)

A parameteriess generic provides a method of copying a group of objects. Because the
generic has no parameters; multiple, duplicaie copies of the objects are available. This is

confusing and increases complexity.

The measure for this indicator is gives a value of three if the generic unit is parameterless
and a five otherwise. (Global)

Use of Subprograms as Generic Parameters

Complexity (-)

Ada permits subprograms (0 be passed as parameters to generic units. The actual generic
unit is confusing because the programmer must remember that the formal subprogram
name is really a parameter to be specified by the generic instantiation. The functionality
of the subprogram is unknown and may have side effects. This makes programming the

generic harder, hence, increasing complexity.

The measurement approach for this indicator uses the number of subprogram parameters
relative to the total number of parameters to the generic. This ratio is muitiplied by a

factor of two because of the severe impact of this indicator. (Per Generic Unit)

¥kk YR AFT *** 103 L L2 DRATFT ***

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Subprograms as Generic Parameters
Readability ()

Ada permits subprograms as parameters to generic units. The reader sees a subprogram
name that is only a place holder for the real subprogram. Because of the unknown

functionality and nondescript name, it is difficult for the reader to understand.

The measurement approach for this indicator uses the number of subprogram parameters
relative to the total number of parameters to the generic. This ratio is multiplied by a

factor of two because of the severe impact of this indicator. (Per Generic Unit)

Definition of a Generic Unit (One Subprogram or One Package)
Complexity (+)

When identical algorithms differ only by type, it is less complex to abstract out the types
and create templates of program units. Defining Ada generic units creates less complex
units due to an additional layer of abstraction being made.

The measure for this indicator is the ratio of subprograms defined within a generic unit
relative to the total number of subprograms defined. This ratio is multiplied by a factor
of two because of the following argument. It is intuitive that if half of the subprograms
are defined within a generic unit, the program has much of its complexity reduced because

of the abstractions made through the definition of generic units. (Global)

dededk DRAFT *#* 104 Az DRAF’I‘ kA

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Definition of a Generic Unit (One Subprogram or One Package)

Readability (+)

Readability of the program is improved by abstracting out types from algorithms, that
creates type independent algorithms. For example, an exchange algorithm can be written
independent of the type. Readability and clarity is improved by having only one
algorithm instead of multiple copies of similar algorithms.

The measure for this indicator is the ratio of subprograms defined within a generic unit
relative to the total number of subprograms defined. This ratio is multiplied by a factor
of two because of the following argument. It is inmitive that if half of the subprograms
are defined within a generic unit, the program’s readability has improved because of the
abstractions made through the definition of generic units. (Global)

Multiple Instantiations of a Generic Unit
{(One Subprogram or one Package)

Ease of Change (+)
The benefit to ease of change with regard to generics increases as the number of generic
instantiations increases, A generic with only one instantiation has no benefit 1o ease of

change, whereas a generic with five instantiations achieves beneficial results with respect
to ease of change. Only one program unit need be changed instead of five.

The measure for this indicator is the average number of instantiations over all defined

generics. (Global)

¥ ek DRAFI‘ wdexk 105 e ek DRAFI‘ ek

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Tasking
Complexity (-
Concurrent programs are more difficult to write and debug. This results in increased

program complexity.

Each sabprogram unit that communicates with a task will increase the overall program
complexity. The measure for this indicator is the percentage of subprograms that have
rendezvous. (Global)

Definition of Tasks

Readability (-)

The readability of a tasks is directly related to its communication with subprograms and
other tasks. The number of accept statements defined in a task gives the number of
communicational entry points into the tasks. The more of these communicational enfry
points, the less readable the task becomes.

The measure for this indicator is the number of accept statements in the task body. The
optimal value for this measure is three or less with an increase in the number of accept

statements corresponding to a decrease in the measure for readability. {Global)

sl DRAF'[‘ ko 106 ¥k DRAFT *¥*

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Rendezvous with In Out or In and Qut Parameters
Coupling {-)

To achieve low coupling of modules, it is desirable to have minimal communication.
The smallest feasible exchange of communication is in one direction per rendezvous.
(Information is given to the task or information is retrieved from the task). When the

information flow is in both directions during a rendezvous, the task and the unit

requesting the rendezvous are excessively coupled.

The measure for this indicator is the number of entries defined with In Out or In and Out

parameters relative to all defined entries. (Per Task)

Use of Unprotected Global Data Areas

Coupling (-)

A change to the data area by any one of the accessing units can potentially cause a “ripple
effect “ in any other accessing module. This is a commonly accepted form of common

coupling. This is further aggravated by the fact that these units can access the global data

area concurrently.

The measure for this indicator is the average number of units potentially concurrently
coupled by a global data area. (Global)

*okk DRAF'I‘ dedfe e 107 * kK DRAFI‘ %k

Property:

Attribute:

Rationale:

Measurement

Approach:

Property:

Attribute:

Rationale:

Measurement

Approach:

Proposed Code Indicators

Use of Unprotected Global Data Areas
Ease of Change (-)

A global data area is one that can be updated by concurrent units. This concurrent aspect
is another hindrance that must be dealt with during a change to any one of the concurrent
units. With a sequential program, behavior does not deviate without changes to input, a
concurrent program’s execution is nondeterminant, and hence, repeatability may not be

achievable.

The measure for this indicator is the average number of units with concurrent access 10

global data areas. (Global)

Use of Exception Handlers

Complexity (+)

The use of exception handlers separates the algorithm from error handling code. This
produces two distinct code sections, an algorithm section and an error handling section.

This clarity reduces the complexity of the product.

The measure for this indicator is the number of subprograms with an exception handling
section relative to the total number of subprograms. This number is weighted by a factor
of two because of the following argument: using exception handlers with at least half of

the subprograms is extremely beneficial. (Global)

dekok DRAFT EE S 108 Wik YR AFT **%

Property:
Aftribute;

Rationale:

Measurement

Approach:

Proposed Code Indicators

Relying on Upper Level Subprograms to Handle User Raised Exceptions
Coupling (-)
A user raised exception should have a corresponding exception handler in the same

subprogram. If an exception handler does not exist, the exception is propagated to upper

level subprograms. This couples the subprograms via the exception propagation,

The measure for this indicator is the number of subprograms that raise errors, but do not
handle them, This measure is not made relative to the total number of subprograms

because the presence of the indicator is simply inherently detrimental. (Global)

Fakk DRAFI‘ ok 109 Fdek DRAFI’ Hkk

APPENDIX E
Ada CODE ANALYZER
USERS MANUAL

 (Preliminary Draft)

xxx YR AFT Hodkek 110 .*** DRAFT %#*

Ada Code Analyzer
Users Manual

(Preliminary Draft)

TABLE OF CONTENTS

U 0 170 o - PO UPET RSP RUSRURERRN 3
2. Basic System Requireme{lts .. 4
3. The Ada Analyzer - ADALYZE............ s 6
4. The Data EXtractor - DEX. i ireeeeerereeer e e s e 7
5. The Report Generator - RGEN..oiiiiiiiereiiiierieee e e s eesesaenens 7
6. Attachment A - ADALYZE OQutput Fles....uuevvmiiiiiiiiiiieiiieveeenee e 12
7. Attachment B - Sample Input and Output for DEX......covivivirireceierieenecnnenn. 18
8. Attachment C - Sample Data Output From RGEN........cccccecrirrereererecereinnne. 20
9. Attachment D - Command Line Arguments for DEX and RGEN........ccccevvvvrnnn. 25

Ada Code Analyzer *#k DRAFT*** 2 ek DRAFT ##% Users Manual

1. Overview

Experience has shown that manually collecting data to compute metrics is labor intensive and error prone, In
response to such experiences, this manual outlines the capabilities of an automated system for collecting data and
computing quality metrics related to Ada products. The report generation system presented consists of three software
tools that examines Ada source code and produces a report that details the extent to which desirable software
engineering attributes are present in the examined code. The reported measures are based on metrics developed by
Bundy [BUNG90] for the Software Quality A;sessment project with oversight by Systems Research Center

personnel at Virginia Tech,

The data collection and analysis system is designed to separately address language issues and metric
computations. The intent of this design decomposition is to promote extensibility. As iltustrated in Figure 1, one
can collect data from several sources, and then use the same report generator to compute metric values and to analyze

the data. The three components of the current system are:

» the Ada Analyzer - ADALYZE,
« the Data Extractor - DEX, and

= the Report Generator - RGEN,

ADALYZE is a language dependent analyzer that accepts Ada programs as input and produces data items that
support metric computations. Effectively, ADALYZE is a "compiler” that generates several language specific data
sets. In particular, these data sets contain information reflecting Ada language characteristics, e.g., the number of
packages that export subprograms. The language specific data sets are then passed to a data extractor (DEX). The
function of DEX is to transform the language specific data sets into a more universal format, i.e., one that is
primarily language independent. Because the data sets created by DEX are language independent only one metric
computation and analysis program is needed, regardless of the language being analyzed. Figure 1 illustrates how the
data collection and computational processes proceed when components of more than one language are to be analyzed.

Ada Code Analyzer ®bx DRAFT*** 3 #ik DRAFT #kx Users Manual

o el gl e
e ™ | | | ot o G
e | L0 | | e

Figure 1

Overall View of Information Flow

Structured to exploit knowledge of required metric computations, the report generator (RGEN) reads the language
independent data sets (or files) created by the data extractor and produces (a) a summary of the input data elements
and (b) a report reflecting the extent to which desirable attributes are present in the product being examined.
Figure 2 illustrates a more detailed view the relationship among the computational components and depicts how
information flows between those components. The remainder of this manual provides a detailed discussion of the

three system componentis.

2. Basic System Requirements

ADALYZE is constructed by using a parsing grammar designed for ALEX and AYACC (Ada versions of LEX
and YACC). The output of ALEX and AYACC are Ada source files that, when combined with semantic routines
(also written in Ada), comprise ADALYZE. Working copies of ALEX and AYACC are not essential to the
operation of ADALYZE unless one intends to change its functionality. What is required, however, is an Ada

compiler to translate the source code for all three programs (ADALYZE, DEX and RGEN) into target code for the

" Ada Code Analyzer whk DRAFT*** 4 **% DRAFT *** Users Manual

—— Packages

Analyzer

— -
Collector

SubPrograms

4
0[0/0/0
;

Metric
Report
Report B Genpo ~lf

Figure 2
Detailed Diagram of Information Flow in the Ada Analyzer and Report Generator

host system.

The amount of virtual memory required by the current implementation of ADATYZE depends on the size of the
source code being analyzed. In particular, to reduce execution time ADALYZE maintains 2 memory tesident symbol
table for the complete Ada program being analyzed. DEX and RGEN, on the other hand, do not depend on dynamic
memory allocation, and subsequently, require only minimal amounts of memory. As an example, ADALYZE
requires approximately 20 meg of virtual memory to process 30,000 lines of Ada source code. On a multinser
system, it took about three hours to complete. With the same input, DEX produces data files totaling
approximately 62,000 bytes; the report generator, RGEN, produces a two megabyte report file.

For execution purposes, the authors recommend that the user identify an automated procedure for constructing a
compilation order file. This file, which is the input to the Ada analyzer, specifics the compilation order for files
containing the software system to be analyzed. For small systems, the compilation order file can be created by hand.
For large systems, however, a manual process is extremely difficult, if not impossible. Most Ada compilers provide

a utility for determining the compilation order of a system. The Ada Software Repository has public domain

Ada Code Analyzer wha DRAFT*4* 5 *ik DRAFT #** Users Manual

software that supports such capabilities.

Currently, all three programs used command line arguments supported by the use of a packages provided by
VADS (Verdix Ada Development System), To maintain this feature during a software port, similar routines must be

provided by the compiler on the target system under which the analyzer system is to be compiled and executed.

3. The Ada Analyzer - ADALYZE

‘When the analyzer is invoked it reads a compilation order file that contains a list of file names to be examined
by the analyzer and the order in which the examination is to proceed. This file is called the compilation order file
{CO file) and should have the extension .co. When specifying the name of the CO file the .co extension must be

given. The CO file name can be given as 2 command line argument or as 2 response to a prompt from ADALYZE.

Four files are produced as output by ADALYZE, each containing data specific to General, Subprogram, Package
and Task structures. The names of these files are constructed from the base name of the CO file and extensions
.gen, .subprg, .pkg and .task, respectively. The format of these data files vary but have the same basic
structure. Each output file is in ASCII format and contains a set of data items placed on a separate line. In most
cases the data item is a number followed by a description; other times it is simply a name (e.g. a subprogram name).
Each subprogram, package and task files contain a general section followed by one section of data for each unit being
examined. For example, a subprogram file contains a general section recording global data, like the number of
subprograms and the parameter passing methods, followed by separate sections that record information particular to
individual subprograms. Both the contents and the naming of files generated by ADALYZE refiect an Ada bias, that
is, they incorporate Ada terminology. They must , therefore, be preprocessed by the Data Extractor (DEX) before

being read by the Report Generator (RGEN). Attachment A provides an oatline of the files created by ADALYZE.,

Ada Code Analyzer *ak DRAFT*** 6 ¥k DRAFT *%+ Users Manual

4. The Data Extractor - DEX

The purpose of the data extractor is to convert language specific data files into a language independent format,
By using files that are language independent, only one report generator needs to be written, DEX accepts as input
the files gencrated by the Ada analyzer and reorganizes them into four distinct files having the extensions: .prg,
Sub, .eu and .cu, denoting Program, Subprogram, Encapsulation Unit, and Concurrent Unit, respectively. As
illustrated in Auachment D, DEX also accepts two command ling arguments: the base name of the input files and
the base name of the output files. If a command line error is encountered, DEX responds by displaying the proper

syntax for the command line and terminates execution.

DEX produces output files that have the same information as its input files, but in a re-organized format. These
output files consist of unit names and decimal numbers, Attachment C provides a sample input file to DEX and a

sample ontput file,

5. The Report Generator - RGEN

Using the language independent files produced by DEX, RGEN creates a report that summarizes the input data,
computes and prints mefric computations, and provides set of measurcs reflecting aggregated metric and attribute
values. RGEN expects two command line arguments: (1) the base name of the files created by DEX and (2) the
name of an indicator file. Contents of the indicator file are text strings that describe data elements used to compute

metrics, e.g. number of if statements, Attachment I illustrates the proper syntax for the command line arguments.

As illustrated in Figure 3, when RGEN initiated, it first prompts the user for a name for the output file. RGEN
also solicits four (4) options, The first option asks if the input data is to be echoed to an output file. The second
option allows the user to specify whether the reporting is to use Ada specific terminology or semantically equivalent
generic terminology, e.g., package rather than encapsulation unit. The third option asks the user if metrics that have
been given defaunlt values are to be included in the aggregation report. (Default metric values are assigned when

Ada Code Analyzer whk DRAFT#+* 7 wkk DRAFT *** Users Manual

> a.out data indicators.txt

Enter name for outpat file
reportl.out
File already exists. Overwrite? (y orn) y

OPTIONS: enter y or n after each

Echo raw data > y

Use Ada-specific terminology —> n

Include default metric values in analysis --> n

Change weights for subprg, encap unit, and concur unit —-> n

Figure 3
A Sample RGEN Run

computations require a data item that is missing.) Finally, the fourth option allows the user to modify the defaunit
weightings given to the subprogram, encapsulation unit, and concurrent unit parts when total program statistics are
calculated. For example, when computing program statistics, the subprogram part, encapsulation unit part, and
concurrent unit part are weighted by the number of unit lypés. The user can specify an additional weighting by
responding 'y' to the fourth option and, as illustrated in Figure 4, by providing the appropriate augmented
weightings.

Currently, the output of RGEN is organized into three major sections. As illustrated in Attachment C, the first
section is an echo of the input data, organized by unit type (e.g. subprogram data first, followed by encapsulation
unit data and then concurrent unit data,) The second output section lists individual metric computations and their
contributions to the achievement of desirable software engineering attributes. Note, reporting in this second section
is still on a per unit basis within unit type. The third sample format provides attribute values reflecting an average

of contributing metric values.

The three output forms shown in Attachment C are selected samples and represent only part of the information

that is actually provided by RGEN. Figure 5a provides an outline of the different levels at which data is echoed.

Ada Code Analyzer **+ DRAFT*** 8 **% DRAFT ¥+ Users Manual

> a.out data indicators.ixt

Enter name for output file
reportl.out
File already exists. Overwrite? (y orn}y

OPTIONS: enter y or n after each

Echo raw data —>y
Use ADA-specific terminology -->n
Include default metric values in analysis --> n
Change weights for subprg, encap unit, and concur unit --> y
Enter weights as decimal aumbers
Subprogram -<> 1.5
Encapsulation Unit --> 1.0
Concurrent Unit --> 0.5

Figure 4
A Sample RGEN Run Changing Unit Weights
That is, echoed data is reported by individuat units within each of the unit types: subprogram, packages, tasks, and
global data. Similarly, Figure 5b conveys the same organization relative to the reporting of individual metrics,
while Figure 5c p_rqvi_des_ an outline pf the how the attribute values are reported. Note in Figure 5Sc that
computational values are presented on a per unit basis wiihiﬁ each unit type, ﬁut then ére t.légr.eg.a.ted. to form ﬂﬁit “
type averages and finally, a program average. Lines of code are used as a weighting factor to average together units
within unit types; the number of units within each type is used to weight the contribution of each unit type relative

10 the total program attribute values.

Per Subprogram Data
Per Subprogram Data Totals
Per Encapsulation Unit Data
Per Encapsulation Unit Totals
Per Concurrent Unit Data
Per Concurent Unit Data Totals
Globa! Data
Subprogram
Encapsulation Unit
Concurrent Unit
General Program

Figure 5a
Organization of Echoed Data

Ada Code Analyzer *xk DRAFT*** 9 *ax DRAFT *+* Users Manual

Per Subprogram Metrics
Metrics on Per Subprogram Totals
Per Encapsulation Unit Metrics
Metrics on Per Encapsulation Unit Totals
Per Concurrent Unit Metrics
Metrics on Per Concurrent Unit Totals
Global Metrics

Subprogram

Encapsulation Unit

Concurrent Unit

General Program
Program Averages

Figure 5b
Organization of Metrics

Per Subprogram Analysis
Analysis on Per Subprogram Totals
Per Encapsulation Unit Analysis
Analysis on Per Encapsulation Unit Totals
Per Concurrent Unit Analysis
Analysis on Per Concurrent Unit Totals
" Global Analysis

Subprogram

Encapsulation Unit

Concurrent Unit

General Program
Contributions by all Subprograms
Contributions by all Encapsulation Units
Contributions by all Concurrent Units
Contributions by Entire Program

Figure 5¢
Organization of Attribute Value Reporting

On a final note, the authors point out that some metrics will have non-numeric values because of special
circumstances. In particular, many metric calculations involve division. If the computed denominator has a value of
zero, an “N/A™ appears next to that metric’s name to imply that the particular metric could not be calculated and is
not included in any of the attribute computations. Additionally, several metrics have a default condition. For
example, when computing the metric associated with "the number of parameters passed,” a default value of five is

given if no subprogram calls are detected. This case is denoted in the report as “5.00 DEE™, Through a solicited

Ada Code Analyzer wdkh DRAFT**+ 10 whk DRAFT ##% Users Manual

response from RGEN, the user can choose to include or exclude the default metric values from attribute value
computations. Finally, some metric values fall outside the range 0 - 10. When this occurs, either a “0.00*” or a

*10.00%" is respectively printed; for statistical analysis purposes, the vatues of 0.00 and 10.00 are then used, not the

actnal values,

Ada Code Analyzer wed DRAFT*** 11 *wk DRAFT ### Users Manual

ATTACHMENT A

ADALYZE OUTPUT FILES

Ada Code Analyzer w** DRAFT*»+ 12 *04 DRAFT #¥» Users Manual

General Information - ADALYZE QUTPUT FILE (filename.gen)

. number of discriminant types defined

. number of user defined types

. TLOC

. total number of units (subprograms, packages, tasks)

. number of parameterless generics defined

. number of generics with subprogram parameters defined
. total number of generics

* total number of generic parameters

. total number of subprograms defined within generics

. total number of generic instantiations

Ada Code Analyzer w¥¥ DRAFT*** 13 *xk DRAFT ##* Users Manual

Subprograms - ADALYZE OUTPUT FILE (filename.subprg)

General

. total number of subprogams which rendezvous {call an entry point)

. number of subprograms with an exception handler

* ° number of subprograms which raise exceptions not handled in that subprogram’s exception
handlers

. number of unique overloaded subprogram names

. total number of unique subprogram names

Subprograms - ADALYZE OUTPUT FILE ({filename.subprg)

Per Subprogram

. Full Name

. number of formal parameters

. number of formal parameters with discriminants

. number of formal parameters with defaults

. Is a generic? (0=NO 1=YES)

. number of generic parameters

. number of generic parameters that are subprograms

. TLOC

. number of of Block Structures (BS) at level 0

. TLOC enclosed by BS at level >=0

. TLOC enclosed by BS atlevel >=3

. Maximum BS level

. total number of if statements

. number of unique non-local variables referenced

. number of unique local variables referenced

. number of unique parameters referenced

. number of parameters in calls made

. number of unique parameters passed in calls

. total number of parameters in all calls using only positional notation

. total number of parameters omitted in all calls using only positional notation
. total number of parameters from calls using positional notation with > 5 parameters
. total number of calls using positional notation with > 5 parameters

. number of parameters from calls using named notation with > 5 parameters
. number of calls using named notation with > 5 parameters

. total number of calls using positional notation

. total number of calls using named notation

. total number of calls using both parameter notations

. number of unique parameterless calls

. number of calls with defaults possible

. number of calls with defaults used

. number of unique calls

. total number of calls with ordering different from their subprogram specification
. number of calls made

Ada Code Analyzer s DRAFT*** 14 wkk DRAFT ###

Users Manual

Subprograms - ADALYZE OUTPUT FILE (filename.subprg) - CONTINUED

number of unique parameters passed

number of uscr defined types

number of discriminant types defined

number of structured data type (user defined) parameters
number of unique structured data type references
number of unique variable references

number of gotos

number of block comments

number of block comment lines

formal parameters used as switches

total number of comment lines

total number of single line comments

number of distinct calls to subprograms in subprogram packages
total number of distinct calls to all subprograms
number of non-symbolic constants referenced

number of subprogram packages “withedfused”™ by this the subprogram

calculate the sum of (1 - (TLOC of the pkg spec) / (TLOC of the pkg)) for all subprg

packages withed/used by this subprogram
number of rendezvous requested (calls to entry points)
number of calls made which contain switches
number actual parameters used as switches

Ada Code Analyzer #%# DRAFT*** 15

w++ DRAFT **+

Users Manual

Packages - ADALYZE OUTPUT FILE (filename.pkg)

General
. number of declaration packages (compilation unit) which are never “withed”
. number of subprogram packages (compilation unit) which are never “withed”

Per Package

. Package Type (O=declaration; 1=subprogram)

. Full Name

. number of subprograms in the package body

« listing of subprograms in package body. One per line.

. Is a generic? (0=NO 1=YES)

. number of generic parameters

. number of “withing/using” units to this Package

. TELOC of “withing/using” units

. total number of declarations

. total number of user defined types

. total number of discriminant types defined

. total number of referenced package declarations summed over all units that with/use
this decl pkg

. number of generic parameters that are subprograms

. TLOC

. number of subprograms in the package specification

. number of global variables declared in the sub package specification

. number of distinct external global variable references found in the subprogram package

. TLOC of the package spec .

. TLOC of the package body

. total number of referenced package subprograms summed over all units that with/use
this subprogram package

Ada Code Analyzer *kk DRAFT#** 16 wht DRAFT *#+*

Users Manual

Tasking - ADALYZE OUTPUT FILE (filename,task)

General

. numnber of accept statements for all tasks

. sum (the number of distinct global data areas accessed by a task) over all tasks
. total number of distinct global data areas accessed

Per Task

. Full Name

. TLOC

. total number of entries with Tn Qut or both In and Out parameters

. total number of entries

. number of unique entry points (entries)

Ada Code Analyzer e+ DRAFT*** 17 ok DRAFT #x+ Users Manual

ATTACHMENT B

SAMPLE INPUT AND OUTPUT FOR DEX

Ada Code Analyzer wdk IR ARk 18 **x DRAFT wh* Users Manual

SAMPLE INPUT FILE TO DEX
(Output file of Ada analyzer)
{Encapsulation Unit File)

0 Number of declaration packages (compilation units never withed)
0 Number of Subprogram packages (compilation units never withed)
1 Packaged type; decl- 0 subprg -1

11 Total number of subprograms in package body
0 Is aGeneric; C=no l=yes
0 Total number of generics parameters
1 Total number of withing units to this pkg

432 TLOC of withing units

54 Total number of declarations (spec)

17 Total number of uscr defined types (spec).
8 Total number of disc types defined

66 Total number of refed pkg decls summed over all units that withed the decl pkg
0 Total number of generic parameters that are subprograms

114 Total lines of code for package

5 Total number of subprograms in package spec
0 ‘Total number of global variables declared in the spec of a subproglam package
5 Total number of external variable refs in subprogram package

54 Total lines of code in package spec

60 Total lines of code in package body
9 Total number of refed pkg subprograms summed over all units that withed the subprg pkg

SAMPLE OUTPLUT FILE FROM DEX/
INPUT FILE TO RGEN
(Encapsulation Unit File)

Ada Code Analyzer #ex DRAFT**> 19 *#% DRAFT *+* Users Manual

ATTACHMENT C

SAMPLE DATA OUTPUT FROM RGEN

Ada Code Analyzer wk DRAFT*** 20 whk DRAFT *+* Users Manual

Input Data Echoing

(Selected Data licms)
#+x BEGIN SUBPROGRAM KIND_OF
number Of fOrmal DATAMIEIETS.....covcceuieeimrtririncene s erire e s s s s s e rr e s s s s s s s nrennes errrasenaaes 1
number of formal parameters with diSCTiMINANES.....cooeivcevcrie oo erveerssrane s 0

number of formal parameters with defaults
Is an instantiable object? ((=NO 1=YES i snsinsisesssssresnsssisssrses s sessssasesnses 0
number of instantiable ObJECT PATAMEIETS.ciiiiiriieinmterssisrssrnsssssmisssisossssnsissssiss s s s resssssarsssas sransssns 0
number of instantiable object parameters that are subprgs.......ccveeen. everetretranar st s e b e ssat e s g bt ansaren 0
TLOC...iivcreneee eeeeserterssiemsetiesessisstesteeeTenstEeeesiasanannetitaennenreteiasenteereeaes ta s annenarteesaennne e 3
number of BS at level O..cocccrnviinniirirensneensssrsrennns SO TR PP SUPPP PP 2
TLOC enclosed by BS at level >= Q........ 2
TLOC enclosed by BS at level >= 3o v e s 0
Maximum BS level....coviciiceeeens eeveseeereseieesseeaaaraerrarerreerree teanrettetaaaassasessssssnssarsaatanrarrnraraes 1
number of if statements........ 1
number of unique non-local variables referenced.......coccvivvvecrennss teteresaeretnnnberrsses s aata s aRp s et enaerane s 0
number of unique local variables referenced...........cocueue. erteeernreareterantesnates ntepenaaesanaare e rannreanteseraas 0
number of unique parameters referenced................. S, rerersarereaerarananneas 1
number of parameters I0 CAIS MAGR....ccvcerrceecreecoreerernrreesenasstrssteae ssssssssposnassnnssessesnsesnsseesseaaseras 1
number of parameters in all calis using only posmonal notauOn i
number of parameters omitted in all calls using only positional NOLALON......cceeeremerrecrecnrnenacasereas 0
number of parameters from calls using positional notation with > 5 parameters.......cvmmrererrisnsnsenens 0
number of calls using positional notation with > 5 ParamMEIEIS.. ...t sisssssnsssessasrens 0
number of parameters from calls using named notation with > 3 ParameIErs. ... wiieceiseniiscanernenens 0
number of calls using named notation with > 5 Parameters.....ccmmiiesnsesrssinsinissinssssrssnsnsases JORTI 0
number of calls using positional NOALON......iiiiimmeiieiimre s rs s s s s e s ernases 1
number of calls using named notation..........eees.. 0
number of calls using both parameter NOLAtIONS......c.eiercsceeen - 0
number of calls with defaults possible....ccnerniiinimiminenn. eeevemterrtnseressssersessesnssssennansnssrs U
0
1
0
1
1
0
0
0
0
1
0
1
3
0
3
0
0
0
0
0

-

......................... [L LT LT T T T P T e T T PP PR T

number of calls with defaults USed.....c..cimiscriniin e s e s
number of uniGUEe CallS et e reeeveranrsesssaantenaes e nnntneesraannnarrraasaen
number of calls with ordering different from their subprg specification......cccceereeveneee.e.
number of calls made......cc.oooivirrerranes eererrrresrrreesaesaaaanaaetearsraesSRaae A e te eSS R R rn e s e r e ey rnreanias
number of unique parameters passed........o.coeeeen.
number of user defined tYPeS......cmvrrericiinriiennaens CettsertrassneereastEraEresEeesiebrresberresseeeteessaaiansanes
number of discriminant types defined......... et hR e saE RS S at St r e R ER A e be R SRR LS an s e R RsR bR aR S Rnea s “
number of structured data type (user defined) PamAMEIETS.. ..o
number of unique structured data type Ieferences. ..
number of unique variable TEfereNCeS..... ot sresseas s sases e ssassensnsnsaresees
number of gotos.. . errrasssreares SO OO
number of block comments............ CehbbreeebesatieasEeereinneeiesrrtarEisaeesttessneaanree s raRe e san e naren
number of block comment HRES.....cvvmiircmniiiiiiriieacannens erereesrereieraspaasassannreeeenteesrannraaesrsnratnes
formal parameters used a8 SWILChES.....ciniinimn s e s reeserssis
number of comment LiRES.....ccocevcveerevimeiinenneeiiiennes eerbesssssiassate e araasn s asra e s aranan s ns e st tres
number of single line COMMENLS. ..uiviiiiesinieriscesassanasssarasssnsssassssnssansnses
number of distinct calls to subprgs in Subprg enCap UNILS......ccmieieiesnssssscssisnessssesnasssasens
number of non-symbolic constants referenced... ... ———————————

w#xkk END SUBPROGRAM KIND_OF

Ada Code Analyzer *ik DRAFT*** 21 % DRAFT *** Users Manual

Per Unit Metric Computations

(Selected Metrics)

ki BEGIN SUBPROGRAM KIND_OF

wkkkk ANALYSIS OF COUPLING

Number of global variables refErenCed... ... ivvircereicsscirsinseorssssnmmsnmecssiesserissessssmsssssnsmssnsessanserans 5.00
Number of parameters PasSed....ccuieicemmsmssiimneiismmmmsnnres s e s sssssssrssassssnssasans 9.00
Types Of Parameters PASSEU...cciieiimcissrsoriisisnrinrsrrrsrssssesssnssrrnsstbrrnrssssssrsssrssssnnsssssssssrrsrsssrasanns 10.00
Number of structured data types passed 85 PalTAINEIEIS......cseuseisssssmressssssmsasssresrsssssrssssassmssssessssssres 5.00
k ANALYSIS OF COHESION

Number of bIOCKING SITHCLUTIES.....ccuiuummirrrrreiirsntessrossssnneeissartsrnssiimsesassassressrssssssassnnesasssssssmsanss 2.56
Division of code into logical units performing single specific functions........ccocvrciiniiiniiinen. 8.33

***** ANALYSIS OF WELL DEFINED INTERFACES

Number of global VAriables. .. e e s ases b sesbessaassans 5.00
Use of parameters in subprogram and entry CallS.......cmvviirsininninnnissnsm s ssesseressan 10.00
Use of parameterless procedure CallS..immmmiimersisisieeemiissis s 5.00
Num of data structures used with respect t0 intra-routing COMMUNICATON. ...cuerereeermarasnarssnssssssnsanarans 0.00
Use of "excessive" number of PaTamMeters.......ccveerrvarrerssrsirssrssiissssiisninsensrs smscanssansesserssssessnsssnss 5.00
Definition of defaull ParametrS. .. i sissrer s srss e srbssbbs s stansssssrsssssssssass sassesssssennass 5.00

FH&AE ANALYSIS OF COMPLEXITY

Length Of SUDPIOZIAMS...corrriisireeeacrissstsissisniinniissinsessssssssssnnssseassasssssssassantasnrasnsssansassnannennoss 10.00*
Number of blocking SIFHCIUIES USEuieiimiimrissminssrneinnsssesssosiesssssnsinssrassasssssssasassssessaneassassrnress 2.56
Number of oo SIAIEMENLS USEHuuiieiirniiiirrinivmrinisrisstresnsrniasssinsinsse s s ssssnnasssssrsssesnsassassserasses 5.00
NUMDbEr Of DIOCK COMMGILS. 1vvrrrnmreeacrracarssssersssrsssssssssssassssssssnnrssssrses soressssssssssnsnnsnnssssssssnassaranas 1.00
Number of single liNe COMMECIS...oiiimueemmricssinessiieeessesrasstanssrsrssnsssnrsrnrssssersssasssanrssssus sessssses 10.00*
Number of structured data tyPes USEd.......iiiisiiissiosiiissiiirirsssastsssse s essseesssesssesrnsssassasssasmsssans 5.00
NUMDET OF If SEALCINENLS, 11110nrserreersssesersaseessassarseressarersresasssssssnsnsssssasssnssssnses sessrssssssssssssnnsssessanse 8.10
Use of both default parameters and poSiional NOALON.......cesiissmins it esss s ssaessases 5.00
Definition and use of default parameters for stable values......innnssesssanee. N/A
Use of parameters with Name NOLAHOM......cveeviveriiinsissnissserermrssnstensesessssissessabsssirbsssanassassssnsssnss 5.00 DEF
Mixing the order of parameter liStS.......iummusminsisiirimimmstimaiirmmsios st cssnsssnssesese 5.00
Use of both positional and name notation in one subprogram Call...irrressmersisiscossnenacsierssens 5.00
Units which "with" packages that export SUbpPrograms...........ccvvcerevensssinsensseinesssencssssarssassosns N/A
Use Of 18COTA GiSCIIMINANIS..couviiseresierrsmerureereerasnsscsrersamnssarsrorssttstbsasssisssssessnssssssssbrisntrsssssssnsnss N/A
Use of subprograms as GeNeriC PATAMEICTS....oesiirseisessissrosissesnsssssmssssssesssnsosasssssesassnsasmsssssassnninssss N/A

ok ANATYSIS OF READABILITY

Use OF DIOCKINE SLIUCHUTES.iiiiicessamsressessessussnerssmesensssmerssensstaserssiassnsssssssssssssasssssrasasnsnssssssssassss 2.56
Use Of ZOLO SLALCIMENLS. cucvniiirsessrernssnssssrssnissesenissiessnrsarsesssstsbssstsarsanisrsisssessssasnasssnassnsatssessessans 5.00
Use of block Neader COMMENIS. i rniiarierasssiirsssssssnsissssnsmossnsissnsissessersnssssssssasntnssassnssssssssss snssnnes 1.00
Use of single 1iNe COMIMENIS......cccoimirisvmssissisnissinsseiisisssnssarossassussossaressnsassassssesmasssssnssnsastostassse 10.00*
SUDPIOZTAM 1EMEZIN. o .neeieieiteecseeeaaereressiriestsesttssatsssssssassanssrsnsnsssassnnassansransassasssessnsnassss brse 10.00*
Use of symbolic constants (HIErals).... e eiimnsnncmninsiis s st nsss et s sss s s 10.00
Use of both default parameters and positional NOAHOM.....ciiueersieeariisssssniissirsisirnsirsniarssissssrsrnsssnses 5.00
Definition and use of default parameters for stable values.........ccviiiieniene s s N/A
Use of parameters with Name NOLALOM.civcrertisesmsimssssisisssesirbonisssasssssssss e s sessssssnasnsssnsnnsass 5.00 DEF
Mixing the order of parameter liStS.......cviiimermisr s s 5.00

Ada Code Analyzer #ah DRAFT*** 22 *¥k DRAFT *ok Users Manual

Use of both positional and name notation in one subprogram call..........ccovvvercrvrrnrerercsoreeeerenscssans 5.00
***xk ANALYSIS OF EASE OF CHANGE

Use Of Zlobal variables......ccicreiinnmmiiisiiermmeirninsenis i srsssrssssnrss sresssssessosnssssersssans 5.00
Use of distingt functions within a single module..... oo eeeiiconirrincericerrnreeirescee s s eerecreecossannssssssoss 8.33

wrkkk ANAT VSIS OF EARLY ERROR DETECTION
Use Of recOrd QiSCTIMIIMANES. .. .cciieersecersersrrrsrssnesrsresssrrsssssrsssssssrsssserassissssssnsnsssnsasesernessssssanssssanss N/A

##**++ END SUBPROGRAM KIND_OF

AdaCode Analyzer wk DRAFT##* 23 *kk DRAFT *%+ Users Manual

Computation of Autribute Measures

*#kd¥ BEGIN SUBPROGRAM KIND_OF

ATTRIBUTE CONTRIBUTIONS: LOW HIGH
COUPLING....ccosvsnermssrrsvsreersrarsrsssnsenssessssneanas 7.25 5.00 10.00
COHESION.....cccititieesrainsmreassssassarnsssassscansansas o 545 ' 2.56 8.33
WELL DEFINED INTERFACES.....ociinioinenas 5.00 0.00 10.00
COMPLEXITY .ccoconnnnmssammanraninnerrssnsnsirasssnnnenes 5.67 1.00 10.00*
READABILITY ...cccccumiecessanncrsnranscsnnens 5.86 1.00 10.00*
EASE OF CHANGE......ccocccnrimrmnnmssnnnnssvsssssnraeses 6.67 5.00 8.33
EARLY ERROR DETECTION....cvvmerscammesasarsresnens N/A N/A N/A

#*¥+* END SUBPROGRAM KIND_OF

Ada Code Analyzer ks DRAFT*** 24 wik DRAFT *#* Users Manual

ATTACHMENT D

COMMAND LINE ARGUMENTS FOR DEX AND RGEN

Ada Code Analyzer | %k DRAFT*** 25 k% DRAFT #** Users Manual

COMMAND LINE FORMATS - DEX AND RGEN

DEX:
> exec filenamel filename2
exec -> the executable file _
- ﬁlenémel —> the base name of the 4 input ﬁles contaiﬁing the data from the Ada
analyzer
filename2 —> the base name of the 4 cutput files created by DEX, which will
supply each with the appropriate extension
EXAMPLE: dex mp data
RGEN:

> exec filenamel filename?2

exec —> theexecutable file

filenamel -> the base name of the 4 input files containing the data from DEX
filename2 -> the full name of the file containing the strings associated with the data
EXAMPLE: rgen data indicators.txt '

Ada Code Analyzer *xx DRAFT**+* 26 **x DRAFT *#* Users Manual

APPENDIX F

Site Selection Criteria

kk DRAFT %% 137 ok DRAFI‘ *okok

Prefatory Remarks

The first set of criteria is project related. The second set of criteria is somewhat general in nature, but

represent highly desirable site capabilities from the standpoint of sapporting an automated validation effort.

The remaining sets of criteria are partitioned by phases within the software development life cycle, and then

within each phase, further partitioned on a process/product classification.

1

@

3

@

The attached list outlines an ideal set of criteria. 'We do not expect any one site to support all of the
stated desirables. Moreover, the extent to which a site does or does not support cur ideal set of criteria
is not a measure of its capability to produce a quality product. It simply provides a yardstick by which
we can assess a site's capabilities to support the SQA validation effort.

We would like to stress that it is not our intention to interfere with the development process in any
way. We hope 0 be as unobtrusive as possible in any setting and will work to minimize any negative
impact that our presence might have.

Although the investigative effort will focus on validating the predictive capabilities of the Objectives,
Principles and Attribute framework, we anticipate significant benefits for all involved. Such benefits
will stem from interaction with site personnel and through continuous feedback to the Project Manager.

Although we have specified a project size of 10,000 to 50,000 lines of Ada code, size is not the crucial
factor. More significant is project deployment within 18-20 months from the date that the project
starts. By meeting this constraint the SRC/VP! personnel will have four to six months left (at the end
of the projected three year effort) to instrument post-deployment activities and to collect additional
validation data.

%% YRAFT ek sk 138 ¥4k DRAFT ***

Site Selection Criteria
{(Ideal)

Project Level Criteria:

New Initiative - We need to be involved from the start

Ada B . ,

Deployment within 18 months from project initiation date
Relatively small effort (10,000 - 50,000 source lines of code)
Logistically effective (Travel, On-Sit Personnel)

[W W S M

Desirable Site Characteristics:

O Formal review processes (similar to those outlined in DOD-STD-2167A)
Q Requirements review
3 Preliminary design review
[d Critical design review
Qd Code walkthroughs
O Employment of an (automated) configuration management system supporting
1 compilation of software development folders (SDFs)
[tracking of troubie reports and specification changes
QO code modification (SCCS)
@ Provision for and utilization of on-line documentation facilities
O A well defined procedure for transferring Configuration Management (CM) responsibilities at
deployment time

*aok TYR AFT *%* 139 *dk YR ART ¥%k

- Desirable Activities, Products and Participation Level
by Software Development Phase

Requirements Specification Phase:

Desirable Process Activities:
& Formulation of software development plan
d Requirements specification
2 Formal requirements review
O Activity fogging for each (ideally, through an antomated requirements specification system)

Desirable Products:
[Software development plan
0O Requirements specifications
L Activity log

SRC/VPI Interaction Activities:
» Non-participatory (observer) involvement in major requirement specification activities
» Possible interviewing of personnel involved in process activity

» Access to activity log for data extraction (machine readable forms preferabie)

Preliminary Design Phase:

Desirable Process Activities:
U Preliminary design
I Design review
Q Logging of defects detected, comective options, actions taken and justification

Desirable Products:
1 Preliminary design documents
O Central repository of high level design activities (preferable computerized), e.g. design reviews
and resultant actions

O The beginning of "Software Development Folders”

k¥ YR AT %% 140 Heokek DRAFT ###*

SRC/VPI Interaction Activities:
* Non-participatory (observer) involvement in major design activities
» Possible interviewing of personnel involved in design activities

+ Examination of design documents and activity logs (machine readable forms preferable)

Detailed Design Phase:

Desirable Process Activities:
Q Detail design
[Critical design review including design walkthroughs
O Logging of defects, modifications to design and spegiﬁcations, modification options, and

rationale for selected option

Desirable Products:
O Detail design document
O Log of actions taken in transforming high level design o detail design including critical
design review, design walkthrough, etc. (an automated system to log such activities is
preferable)
O Software verification pian
{1 Test requirements

SRC/VPI Interaction Activities;
+ Non-participatory (observer) involvement in major activities surrounding the transformation of
high level design to detail design
» Possible interviewing of personnel involved in activities

+ Examination of design documents and activity logs (machine readable forms preferable)
Implementation Phase:

Desirable Process Activities:
O Identifying team(s) composition relative to implementation task (organizational structure)
W Code development in compliance with specified standards
O Structured code walkthroughs and code inspections
Q Logging of changes to design and code (preferable through a configuration management

system)

ke DRAFT %%x 141 Hfedle DRAFI‘ Hookeoke

.Desirable Products:

N
N

Source code
History of source code modifications, detail design modifications, and rationale for changes.

SRC/VPI Interaction Activities:

Non-participatory (observer) involvement in major activities surroundin g implementation
Examination of source code
Examination of source code and design documentation modification histories

Testing Phase:

Desirable Process Activities:

a

L0 d o

Test plan review

Test procedures review
Testing

Logging of test resulis
Acceptance review

Desirable Products:

N

[IR I D N Ry

Test plan

Test plan review

Test procedure

Test procedures review

Results of test including unresolved issues, problems and generated software trouble reports

SRC/VPI Interaction Activities:

Non-participatory (observer) involvement in major testing activities
Examination of testing plans, procedures and results of the testing

LEL] DRAFT #*#¥ 142 Ek* DRAFI‘ Sk

Post-Deployment Maintenance Activity (may or may not be applicable to development site):

Desirable Process Activities:
QO Recording of reported trouble reports as well as the tracking of open and closed trouble reports
QO Configuration management activities logging code changes, documentation changes, and

personnel time involved

Desirable Products:
3 Activity log capturing elements of the above process activities

SRC/VPI Activities:

» Examination of activity log for the extraction of factors needed to validate predictive indicators

Post-Deployment Execution History (may or may not be applicable to development site):

Desirable Process Activities:
1 Recording of reported trouble reports, and software execution history

Desirable Products:

O Activity log capturing ¢lements of the above process activities

SRC/VPI Activities:
= Examination of activity log for the extraction of factors needed to validate predictive indicators

¥ak YR AFRT doxk 143 Aok DRAF’I‘ dedkie

At

SECURITY CLASSIFICATION QF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

Tb. RESTRICTIVE MARKINGS

P, W ——

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTIGN /AVAILABILITY OF REPORT
Unlimited

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
Systems Research Center SRC-91-002

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL

6a. NAME OF PERFORMING QRGANIZATION
(If applicable}

Systems Research Center

7a. NAME OF MONITORING ORGANIZATION
Naval Surface Warfare Center

6. ADDRESS {City, State, and ZIF Code)
320 Femoyer Hall
Virginda Tech
Blackshurg Virginia 24061-0251

7b. ADDRESS (City, State, and ZiP Codle}
Dahigren, Virginia 22448-5000

8b. OFFICE SYMBOL
(i/f applicable)

Ba. NAME OF FUNDING /SPONSQRING
OQRGANIZATION

JLC/CM

9. PROCUREMENT iNSTRUMENT IDENTIFICATION NUMBER

Bc[ﬁaqgg% d%ﬂt&]and ZIP Code}
Space and Naval Warfare Systems Command

Mail Code 31F1
nohincton J. 20263 5100

10. SQURCE OF FUNDING NUMBERS

TASK WORK UNIT

PROGRAM PROJECT |
NO. NO. i ACCESSION NO.

ELEMENT NOC.

11, TITLE {nclude Security Classification)

Software Quality Measurement: Validation of a Foundatioral Approach Final Report, Year One

12. PERSONAL AUTHCR(S)

James D. Arthur, Richard E. Nance, Gary N. Bundy, Edward V. Dorsey, Joel Henry

13b. TIME COVERED

13a. TYPE OF REPORT
frROM 1/1/90

Final - Year Cne

To _12/31/90

15. PAGE COUNT
143

14. DATE OF REPORT {Year, Month, Day)
1991 May 1

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GRCUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Similation quality assessment apd prediction; software engineering
objectives, principles and attributes; software quality indicators,
process indicators, code indicators, document quality indicators

collection and report generation system.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report discusses the first year findings of a proposed three year investigation
effort that focuses on the assessment and prediction of software quality. The research
exploits fundamental linkages among software engineering Objectives, Principles and
Attributes (the OPA framework). Process, code and document quality indicators are
presented relative to the OPA framework, with elaboration on their individual roles in
assessing and predicting software quality. The synthesis of an Ada code analyzer is
discussed as well as proposed complementary tools comprising an automated data

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
KIunctAsSIFEDAUNUIMITED [0 $SAME AS RPT,

[] oTic USERS

21. ABSTRACT SECURITY CLASSIFICATION
Ihelassified

223, NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL

BD Form 1473, JUN 86

Previous editions are cbsolete,

SECURITY CLASSIFICATION OF THiS fAGE

	TR-91-16a.pdf
	TR-91-16b.pdf
	TR-91-16c.pdf
	TR-91-16d.pdf

