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Abstract.

The optimal projection approach to solving the Hy reduced order model problem produces
two coupled, highly nonlinear matrix equations with rank conditions as constraints. Due to the
resemblance of these equations to standard matrix Lyapunov equations, they are called modified
Lyapunov equations. The algorithms proposed herein utilize probability-one homotopy theory as
the main tool. It is shown that there is a family of systems (the homotopy) that make a continuous
transformation from some initial system to the final system. With a carefully chosen initial problem
a theorem guarantees that all the systems along the homotopy path will be asymptotically stable,
controllable and observable. One method, which solves the equations in their original form, requires
a decomposition of the projection matrix using the Drazin inverse of a matrix. It is shown that the
appropriate inverse is a differentiable function. An effective algorithm for computing the derivative
of the projection matrix that invelves solving a set of Sylvester equations is given. Another class of
methods considers the equations in a modified form, using a decomposition of the pseudogramians
based on a contragredient transformation. Some freedom is left in making an exact match between
the number of equations and the number of unknowns, thus effectively generating a family of
methods.

1. Introduction.

In [12] Hyland and Bernstein considered the quadratic () reduced order model problem,
which is to find a reduced order model for a given continuous time stationary linear system which
minimizes a guadratic model error criterion. The necessary conditions for the optimal reduced order
model are given in the form of two modified Lyapunov equations, matrix equations which resemble
the (linear) matrix Lyapunov equations, but are highly nonlinear and mutually coupled.

Among many different approaches for finding reduced order models are component cost analysis
[20]-{22], balancing [17]-{18], Hankel-norm approximation [14]-[15], aggregation 1}, [16], nonminimal
partial realization [10] and the optimal reduction method of Wilson [30]. Some other applications
of the optimal projection approach include the Hy/H,, model reduction problem [8], the fixed
order dynamic compensation problem [11] and the reduced order state estimation problem [3]. A
homotopy based algorithm for solving the fixed order dynamic compensation problem is given by
Richter and Collins [19].

The complete statement of the reduced order model problem is given in Section 2. Section 3
explains the basics of probability-one homotopy theory. Section 4 gives a way for constructing an
initial problem. Section 5 gives an algorithm for computing a contragredient transformation. The
method based on the Drazin inverse is presented in Section 6. Methods based on decompositions of
pseudogramians are given in Section 7. Numerical results obtained by solving a number of model
reduction problems are given in Section 8. Section 9 gives a conclusion.
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2. Statement of the Problem.

Given the controllable and observable, time invariant, continuous time system

&(1) = Az(t) + Bu(t), (1)
y(t) = Ca(t), (2)

where A € R"*" B € R™*™, C' € R'*", the goal is to find, for given n, < n, a reduced order
model

Em(t) = Am 2m(t) + By ult),

Ymlt) = Crn Tm(2),

where A,,, € R?*m*%m R € R*X7™ ' ¢ R™"n which minimizes the quadratic model-reduction

criterion
J(Am, By C) = Jim B [(y — ym)" By — ym)],

where the input «(¢) is white noise with positive definite intensity V' and R is a positive definite
weighting matrix.

It is assumed that A is asymptotically stable and diagonalizable, and a solution (A, B, Cim)
is sought in the set

Ay = {(Am, B, Cm)t Ay, is stable, (As, By,) is controllable and (A, Cr) is observable}.

DEFINITION 1. Given symmetric positive semidefinite matrices Q, P € R™7 guch that
rank ()) = rank (P) = rank (QP) = nn, matrices G, € R"™*"™ and positive semisimple
M ¢ Rrm*nm are called a (&, M,T')-factorization (projective factorization) of QP if

OP=G'MT,
TGt=1, .

m

Positive semisimple means similar to a symmetric positive definite matrix.

The following theorem from [12] gives necessary conditions for the optimal solution to the
reduced order model problem.

THEOREM 2. Suppose (A, B, Cm) € Ay solves the optimal model-reduction problem. Then
there erist symmetric positive semidefinite matrices Cj , P € R™™ such that for some projective
factorization of QP, A, By and C,, are given by

A, = TAGt, (3)
By =T, (4)
Cm = O G, (5)

and such that, with 7 = G*'T the following conditions are satisfied:

=AQ +Q A"+ BV BY], (6)
G=[A*P+PA+C'RC]T, (7)
rank (Q) = rank (P) = rank (Q P) = n,,. (8)
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The equations (6)—~(7) can be written in an equivalent form

AQ+C}Af+TBVBerBVB*Tf—TBVBfo:o,
AP+ PA+ T C'RC+C'RCT -+ C'RCr = 0,

The matrices @ and P are called the controllability and observability pseudogramians, respec-
tively, since they are analogous to the Gramians G, and G, which satisfy the dual Lyapunov

equations
AG.+G.A'"+ BV Bt = 0,

A'Go+ G, A+ C*RC = 0.

7 is an oblique projection (idempotent) operator since 72 = r. The projection matrix 7 can be
expressed as

= (QP)(Q P,

where (@ P)F is the Drazin inverse defined in Section 6.

3. Probability-One Homotopy Methods.

Homotoples are a traditional part of topology, and have found significant application in nonlinear
functional analysis and differential geometry [28]. Homotopy methods are globally convergent, which
distinguishes them from most iterative methods, which are only locally convergent. The general
idea of homotopy methods is to make a continuous transformation from an initial problem, which
can be solved trivially, to the target problem.

Following [26], the theoretical foundation of all probability-one globally convergent homotopy
methods is given in the following differential geometry theorem:

DeriviTION 3. Let U € R™ and V C R” be open sets, and let p:UX[0,1)xV — R? be a
C? map. p is said to be transversal to zero if the J acobian matrix Dp has full rank on p~1(0).

THEOREM 4. If p(a, A, z) is transversal to zero, then for almost all @ € U the map

pa(/\am) = P(aa A, 35)

is also transversal to zero; i.e, with probability one the Jacobian matriz Dpo(A, 2) has full rank on
P (0).

The recipe for constructing a globally convergent homotopy algorithm to solve the nonlinear
system of equations

/(z) =0,

where f: R? — RP is a C? map, is as follows: For an open set U C R™ construct a C? homotopy
map p: U x [0,1) x BR? — R” such that

1) pla, A, z) is transversal to zero,

2) pa(0,2) = p(a,0,z) = 0 is trivial to solve and has a unique solution g,

3) pa(l,z) = f(z),

4) p71(0) is bounded.

Then for almost all a € U there exists a zero curve ¥ of p., along which the Jacobian matrix

Dp, has rank n, emanating from (0,20) and reaching a zero & of f at A = 1. This zero curve ¥
does not intersect itself, is disjoint from any other zeros of p,, and has finite arc length in every
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compact subset of [0,1) x R?. Furthermore, if Df(z) is nonsingular, then v has finite arc length.
The general idea of the algorithm is to follow the zero curve v emanating from (0, zg) until a zero
Z of f(z) is reached (at A = 1).

The zero curve v is tracked by the normal flow algorithm [29], a predictor-corrector scheme.
In the predictor phase, the next point is produced using Hermite cubic interpolation. Starting
at the predicted point, the corrector iteration involves computing (implicitly) the Moore-Penrose
pseudo-inverse of the Jacobian matrix at each point. The most complex part of the homotopy
algorithm is the computation of the tangent vectors to v, which involves the computation of the
kernel of the px (p-+1) Jacobian matrix D Pa. The kernel is found by computing a Q R factorization of
Dpg, and then using back substitution. This strategy is implemented in the mathematical software
package HOMPACK [29], which was used for the curve tracking here.

Two different homotopy maps are used for solving the optimal projection equations. When the
initial problem, g(z;a) = 0, can be solved, then the homotopy map is [27]

pa(h @)= Fla, A\ e)= A f(z)+ (1~ Ngl(e; ), (9

where f(z) = 0 is the final problem, and « is a parameter vector used in defining the function g.
When the initial problem is not solved exactly, ie., g(zo;b) # 0, then the map is a Newton

homotopy [23]
Pa(A,z) = F(b, A, z) — (1 — \)F(b,0, 20), (10)

where a = (b,z0). For A = 0, po(0,2,) = F(6,0,20) — F(b,0,20) = 0, and for A = 1, pa(l,z) =
F(b1,2)= f(z)=0.

For the homotopies considered here, the theoretical verification of properties 1) and 4) is highly
technical and has not been done.

4. Defining an Initial System.

While with homotopy algorithms in general an initial problem can he chosen practically at
random, this problem has some special limitations. The reason is that Theorem 2 provides necessary
conditions on a solution only under certain assumptions. In other words, every intermediate problem
solution satisfies these equations only if the system is asymptotically stable, controllable and
observable. While the absence of these features does not attomatically mean that the intermediate
problem solution will not satisfy the equations, it is clearly better to define a homotopy path in
such a way that each problem along it corresponds to an asymptotically stable, controllable and
observable system. Existence of a solution to the H, reduced order problem follows from [24].
Theorem 5 defines a class of initial systems such that these conditions are satisfied.

TurOREM 5. For the given system (1)A2), let A =XAXY with A diagonal. Define D =
X QX1 for any diagonal matriz ) = diag (w1, ... ,wy), such that all w;, for i = 1,2,...,n, are
in the open left half plane. Then for almost all such D every conver combination (A(a), B,C) of
the systems (D, B,C) and (A, B, C) will be asymptotically stable, controllable and observable.

Praof. (Stability.) Since

Ma)=ad+(1~a)D=aXAX " +(1-a)XQ X!
= XA+ (1-a)0] X 1= X Ala) X,
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and A{a) is diagonal with all diagonal elements in the open left half plane for a € [0, 1], the matrix
A(a) is asymptotically stable for & € [0,1].

(Controllability.) Let B = X B. Consider the controllability matrices in the coordinate system
obtained by the change of coordinates defined by the matrix X. In that coordinate system the
controllability matrix is

Bla)=(B Aa)B ... A"Ya)B),

for & € {0, 1]. For almost all choices of  the eigenvalues of the diagonal matrix A(a) will be distinct
for @ € [0,1). That rank ﬁ’c(a) = n follows from the results in [4]. A direct argument follows. Let
Alyee .5 An be the (distinet) eigenvalues of A{a) for some a, and

@11 1:312 - E‘lm
E’ _ b?l b?g . bgm
E’ﬂl E’n2 s Bnm

Since the system is controllable for e = 1, it follows that each row of B has at least one nonzero
element, because otherwise B.(1) would have a zero row.

Reorder the rows and columns of B, in the following way: for each row of B that has a nonzero
element in the first column (suppose there are p; of them), exchange rows so that the selected p;
rows are at the top. Next, exchange columns in such a way that columns 1, m+1, .. Him—-1ym+1
become the first p; columns. This produces a submatrix in the upper left corner which can be
expressed as

by 0 ... 0y /1 A AT
, 0 b2 ... 0 I A ... ATt
By = . : Co. :
6 0 ... by, Ay ... At
Since by, .. .ybp, were chosen to be nonzero, and the A; are distinct, the Vandermonde matrix is

nonsingular, and hence }3’1 is also nonsingular.

Repeating this procedure for the remaining rows gives a block upper triangular transformation
of B(a), with diagonal blocks By, ..., B,, for some < n. That means that tank B.(a) =n and
the system is controllable.

(Observability.) The analogous construction for the observability matrices proves that the
system is observable. Q. E. D.

While the random construction of the matrix D given in Theorem 5 is theoretically plausible,
in practice it may not be wise. The reason is that the matrix X is complex in general, which for
many choices of { leads to a complex matrix D, which is undesirable. Hence, it is better to directly
construct a matrix I such that £ satisfies the conditions given in Theorem 5.

One simple choice for D is

= —c; I+ diag {e1,..., ¢}, (11)

where ¢ > 0 and ¢; are small random numbers that correspond to the parameter ¢ in the theory.
In this case  is a small perturbation of —ey I,



Also, the matrix D can be defined as
D=—e114 e A4, (12)

for e1,¢3 > 0. In this case @ = —c¢y T+ ¢3 A.
The following strategy can be applied to find a good approximation to a solution of the initial
systenl. Since the matrix D is asymptotically stable, the Lyapunov eguation

DQ+QD'+BV R =9 (13)
has a unique solution Q. Let @ = TX T, where T is orthogenal and
Y = diag {o1,...,0,}.

Next, define
E]Edia.g{0'1,...,O'nm,0,...,0}, QgETZlTi.

If Qo is substituted for Q in (13), the equation will not be satisfied, but in general, if o; are

]

sufficiently small, it will not be very different from zero. A similar procedure can be applied to
compute Fp that will ‘almost’ satisfy the equation

DIPLPD+CYRC =0.

The point 29 = (g, Py) chosen in this way may lead to small values of g(zo). Also, this 2y can
be used as the initial guess for a quasi-Newton algorithm which may find a solution to the injtial
problem

TDQ+ QD+ BV B =0,
[D'P+PD+C*RCr =0.

5. Contragredient Transformation.

The following lemma from [12], which is a special case of a result in [7], gives an algorithm for
simultaneous reduction of psendogramians to diagonal forms using a contragredient transformation.
The constructive proof given here is different from that in [12].

LeMma 6. [12] Let symmetric positive semidefinite (), P € R**™ satisfy

rank (@) = rank (P) = rank (Q P) = n,y,, (14)

where ny, < n. Then, there exists a nonsingular W € R™*" (contragredient transformation) and
positive definite diagonal £, @ € R™ X"n gych that

Q:W(§ S)Wf, PzW‘t<S02 g)w-l.

Proof. Since P is positive semidefinite and symmetric there exists orthogonal V' € R"*™ such

that
Py Dy 0 Vi
- ( 4] 0) ’
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where 1)) € R®=*"m ig diagonal and positive definite. Let

D 0)

T1EV( 0 7

Then
L., 0 - - Q1 @Q
TfPT;l:( A 0) and TllQTlt:(sz Qlj),

where Q1 € R™»*"=_ Since rank () P) = rank (P} implies that @ is one-to-one on the eigenspace
of P corresponding to positive eigenvalues, and the quadratic form z?(); =z corresponds to the
quadratic form 3t Q v restricted to this eigenspace, and y*Q v = 0 implies Q v = 0 for symmetric
positive semidefinite @), it follows that ¢ is also symmetric positive definite. Therefore, there exists
a positive definite diagonal Dy € R™=*%= and orthogonal U € R%=*"= guch that @ = U Dy UL,

Let
_ o 0
o= (g i 05 1)

Then
TfoPTngz(g g)

-1 -1 —tp—t _ [ D2 o 0
TQ Tl QTI T2 = ( 0 QQ, _ Q{z UD2_1 Uthz

_(Dy 0
- 0o 0/°
The last equality is a consequence of the rank conditions {14). f W = T} Ty then

Q:W(]‘;? 3)Wﬂ P:W“t(I’aﬂ* 8>W“1, (15)

which completes the proof, Q. E. I

REMARK 7. [12] Let Q@ and P be as in Lemma 6. Then there exists a nonsingular U € R™*™
and positive definite diagonal A € R"m X" such that

Q:U(fo\ g)Uf, P:U—f(g g)U—l.

Proof. The statement follows from (15) using U = TfVDé/4 Q. E. D.

The following lemma defines a projective factorization of the product of the pseudogramians
and gives an effective way to compute it using a contragredient transformation. The proof here is
slightly different from that of [12].

LeMMA 8. [12] Let symmetric positive semidefinite Q, P € R™™ satisfy the rank conditions
(14). Then, there exist G, T € R™ X" and positive semisimple (positive semisimple means similar
to a symmetric positive definite matriz) M € R *"m guch that

QP=G'MT, (16)
ra* =1, . (17)
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Proof. Due to Remark 7 there exist nonsingular W € R™*™ and positive definite diagonal
X e RP™ X" guch that

3 E 0 t o . —t E ); -1
Q~W(O O)W’ P=W (0 0>W . (18)
The equations (18) can be expressed in the equivalent form
Q=WiTW{, P=UlsU, (19)
where
Tem,
W= (1w W), W_le:nm{ (gl) (20)
2
From (20} with G = W{ and T = Uy follow {16)~(17). Q.E.D.

Maftrices ¢, M and I' from Lemma 8 are a (G, M, I')-factorization of (@, P).

6. Homotopy Method Based on the Drazin Inverse.

One approach in designing a homotopy algorithm for solving the optimal projection equations
is to use the decomposition of the projection matrix 7 based on the Drazin inverse.

6.1. Theoretical Results.

Since the homotopy algorithm involves computation of derivatives at each step, it is essential
that equations (6)-(7) be differentiable. The problem of proving the differentiability of the equations
(6)—(7) with the rank conditions (8) reduces to the problem of proving the differentiability of the
Drazin inverse,

DeriniTiON 9. The index of 4 € R™ " is the smallest nonnegative integer k& such that
im (A} = im (4%+1),

If A€ R™" has index k, then R™ = im (A*) @ ker (4%). Thus any z € R™ has the unique
decomposition & = u + v, u € im (4%), v € ker (4*). Observe further that A is invertible on
im (A%),

DErNITION 10. Let A € R™™™ have index k, and & = u+ v, u € im (A®), v € ker (A%). The
Drazin inverse A" of A is defined by A%« = AT u, where A is A restricted to the image of A%,

If £ = 1, the Drazin inverse A" is called the group inverse, and in fact that is all that is needed
here.

THEOREM 11. [5] Let A € R™ " have index k. The Drazin inverse AY of A is the unique matriz
Al such thai:

Al A AN = A,
AP A = 4 AF
AR AN = A%,



TaEOREM 12. [5] If A € R™ " has index k, then there exist nonsgingular matrices T and C,
and a nilpotent matriz N of index k such that

_ C 0 -1 B Ghl 0 -1
A—T(O N)T and A—T( 0 0 T—-.

A" is computed using the Hermite echelon form as described in Campbell and Meyer [5].

Hearon and Evans [9] give conditions for the differentiability of the Drazin inverse. That theorem
is proven here in a simpler way and using different terminology.

THEOREM 13. Let A(t) € C*(1) for some interval I and

rank (A(¢)) = rank (4%(2)) = »

Jor each t € I. If, for each t € I, B(t) is the Drazin inverse of A(), then B(t) € C5(I).

Proof. The rank condition implies 4 has either index 0 or 1. For index 0, A" = 4~ is
differentiable and there is nothing to prove. So assume A has index 1. Then for each ¢ € I, it has

the Jordan decomposition
_ Ay 0N
A=T ( 0 {]) T,

where A; is square and nonsingular. Using the characteristic polynomial of Ay, a divisor of the
characteristic polynomial of A4, AT ! can be expressed as a polynomial in A; whose coefficients are

polynomials in the elements of A:
AT = p(4y).

nmrto=((§ )rer( )

—1
BEBlABlzT<A(1} 8)1’"1 - Al

Let

Then

is the Drazin inverse of A. Furthermore, since the elements of B are polynomial functions of the

elements of A, B € C*{I). Q. E. D.
The derivative 7’ of 7 is actually computed using the Sylvester equations. Sincer = (Q P) () 15)”,
it follows that
A Ly ~ -~ ) ~ ~ ~ f
T = (@ P)(QP)+(Q P)[(@Q P,
where everything is directly computable except [(Q ]3)”]’. From (19),
rank (Q P)? = rank (W, S W} ULS U;)?
= rank {W; S*U/) = rank (5%) = rank (=%
= rapk (W, W] U{ S U1) = rank (Q P) = n,, < n,

and therefore QP has index 1. The following describes a procedure for the computation of the
derivative of the Drazin inverse X of a matrix 4 of index 1.
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For given A of index 1, X is the unique matrix that satisfies:

AX A=A, (21)
XAX =X, (22)
AX=XA (23)

Differentiating (21)-(23) yields:
AXA+AX' A+AXA =4 (24)
X'AX+XAX+X4AX' =X, (25)
AX'-X'"A=XA"-A'X. (26)

Substituting A X' from (26) into (24), and summing up equations (24)-(26) gives the Sylvester
equation

(A+ XA-DX'+ X'(AX - A+ 4%
=SXA—AX-XAX+A-XAA-AXA, (27)

which has a unique solution with probability one due to the randomness in A(X).
Solving (27) for X' = [(Q P)ﬂ’ completes the computation of 7.

6.2. Description of Algorithm.

The following is a description of the algorithm. The algorithm is based on the normal flow
algorithm for dense Jacobian matrices described in [29], slightly modified here to handle the rank
requirements of the solution (@, P).

The algorithm starts at the point

()\vm) = (0530) = (OJQO:PO)

with some 2y = (Qg, 150) chosen as explained in Section 4. Then it follows the zero curve v of the
homotopy map (9) until a point where A =1 is reached.
F{a, A, z) is represented by two equations:

AN Q+ QAN +7BV B + BV B+ -+ BV Birt =0,
AN P+PAMN+7ICPRC+C*RCr -7 C*RC T =0,

where

AN = AA+(1-X)D.

Recall from (11) that D was a function of the parameter vector a.
Since the equations are symmetric, only the upper right triangles are considered, i.e., g;; and
pi; are computed only for § > 4. Therefore, the number of variables is 2 [n(n + 1)/2] = n(n + 1).
The mathematical software package HOMPACK requires that the user provide routines to
evaluate p, (A, z) and the Jacobian matrix Dp, at each step. While the former is relatively simple,
the latter involves considerable compuitational effort.
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‘The Jacobian matrix consists of n(n+ 1) + 1 derivative vectors, which correspond to the partial
derivatives with respect to ¢;5, pij, and A. The terms that do not include = are simple to evaluate
analytically. For example,

8 A - J <
[ (€ P)] =5 > GremPmi = i . (28)
Kl pEE R

On the other hand, the components of 7' have to be evaluated numerically. Each evaluation
involves solving a Sylvester equation {27). Fortunately, since for different g¢;; and p;; only the right
hand side of the equation changes, the whole process can be done efficiently, In order to compute
@/3q11 all the computations related to (27} are done completely. For all subsequent partial derivative
evaluations only the right hand side of (27) is evaluated and submitted to the procedure that solves
a Sylvester equation. The procedure used for that purpose [2] supports this approach very efficiently.

The derivatives of (1 — A)F(a,0, 2) with respect to ¢;; and pi; are zero, and the derivative
with respect to A is —F{a,0, zg).

When a final solution to the equations (6)—(7) is obtained, the computation of (4., By, Cr)
is completed by applying the formulas (3)—(5), where  and T are obtained as explained in Lemma
8.

In summary, the whole algorithm is:

1) Define D = —c I+ diag {e1,..., ¢}, with ¢ > 0 and small random e;.
2) Choose Qo and Py that satisfy (8) as small perturbations of, respectively, BV B! /2¢ and

CtRC/2e.

3) Set A:= 0, z := .
4) Compute Drazin inverse (¢ P)I.
5} Compute T = (¢} ) (§ P!,
6) Evaluate p,(A, z).
7) (Evaluate Dp, (A, z).) For each p;;, g;; such that j > t, and A, do Steps 8-11.
8) Compute derivatives of terms that do not include 7 using analytical formulas similar to
(28).
9) Compate [(@ f))“]' using equation (27).
10) Complete computation of v as 7' := (Q P)"(Q P)I + (Q P [(Q P)ﬁ]’.
11) Sum values obtained in steps § and 10 to the final value of the derivative vector.
12) Take a step along the curve and obtain z; = (@1, 131).
13) Compute a contragredient transformation (18) as if @ satisfed the rank conditions.
14) Use formulas (19) to compute z; = (Q, P).
15) If A < 1, then set z := #y, and go to Step 4.
16) H X > 1, compute the solution Z of (6)-(8) at A = 1. Obtain G and T as explained in Lemma
8.
17) Compute the reduced order model using (3)—(5).

7. Methods Based on Decompositions of Pseudogramians.

Homotopy algorithms for solving optimal projection equations can be designed using decom-
positions of the pseudogramians based on contragredient transformations.
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7.1. Descriptions of Methods.

The equations (6)—(7) can be considered in another, equivalent form. If (6) is multiplied by
Uy from the left, and (7) is multiplied by Wi from the right, using {19)—(20), the following two
equations are obtained:

DWAWEWi+SWi A+ U, BV B =0, (29)
A'UIS+UISU AW+ C*RC W, = 0. (30)

The third equation
Uy Wy —I=0 (31)

determines the relationship between W and Uy.

The matrix equations (29)~(31) contain 2nn,, + n2, scalar equations. On the other side, the
only natural unknowns in (29)—(31), Wy, U; and diagonal Y, contain 2 % .y, 4 0., variables. Hence,
some additional techniques are necessary in order to make an exact match between the number of
equations and the number of unknowns.

One approach is to consider ¥ to be symmetric and all elements of ¥ as unknowns. This
is appropriate, since the equations (29)-(31) with a full symmetric £ can be transformed into
equations of the same form with a diagonal ¥ by computing

=T8T, Wy=WT, U =170,

where ¥ is diagonal and 7T is orthogonal.
Another approach is to consider the decomposition from the statement of Lemma 6, which
leads to the equations
Ui AWIEW! +SW{A '+ T, BV Bt =0,
ATIQ 4 UIQULAW, + CPRC W, = 0,

hw ~I=4q,

which also have 27 n,, + n2, scalar equations. In this case the number of unknowns in Wi, Uy and
symmetric ¥ and Q is 22 0., + 02, +n,,. An additional n,, equations can be obtained, for example,
by requiring

Ci—wi =0 fori=1,..., 0,

Alternatively, the number of unknowns can be reduced to 25 n,, + nZ, if the diagonal elements of
! are actrally the diagonal elements of X.

7.2. Algorithm.

The following is a description of the algorithm for the method determined by the equations
(29)~(31). The algorithm is based on the normal flow algorithm for dense Jacobian matrices described
in [29]. Depending on the relative size of F(a,0,zq) the algorithm may be modified. If F(a,0,zp) is
relatively large, computational experience shows that it is desirable (but not theoretically necessary)
to enforce the symmetry of ¥ along the homotopy path. This is done by observing that a symmetrized
% corresponds to some homotopy map that could have been chosen initially. In effect, zg is changed
in the homotopy map at each step along the homotopy zero curve 4. Obviously, in that case the
homotopy map (10) must be used.
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The algorithm is using the homotopy map (9) or {10), where F(a, A, z) is represented by three
equations:

UL AQ)WAZ Wi + SW} AN + Uy BV Bt =0, (32)
AN UIZ+UIS U AN Wi+ CERCW, = 0, (33)
Uy Wy —T=0. (34)

A detailed description of the algorithm for evaluation of the Jacobian matrix Dp,(), z) is given
in Appendix B. A program that implements this method is given in Appendix C.
In summary, the whole algorithm is:
1) Define D using formula (11) or (12).
2) Choose a starting point 29 = (Q,, Po) using one of strategies explained in Section 5.2. Compute
(W1)o, (U1)o and T, using a contragredient transformation.
3) Set A:= 0, T =y = ((Wl)o, (Ul)O, 20)
4) Evaluate p,(), z) given by (9) or (10), and (32)-(34).
5) Evaluate Dp,(A, z).
6) Take a step along the curve and obtain r1 = (W, UL, %), A
7) Compute 1 = (W1, U1, %) = (Wy, Up, (T + 5Y)/2).
8) Change the homotopy to
Fla,A,2)— (1~ X =0,

where v = F(a, A, 21)/(1 - X).
9) If A < 1, then set 2 := Z1, A:= A, and go to Step 4. :
10) If X > 1, compute the solution Z1 at A = 1. Compute the reduced order model by diagonalizing
L=TET"
Note: if F'(a,0,%0) is small, steps 7 and 8 can be omitted without a serious loss of efficiency.

8. Numerical Results.

Three examples are discussed here. The methods were tested on a number of additional
examples, reported in [31]. The results were obtajned using the method based on a contragredient
transformation that has Wy, U; and T as unknowns, using the homotopy (9). For all examples
V=R=1I

EXAMPLE 1 [13]. The system is given by

~-0.05  —0.99 1
A‘(—o.gg ~5000.0>’ B‘(loo)’ ¢=(1 100).

For the starting point
0
0.0099995
_ 1 0.99995
%=1 0.0099995
0.99995
0.5

the homotopy algorithm converges to a solution corresponding to the model of order Ny = 1 given
by
A, = (—4998.078625), B,, = (100.000194), ¢, = {100.000194).
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This model yields the (minimum) cost J = 96.078058.
For the starting point
0
1
| 025
o= o7
—0.27
1

the solution found corresponds to the model of order n,, = 1 given by

A = (-0.485152), By = (-0.0000011427), Cp, = (—0.000000073400),

which yields the (maximum) cost J = 10100. This example shows that the homotopy method can

obtain different solutions.

ExaMPLE 2. This is a model of a synchronous machine connected to an infinite busbar [10].

The system is given by

—6.2036  15.054  —0.8726 -376.58 9251.32 —162.24
0.53 —2.0176  1.4363 0 0 0
16.846 25.079  —43.555 0 0 0
A=1] 3774  —89.449 —162.83 57.998 —65.514 68.579
0 0 0 107.25  —118.05 0
0.36992 —0.14445 —0.26303 —0.64719 0.49947 —0.21133
0 0 0 0 0 376.99
89.353 0
376.99 0
0 0
B 0 0 502(0000010>
0 0 0 0 0 0 0 0 1
0 0.21133
0 0

A model of order n,, = 3 is

Apm =1 —9.352068 ~—0.912444  0.506220

—0.0261157 9.349756 —0.0528086
~0.0541716 -0.506226 —0.198770

14.906052  0.0416151

66.827
0
0
157.57 1,
0
0
0

2.453290  14.906110 14.944542

B (_2'414471 "0'571953) o _(—0.371712 0.00240265 0.0122915)
mo bl mo .

—14.944459 0.0512237

This model yields the cost J == 0.673079.
A model of order n,, = 4 is

—37.55440 -0.0546940  0.326197 —0.0709427
0.0561170 —0.0261155 9.349755 —0.0528084
0.324384  —9.352067 —0.912440  0.506220 ’
0.0705453 —0.0541714 -0.506226 —0.198769

Ap =
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—2.666516 —0.00624702 0.280123 —2.651769

B — —2.414464  —0.571953 ot = —0.371711  2.453283
™l 14.906036 0.0416151 ’ ™1 0.00240433  14.906094
~14.944458  0.0512237 0.0122916 14.944541

This model yields the cost J = 3.27495-10~¢.

ExaMPLE 3. This is a state space model of the transfer function between a torque activator
and an approximately collocated torsional rate sensor for the ACES structure [6], located at NASA

Marshall Space Flight Center, Huntsville, AL. The system in this example is of size n = 17, m=1,

{ = 1. The nonzero elements of A are
A(1,1) = A(2,2) = —0.031978272,
A(1,17) = 0.0097138566,
A(3,3) = A(4,4) = —5.152212,
A(3,17) = —0.021760771,
A(5,5) = A(6,6) = —0.1351159,
A(5,17) = —0.02179972,
A(7,7) = A(8,8) = —0.42811443,
A(7,17) = —0.01042631,
A(9,9) = A(10,10) = —0.064896745,
A(9,17) = —0.030531575,
A(11,11) = A(12,12) = —0.048520356,
A(11,17) = —0.016843335,
A(13,13) = A(14,14) = —0.036781718,
A(13,17) = —0.1248007,
A(15,15) = A(16,16) = ~0.025112482,
A(15,17) = —0.035415526,
A(17,17y = —92.399784.

The matrices B and C are

A(1,2) = —A(2,1) = —78.54,

A(2,17) = —0.0060463517,

A(3,4) = —A(4,3) = —51.457677,
A(4,17) = —0.0054538246.

A(5,6) = —A(6,5) = —15.417859,
A(6,17) = —0.015063913,

A(7,8) = —A(8,7) = —14.698408,
A(8,17) = —0.0088479697,

A(9,10) = —A(10,9) = —12.077045,
A(10,17) = —0.030260987,

A(11,12) = —A(12,11) = —8.9654448,
A(12,17) = —0.011449591,

A(13,14) = —A(14, 13) = ~4.9057426,
A(14,17) = —0.0005136047,

A(15,16) = —A(16,15) = -3.8432892,
A(16,17) = ~0.028115589,

1.8631111 —0.0097138566
~1.1413786 0.0060463517
—~1.2105758 0.021760771
0.31424169 —0.0054538246
0.013307797 0.02179972

—0.211128913 0.015063913

0.19552894 —0.01042631
~0.037391511 —0.0088479697

B= -0.01049736 Ct = 0.030531575

—0.011486242 0.030260987

—0.029376402 0.016843335

0.0082391613
—0.012609562
—0.0022040505
—0.030853234
0.0011671662
0

0.011449591
(.1248007
-0.0005136047
0.035415526
0.028115589
184.79957
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A model of order ny,, = 8 is given by

—70.1470  21.9187 -2.7406  2.9917  —0.3721  0.2986  0.0246  0.0836
54.1619 —32.1862 4.6829  9.2995  —0.4958  0.1804  0.0280  0.0934
3.5118 ~ —4.6512 —0.2083 —51.3962 0.1211 ~0.0130 —0.0049 —0.0157
A= | 7222535 19.0450 51.8525 ~—12.0437 1.0945 —0.6389 —0.0741 -0.2438
©] L2271 -1.1976  —0.2000 1.1602  —0.1936 15.4401 0.0243  0.0807 |’
0.5249  ~0.5415 —0.0764 0.6934 —15.4500 —0.0147 —0.0125 0.0414
—0.0705  0.0708  0.0106 —0.0770  0.0238  0.0122  0.0181 —78.5749
-0.2393  0.2397  0.0357 —0.2610  0.0803  0.0415 78.5083 —0.0323 /
—0.05753 —0.16432
~0.06445 0.16512
0.01043 0.02442
0.16983 . —0.18165
B =1 005059 |© Cm= 0.05066
0.02622 0.02629
0.04591 ~0.04472
0.15167 —0.15162

This model yields the cost J = 3.95223.10-5.

9. Conclusion.

This paper has considered the use of probability-one homotopy methods to solve the optimal
projection equations for the model reduction problem. Four different approaches were given for
solving the equations. The first approach is based on solving the optimal projection equations in
their original form. The three other approaches stem from a decomposition of the pseudogramians
based on a contragredient transformation and proved to be more numerically robust than the first
approach. The “best” algorithm was shown to be effective in finding the optimal reduced order
models for several examples,

The number of variables associated with the first approach is of order n? {(n is the dimension
of the original model}, while the number of variables for the latter approaches is of order nn,,
(nm is the dimension of the reduced order model}. Future research will involve the development
of homotopy algorithms with fewer variables, It appears that by using a more rudimentary form
of the optimal projection equations, it is possible to reduce the number of variables to be of order
n(m +1) (m and [ are, respectively, the number of inputs and outputs). Future research will also
consider the H3/H ., reduced order model problem {8].
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