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Abstract (1) We examine general “masks” as discrete approximations to the diffusion
equation, showing how to calculate the diffusion coefficient from the elements of the mask.
(2) We combine the mask with a thresholding operation to simulate the propagation of
waves in excitable media, showing that (for well-chosen masks) the waves obey a linear
“speed-curvature” relation with slope given by the predicted diffusion coefficient. (3) We
assess the utility of different masks in terms of computational efficiency and adherence to

a linear speed-curvature relation.

1. Introduction

Excitable media support undamped traveling waves of excitation, such as waves of
membrane depolarization in nerve axons {7], waves of excitation in chemical reaction sys-
tems [25,27), and waves of star formation in galactic dust clouds [20]. In physical and

chemical systems these waves provide striking examples of spontaneous symmetry breaking
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and spatiotemporal organization, and in biological systems they serve essential roles in cel-
lular communication and organization. Although some of the first models of excitable media
were based on the discrete cellular automaton (CA) approach [1,11,15,21,22,24], continuous
partial differential equation (PDE) models have dominated recent theory of spatiotempo-
ral organization in excitable media [8,9,16,17,18,23,25,30,31]. This hegemony of PDEs has
come about because the original CA models lacked several essential features of excitable
media [4,26]:

e Curvature. In two- and three-dimensional media, curved waves travel at speeds different
from planar waves: concave waves travel slower, convex waves travel faster [10,28,29].

e Dispersion. The speed of a planar wave front depends on the extent of recovery of the
medium immediately in front of the wave [2,14].

e Isotropy. In a homogeneous isotropic excitable medium, the speed of planar wave
propagation should be the same in all directions, but early CA models exhibited gross
anisotropies in wave speed relative to the underlying grid.

Many of these problems are rooted in the fact that classical CA models propagate waves
at a single speed of one cell per time step (in the direction of the grid). To overcome this
problem, it is necessary to introduce larger neighborhoods over which diffusion of excitation
can operate in one time step. Several different groups have independently proposed CA
models with expanded neighborhoods [3,4,5,6,12,13].

For instance, Gerhardt, Schuster, and Tyson [4,5,6} sum up all the excited cells within a
square neighborhood of area (2r+1)2, r = integer (1,2,---,6). If thissum exceeds a certain
threshold, then the central cell becomes excited in the next time step. They show that many
effects of curvature are achieved by such an increase in the size of the neighborhood over
which excitation can propagate in one time step. Furthermore, by making the threshold a
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function of the extent of recovery of the central cell, they introduce dispersive effects into
the CA rules. Though curvature effects ameliorate the anisotropy of wave propagation in
this CA, they do not completely eliminate it.

Markus and Hess [12,13] show that anisotropy can be almost completely eliminated
by somewhat randomizing the grid of cells. Like most other investigators, they adopt a
rectangular lattice, but instead of placing each grid point at the center of a unit cell, they
assign each grid point to a random location within its unit cell. In this way they obtain a
semi-random grid that covers the spatial domain in a rather uniform fashion, without the
“clumps” and “bald spots” characteristic of a truly random distribution. Then they define
the neighbors of cell 1 as all those grid points that lie within a circle of radius R centered
on i. They sum up the total number of excited neighbors of a resting or recovering cell, and,
if this sum exceeds a threshold, the central cell becomes excited. As for the uniform square
neighborhoods of Gerhardt, Schuster, and Tyson, so here wave speed becomes linearly
dependent on wave front curvature, but the circularity and slight nonuniformity of the
Markus-Hess neighborhoods make wave speed nearly independent of direction relative to
the underlying rectangular lattice. However, one must pay a steep price for isotropic wave
propagation. Total excitation sums in the square neighborhoods of Gerhardt, Schuster, and
Tyson can be computed by only four additions per grid point independent of the “radius”
r of the neighborhood, but the sums for the random-circle neighborhoods of Markus and
Hess require approximately #R? table lookups and mR? additions per grid point. The
computational inefficiency of this method cancels the most important advantage of the CA
approach.

Fast and Efimov [3] take a third approach. They point out correctly that the effect
of an excited cell at a distance z from a resting cell should drop off with z. Thus, when
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calculating the sum-of-excitation in the neighborhood of 2 resting cell, the contribution
from an excited cell at distance z should be weighted by a factor w(z). Reasonable would

be the choice
a2
w(z) = \F’ eﬂ'} ,

where | ¢} denotes the largest integer < (3 22 = (z—z0)2+ (¥ —y0)?, (z0,%0) = location of
central cell; and C and d determine the range of interaction (R = \_\/ZEW J) Although
such “Gaussian” masks give good results, as we shall show, they are also computationally
inefficient, demanding a large pumber of additions and multiplications per grid point.

In this paper we present a general theory of “masks” as discrete approximations to the
diffusion equation. We show how to calculate the eﬁ'ecti.ve diffusion coefficient of a mask
from its weights. Then we assess the reliability of certain classes of masks by investigating
their properties with regard to the propagation of wave fronts in excitable media. According
to singular perturbation theory of traveling waves in two-dimensional excitable media [10,
23,28,29], the normal velocity (N) of a wave front should be linearly related to its curvature
(K): N=c—-D K, where ¢ is the velocity of a planar wave and D is the diffusion coefficient
of the excitation variable. We show that only some classes of masks give a linear speed-
curvature relation with slope D independent of the threshold for activation. Of these “good”

masks, one class is especially noteworthy because it is computationally efficient.

2. Finite difference approximations to the Laplacian

The standard finite difference approximation to the Laplacian in two dimensions is the

5-point-cross

o 1 O
cross:=11 —4 1
o 1 0



Using this operator, the diffusion equation for u(t, z,9),

{1) %%L-DV? U,

can be solved using the finite difference scheme
At
(2) uFrl = uf + —}-1—2—D . cross * u¥,

where At > 0, h >0, ufj is the computed approximation to the solution u(k At,ih, j h), and
+ denotes the convolution operation (cross+u®)ij = ui-“,j_i_l +u¥ i g +ufq +uf g ;—4 ufj
(Here and from now on uF is a 2-dimensional array at time kAt, which consists of elements
uif‘,j.) There is no reason why other masks might not be used instead of the 5-point-cross.
In the following the implications of using different masks are investigated.

All masks considered here are assumed to have the following symimetry properties,
where @y denotes the weight at position [m, n} in the mask, which is centered around

0,0 :
(3) Ym,n 2 Q:amn=0-mpn = Am,—n — G—m,—n = Gn,m-
For example, a mask of radius 2 has the general shape

gp2 €12 02 aiz 2.2
arp 91,1 201 a1 412
a= | a2 aor @00 ap,1 @02
g12 @11 20,1 a1 @12
e @12 202 giz 422

These symmetries are necessary to make the mask operator a valid finite difference approx-

imation to the Laplacian.



The result of the application of the mask a to an array uF of values is described as the

convolution of a and u®

(4) {axu )23 Z Z Gm,n z+m;+n

m=—r n=—T

Think of 'u,?,j as being obtained from a continuous function u(Z, z,y) evaluated at t = iy =
LAt z=z;=hi, Yy =¥ = hj. Expand u(t, z,y) in a Taylor series and use the symmetry
préperties (3) of the mask to obtain

(5)

(a*u®)ij= Z E[‘i wlte, zi,95) + (M +n?) (u(ﬂ’e‘z) (tr, Tir Ys) + w020 (tksmiayj)) K’

m=0 n=1
+ —'((m + n)ul00 (b, o5, y5) + 12m2n2u®?? (t, 20 Yj)
+(m* + n4)u(0’4’0) (e, T, ¥5))
+ O(hﬁ)}am,n + aq 0 ulte, i Yj)-
Therefore the total effect of the mask a in terms of values «* and V3u* is

(6) gxut =S uf + hDVuF + -—E(uk) + O(h%).

with

S = apo +4§: Zﬂm,m

m=0 n=1

D= ZZ(m +n Trm,ns and

m=0n=1

(7)
E(u(tk'a My yj)) = Z z Em,n [(m‘l—- + 714) (U(O’G’é) (tk, $i,yj) + U(OA’O) (tk, Ti, yg))

m=0n=1

+12m*n u(022)(tk a:,,yj)]

I



where § and D are independent of u(t,z,y). The characteristics of the finite difference
scheme can be described in terms of § and D, which are dependent only on the mask, and
E to describe the error. S is the sum of all entries in the mask, and D is one-fourth of the
weighted sum over sll entries of the squared distances from the center of the mask.
Consider an updating scheme where the data at time ¢+ At is the result of the convo-

lution of the data at time t and a mask:

kil

k
Ui = (a*u)i

(8) =§-uf; +R*D- (V2uF),  + O(h*)

~ u’f,j + DAt (Vzuk)ijj .

The last part is the demand from the differential equation for diffusion (1). It is immediately
obvious that this requires 5 = 1 and

h2 h2 T T
(9) D=D— <=¢D=—Zzam,n(m2+n2).

At At

m=0n=1

An argument similar to the one in [19,page 12] can be used to show that this finite difference
method is stable at least if V2,7 : @i > 0.

New masks can be created as convolutions of smaller masks. Let mask ag be the

convolution of masks a; and @2. The effect of applying a3 to v is
az *u= {01 xa2) ¥ U =01 * (as * u),
since convolution is an associative operator. Now according to (6), (a2 * u) is described as
u' = (ag xu)

(10) y
= 52 % -+ h2 ’D2V2u =+ EEQ(U) -+ O(hﬁ)-
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The mask ¢ can also be described in terms of Sy and Di :

’LL” = ({I.]_ * 'Lb’)

(11) y
ES Sl u’ + h2 ’D1V2u’ + EE].('U;I) -+ O(hﬁ).

Then
u":: (al *u’)=a1*a2*u

=8-S u+8 B2 DaViu+ S K2 D, V2u + O(hY)

(12)
= 51 -Sg"u.+h2(31 'Dg+Sg-D1)V2u+O(h4)

= Sy -u+h? D3Viu+ O(h*) .
Therefore S = S1 - 52 and D3 = Sy - D + Sz - D1
The same result is obtained when the algebraic expressions for the convolution are
inserted into the definitions of D and S (7). For our updating scheme (8), we have 51 =
S, =1 and therefore S3 =1 and Dy = Dy +Da.
When used as finite difference methods, big masks have an error in the same order
as the simple 5-point operator. The advantage of big masks is that they allow larger time

steps, as it is obvious in (9) that a larger D (while D is fixed) leads to a larger At.

3. Neighborhood operators used

Since we are looking at large neighborhoods, the application of the neighborhood op-
erators needs to be very fast even for large neighborhoods. There are some neighborhoods
that have the property that the computation time required is essentially independent of the

neighborhood size. The simplest of these operators is the square mask:

square(l) =

= e
e

1
1
1



(here radius 1), which is constructed as the convolution of

]i and [1 1 1].

1
In general, a square mask of radius r has size (2r + 1) and can be generated by the
convolution of row and column vectors of length 2r + 1. Each of these operators can
be implemented as a column-wise (respectively row-wise) scan through the grid where a
running count is kept, and, in going from one cell to the next, one cell at the top (right) is
added and one cell at the bottom (left) subtracted from the current count. In this way the
effect of a square mask of radius r can be calculated by just four additions per grid point,
independent of the size of the mask. Square masks were favored by Gerhardt, Schuster and
Tyson [4,5,6].

Another mask can be constructed by applying the square mask to the neighborhood

count which resulted from another square mask. In other words, this new mask is a convo-

lution of two square masks with radii #; and ro. Forrp =1 and ro = 1 this results in the

mask

square(1)ssquare(1) =

e S 2 - I
[SCIN N ey
LWt W
DD W O e B
= D 8 DI

The computation necessary to perform this neighborhood count operation is approximately
double that necessary to compute the simple square mask, since it is applied two times.
The time is also almost independent of the radii r; and ra.

The same technique of scanning through the grid and keeping a running total can also
be applied in directions other than horizontal and vertical. Our next mask is constructed

9
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by scanning in both diagonal directions. This results in a diamond shaped mask (but with

holes inside):

diamond(1) =

ooR oo
DP—‘D&—‘D
R
F N o S S
OO OO

The computational complexity of this mask is almost independent of its size and it is about
the same as that for the simple square mask. |

Convolutions of diamond masks and square masks give masks that almost have a round
shape. These diamond-square masks seem Vvery useful. For example, the convolution of a

square mask of radius 1 and a diamond mask of radius 1 yields

g 0 1 1 1 0 0“
0123210
1 2 4 4 4 21
diamond(1)*square(1) = | 1 3 4 5 4 3 1
1 2 4 4 4 21
0123210

\.0 0 11 1 0 03

All masks used here are constructed to model diffusion processes in one way or another.
The effect of diffusion on a unit pulse can be described as

2

where D is a diffusion coefficient. This suggests using a mask whose elements drop off in
magnitude like a Gaussian function of distance from the origin. It is not possible to compute
the effect of such a mask in a time independent of its size. Instead the computational effort
required is proportional to the umber of elements in the mask. These masks are created

using the formula

m,n

— [c i e’ } ,
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(b)

15

Figure 1: Comparison of (a) Gaussian mask without truncation to integers and (b)

combination mask diamond(2)+square(3).

In [3] a mask was used that differs only slightly from the mask obtained with this formula
and parameters C = 11,d = 3.5. The combination mask diamond(2)*square(3), which we
find very useful, can almost be obtained by this formula with parameters C = 21.9 and
d = 5.125. The combination mask and the true Gaussian mask differ only in 16 out of 225
entries. None of the entries differs by more than one. In Figure 1, both masks are shown.
Combination masks are similar to Gaussian masks because each time step can be thought of
as two sub-steps using simpler (non-gaussian) masks. As we have just shown, these simpler
masks, when iterated, model the diffusion operator, and consequently they smooth a unit
pulse into a Gaussian distribution. Clearly, the alternation of diamond and square masks is
quite effective at generating a nearly Caussian distribution in only one compound step. The
only purpose of the Gaussian masks in the current setting is to compare their performance
with that of the other proposed masks which are computationally feasible.

The fifth type of mask we consider is the random circle mask, proposed and used by
Markus and Hess [13].
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In order to use these masks, it is necessary to find the mask diffusion coefficient D,
denoted by D, in the sequel. It can be easily calculated from (7) for any given mask. For
some mask types it is possible to determine a general formula that gives the value D, as a

function of the parameters (e.g., radius) of the mask. For the square mask we get

_r(r+ 1)
™6
and for the diamond mask
_rir+ 1

For the convolutions of square and diamond masks, Dy, can be calculated from the sum
rule Dmg = Pmi + Dma-

For the Gaussian and random circle masks, Dy, cannot be calculated easily in closed
In general, Dy can be

form, but it is easy to obtain integral approximations to Dpm.

approximated as

(13) Do = fom /:0 a(m,n) (m2 +n?) dmdn.

The functions a(m,n) for the different masks are

1
iflm|<r+%andn|<T+3

square mask: a(m,n) = (2r+ 1)2’ | ] 2 1 l 3

0, otherwise;

_l_.._ if m2 + n2 < ,‘,,2
circle mask: a{m,n) = arl’ =7

0, otherwise;

l mr"’-i—n2

Gaussian mask: a(m,n) = e~ id .

rd
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Table 1: Diffusion coefficients for Gaussian masks.

C d (2

11 3.5 | 2.399
21.5| 5.1 | 4.072
10 5 3.460

100 5 4.617
1000 5 4.924
10600 5 4.988
100000 5 4.998

These functions are normalized so that

S= f / a(m,n)dmdn = 1.

The result of carrying out the integration for the square mask is

2
(2r+1) =1'(1r'+1)+_1_

D, = ,
m 24 6 24

for the random circle mask

and for the Gaussian mask

D, & d.

For the Gaussian mask, this approximation is good only if C' is sufficiently large. In Table 1
several different parameter combinations for the Gaussian mask are listed, together with
the value D,, one obtains from carrying out the summation in (7) explicitly.

The value Dy, is important for further simulations, therefore it is listed for several

masks in Table 2.
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Table 2: Diffusion coefficients Dy, for commonly used masks.

radius | square | diamond | random circle
(from (13))

1 0.33 0.66 0.125
2 1 2 0.5
3 2 4 1.125
4 3.33 6.66 2
5 5 10 3.125
6 7 14 4.5
7 9.33 18.66 6.126
8 12 24 8

4. Wave propagation and curvature effects

Several researchers are using comparable cellular antomata models to simulate excitable
media [3,4,5,6,13]. All these models have two features in common: 1. They all have a resting
and an excited state. 2. The transition from resting to excited state occurs when the number
of excited cells in some neighborhood exceeds a threshold k. The neighborhoods and the
threshold vary from model to model.

In this section, we seek to verify numerically the curvature relationship N =c—- DK,
where N is the normal velocity of the wave front, ¢ is the speed of a planar wavefront, Dis
the diffusion coefficient of the excitation variable and K is the curvature of the wavefront.
To simulate excitable media reliably, it is desirable that this relationship be linear in K and
that D be independent of the threshold & of the cellular automaton.

In order to investigate the validity of the curvature relationship, the following simple
experiment is set up:

On a grid of size 150 x 150, all cells are set to 0 except for a circular area, which
s initialized to 1. Since there is an inherent symmetry in the masks used here, only one
quarter circle is used, where the center of the circle is near coordinates (0,0). Mirror
boundary conditions complete the circle according to the size of the mask. The circular
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Figure 2: Circle of I-cells with radius 10.

area has a radius r, which is equivalent to having curvature K = 1. This situation is

depicted in Figure 2, where the center of the circle is at (0.3,0.3), the boundary is 2 cells
wide (for use with a mask of radius 2) and the circle has radius 10. Grey squares indicate
the cells (centered at the mesh points) that are 1. The criterion is that the mesh point
{intersection of vertical and horizontal lines) must be inside the circle or on the circle.

Now the mask under consideration is applied to this array, giving a count of the number
of excited (value = 1) neighbors for each cell. Then a thresholding function is applied,
which replaces a cell’s value by 1 if the neighborhood count § is greater than the specified
threshold k. Otherwise the cell value becomes 0. This procedure mimics the spread of
excitation in cellular automaton models of excitable media.

An average normal velocity is determined by calculating the average distance to the
center (0,0} of all cells that lie on the border of the resulting region of 1's. Specifically, the
average of all cells that are either 1 and have immediate neighbors which are 0 or that are 0
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and have immediate neighbors that are 1, is taken. (Immediate neighbor here means that
exactly one coordinate differs by exactly one.) From the resulting value the radius of the
original circle is subtracted. This is the speed a wavefront with curvature K would have if
the threshold were % in the region of the wavefront.

It is important to recognize the discreteness of the underlying grid. Small radii lead to
regions of 1’s on the grid that look far from circular. To reduce this effect, the experiment
is repeated many times with different origins of the circle with respect to the origin of the
grid. The setup used here is to take all positions of the origin in (z,y) € {0,4,28,38,---,1~
§} x {0,8,26,368,-+-,1—8}. Mostly, § is chosen to be 1/3 or 1/4. Symmetry considerations
lead to the elimination of the cases where y < x, so that (1/8) - (1/6 + 1)/2 positions of the
origin are simulated and the results averaged. The result is the speed that is reported for
the given initial radius r and threshold k.

To determine the relationship N = ¢ — D K, this experiment is repeated for many
different curvatures of the initial circle. As was stated earlier, it is desirable that the N vs.
K relationship be linear for all thresholds, and that the slope of the line (D) be independent
of threshold. For the simulations, the units of space and time are At = 1 and h = 1. These
are the units that N, ¢, K, and therefore also D are measured in. Therefore from (9), we
expect that D should be close to D,,, the theoretical diffusion coefficient of the mask.

The experiment is repeated for each mask for each threshold. To illustrate the resulting
dependence of speed on curvature, Figure 3 shows exemplary plots of speed vs. curvature.
Fig 3(a) is from the random circle mask with radius 5, using 94 different curvatures from
—0.1 to 0.1, where § = 0.34 and the threshold & = 10. Fig. 3(b) is for a convolution of
a square mask with radius 3 and a diamond mask with radius 2. The threshold here is
k = 200, all other parameters are the same. For both examples it is obvious that a linear fit
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(a) (b)

-0.1 -0.05 0.085 O.f -0.1 -0.05 0.05 O.,IL<

Figure 3: Two examples of normal speed N as a function of curvature K: (a) for

random circle(5) with threshold 10 and (b) for diamond(2)xsquare(3) with threshold 200.

is a good approximation to describe the data sets. In (a) one would get N =~ 3.09 — 2.33K,
where the 99% confidence interval for the slope is 2.33 £0.28. The corresponding values for
(b) are N = 2.93 — 3.67K where the confidence interval for D is 3.67 & 0.13.

The first question to be solved is the range of curvatures that should be used. In a
small series of experiments, different ranges of curvatures are used to calculate a linear fit
to the obtained normal velocities (as a function of curvature). Also, a confidence interval
for the slope of the obtained fit is calculated. The results are presented in Figure 4 for a
square mask of radius 6.

Two important points should be mentioned: large curvatures (small radii) are limited
by the fact that the number of 1’s in the initial circle needs to be big enough to exceed
the threshold of the mask. Otherwise it is not possible to calculate a speed. The other
limitation is for small curvatures (large radii}. Since the size of the array used for these
simulations is 150 x 150, radii above (150 — 3 - masksize) are not possible, because the
resulting circle would exceed the simulation domain. Therefore, curvatures between —0.01

and 0.01 are not possible. The range of curvatures used should be at least —0.03---0.03,
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Figure 4: Diffusion coefficient vs. threshold for square mask radius 6 for different
curvature ranges. Error bars indicate 99% confidence interval and the horizontal line marks
D =Dy, (a) Curvature -0.2.. +0.2, increment 0.01. (b) Curvature -0.1 .. +0.1, increment
0.005. (c) Curvature -0.05 .. +0.05, increment 0.002. (d) Curvature -0.025 .. +0.025,
tncrement 0.0008.

so that the measured points form a line for both positive and negative curvatures. (The
negative curvature experiments start with the exterior of the circle excited.)

From the graphs we see that using the range of curvatures from -0.1 to 0.1 seems to
be the most suitable for determining the diffusion coefficient, since here the graphs are
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smoother and the errors are smaller than for other curvature ranges.

Using this range and six different centers with § = 1/3, many different masks are
tested. Although most masks have a fairly flat D-curve for high thresholds and exhibit a
linear curvature relationship for almost all thresholds (most error bars are fairly small), the
result shows that most masks do not have a constant slope D over all thresholds k. For all
masks, very small thresholds result in a slope that is much too small. In order to be able
to compare experiment and theoretical prediction, the average of D for all thresholds k is

calculated as Dg,.

5. Diffusion coefficients for different masks

5.1. Square mask

For square masks the slope D is not independent of threshold; rather, D{k) is clearly
an increasing function. Figure 5 shows the function D(k) for radius 8, as well as the speed
curve, c(k), for this mask. Although D increases with %, the average value of D over all

thresholds is not far from the expected value (D,,):

radius D.o Dm
4 3.23 3.33
6 7.14 7
7 9.77 9.33
8 11294 | 12
9 | 16.71 ¢ 15
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Figure 5: (o) Diffusion coefficient vs. threshold and (b) speed vs. threshold for square
mask of radius 8. The linear fit used 87 curvatures between —0.1 and +0.1 in steps of 0.002

(6 = % ). The horizontal line marks D = D,,,.

5.2. Random circle mask

The random circle mask exhibits very strong irregularities for small thresholds. Here
there is no linear relationship between N and curvature X, so that the error in the linear
fit is very large. Beyond some point, the curve for this mask looks almost exactly like that
for a square mask of slightly smaller ;"adius. This is not surprising, since the center part of
a cirgle looks similar to the center part of a square. The close similarity comes from the
fact that in both cases the weight of all cells is 1. The random mask i.s not a good choice if
the aim is to achieve a threshold-independent D. Figure 6 shows the D plots and the speed

plots for radius 8. The value D,, compares as follows to the theoretical value:

radius | D, averaged | Average over | D,,
over all £ | all but first 8

6 6.63 5.01 | 4.5
8 9.73 8.99 | 8
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Figure 6: (a) Diffusion coefficient vs. threshold and (b) speed vs. threshold for random
circle mask of radius 8. The linear fit used 94 curvatures between —0.1 and +0.1 in steps

of 0.002 (8§ = 3). The horizontal line marks D = Dp,.

5.3. Diamond mask

Similar to the square mask is the diamond mask, with additional jumps, which are
probably caused by the holes in the mask. Figure 7 shows the results for the diamond mask

with radius 5. The results of the averaging are:

radius D, D

4 8.43 5.66
5 | 12.83 | 10
6 | 17.89 | 14

5.4, Combination square-square

The convolution of two square masks shows a new effect: the curve of D vs. k is not
monotone any more, but fluctuates up and down. On the other hand, the average over all
thresholds is close to the theoretically predicted value. Figure 8 shows the result from the
convolution of a radius 2 square mask with a radius 3 square mask. The averaged result is:
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Figure 7: Diffusion coefficient vs. threshold for diamond mask of radius 5. Same

conditions as in Figure 6.
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Figure 8: (a) Diffusion coefficient vs. threshold and (b) speed vs. threshold for

convolution mask square(2)xsquare(3).

radii | Dy, D

22 | 185 |2
2,3 289 |3

5.5. Combination diamond-square

The convolution of a diamond mask with a square mask seems to be the best mask
of those under consideration here. The curve of D vs. k is fairly flat and smooth for this
mask. Also, the averaged D is very close to the theoretical prediction. Figures 9 and 10
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Figure 9: Diffusion coefficient vs. threshold for combination masks (a) diamond(2)x

square(3) and (b) diamond(2)xsquare(4).
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Figure 10: Speed vs. threshold for combination mask diamond(2)xsquare(3).

show the results for two such masks. We take into consideration only those combinations
of radii where the radius of the diamond mask is not greater than the radius of the square
mask. The other combinations have masks for which the weights are not monotonously

decreasing from the inside to the outside. Experiment and theory compare as follows:

radii | Duy | D
1,2 | 1.49 | 1.66

2,2 | 287 |3
1,3 | 2.52 | 2.66
2,3 1393 |4
3,3 610 |6
2,4 | 5.37 | 5.33
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Figure 11: Diffusion coefficient vs. threshold for Gaussian masks with C = 11,d =
3.5 (a¢) and C =20,d =3 (b) . The linear fit used 62 curvatures between —0.1 and +0.1 in
steps of 0.003 (6 = %)

5.6. Gaussian mask.

The Gaussian mask gives unexpectedly bad results in this experiment. The diffusion
coeficient jumps in a very broad range and the average is not very close to the theoretical
value. Some examples are shown in Figure 11 and some averaged results are shown in the
table, where D,,, is the diffusion coefficient calculated from the actual mask (see also Table 1
and remarks in Section 3). Note that the Gaussian mask can only be tested for small D,,,,

because the computation gets too expensive for larger masks.

parameters C,d | Dy | Dy

11,3.5 | 2.16 | 2.40
20,2 | 1.26 | 1.53
40,3 | 2.32 | 2.54
20,3 | 210 | 2.34
10, 2.5 | 1.39 | 1.65
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a b c

Figure 12: Speed of planar waves in different directions. Dark grey is wave before
updating, light grey after updating. (a) is @ horizontal wave, (b) and (c) are diagonal waves
with thresholds 0 for (b) and 1 or 2 for (c).

6. Dependence of plane wave speed on propagation direction

One basic parameter in the design of a cellular automaton is the choice of the grid or
lattice. Most researchers using cellular automata for excitable media choose a square lattice
because it is easier to work with numerically.

For a given mask and a given threshold, the speed of a plane wave depends upon the
direction of the wave in relation to the grid. A simple example with a small mask illustrates
this in Figure 12. Here a square mask of radius 1 with threshold 0 (i.e., a cell becomes
excited if > 0 neighbors are excited) gives rise to waves with speed 1 in the horizontal
(vertical) direction and speed v/2 in the diagonal directions. For thresholds 1 and 2, the
horizontal speed is still 1, whereas the diagonal speed is 1 / v2. For thresholds 3,4 and 5,
both speeds are 0.

In general, the speed of a plane wave in the horizontal direction can only assume integer
values. The speed in the diagonal direction can only assume multiples of 1/v/2. Table 3
shows these values. It can be seen that there are certain wave speeds for which horizontal
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Table 3: Multiples of 1 and 1/+/2 ( corresponding to possible speeds of planar waves
in horizontal and diagonal directions).

horizontal | diagonal

I
0.707
1.414
2.121
2.828
3.596
4.243
4.950
5.657
6.364
7.071
8.485
9.192
9.899
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Figure 13: Speed of planar waves as a function of the angle for threshold 246 (a) and
284 (b).

and diagonal speed can be very close together (e.g., 5) and others for which the difference
is much bigger (e.g., 6). Similar arguments can be made for waves traveling with slopes ‘;3,
where p and ¢ are small integers.

In a series of experiments, the propagation speed of plane waves is measured. Two
examples of how the speed depends upon the angle of a wave are given in Figure 13. Both
examples use the combination mask diamond(2)*square(3), at thresholds 246 and 294. It
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Figure 14: Awverage speed and variance of speed for planar waves as a function of

threshold for the square mask of radius 3.
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Figure 15: Average speed and variance for planar waves as a function of threshold

for the combination mask diamond(2)*square(3).

can be seen that in both cases the speed in the horizontal direction is 2. The speed in the
diagonal direction is 2.828 = 4//2 and 2.121 = 3 /V2. For intermediate angles the speed
is relatively constant even in (a). One way to assess the isotropy of wave propagation is to
calculate the average planar wave speed over all angles and the variance about this average.
Figures 14 and 15 show the results for some masks. It can be seen that the average speed
is a monotonously decreasing function of the threshold (which is almost identical to the
speed function derived from circular waves). The variance of the speed is very different for
different thresholds.

It isotropic behavior is very important, it might be useful to restrict the possible thresh-
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olds to those with small variance of the speeds. This reduces the number of available speeds,
however. Figures 14 and 15 show that the variance is considerably smaller for the combi-

nation mask than for the simple square mask.

7. Possible extensions of masks into three dimensions

For three-dimensional simulations, the only change necessary for our automaton is
to define a three-dimensional mask. For the square mask, the obvious extension is the
cubic mask, a convolution of strips in the x-, y-, and z-directions. For the diamond mask,
extensions are not so obvious, because in the three-dimensional case there are many more
symmetries than in the two-dimensional case.

Two possibilities exist for convolutions of strips that are fully symmetric:

¢ Apply a diamond mask in each of the three planes, i.e., in the xy-plane, in the yz-plane,
and in the xz-plane. This amounts to a total of six strip operations and is completely
symmetrical.

¢ Do one strip in each of the four space diagonals of a cube. This amounts to four strip
operations and is also fully symmetric.

Both possibilities of diagonal masks suffer from the same problem of the diamond
mask in two dimensions: there are holes left in the mask. Therefore, both masks need to
be combined with a cubic mask to eliminate these holes, the same way this is done in two
dimensions. Figure 16 shows the three possibilities for symmetric masks by indicating the

scan directions in a cube.
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Figure 16: Scan directions for the three different possibilities for three-dimensional

masks.

8. Conclusion

We show how to calculate the effective diffusion coefficient of several different masks
that are used in cellular automata simulations of excitable media. Experimental investiga-
tion shows that the linear curvature relationship N = ¢— D K holds reasonably well for most
masks and thresholds considered. However, we find that the apparent diffusion coefficient
(D) is not independent of the threshold, as it should ideally be. The best masks in this
respect are the combinations of square and diamond masks, for which the apparent diffusion
coefficient varies little with threshold and is (when averaged over all thresholds) very close
to the effective diffusion coefficient predicted by theoretical considerations. These masks
are also computationally efficient. Therefore these masks are considered the best candi-
dates for the development of cellular automata that mimic the reaction-diffusion equations

of excitable media.

29



References

[1] I. S. Balakhovskii, “Several Modes of excitation movement in ideal excitable tissue,”
Biophysics 10 (1965), 11751179,

(2] J.D. Dockery, J. P. Keener & J. J. Tyson, “Dispersion of traveling waves in the Belousov-
Zhabotinskii reaction,” Phys. D30 (1988), 177-191.

[3] V. G. Fast & L. G. Efimov, “Stability of vortex rotation in excitable cellular medium,”
Phys. D, (submitted).

[4] M. Gerhardt, H. Schuster & J. J. Tyson, “A cellular antomaton model of excitable

media including curvature and dispersion II. Curvature, dispersion, rotating waves and

meandering waves,” Phys. D 46 (1990), 392-415.

(5] ———, “A cellular automaton model of excitable media including curvature and dis-

persion III. Fitting the Belousov-Zhabotinskii reaction,” Phys. D46 (1990), 416-425.

[6] ——, “A cellular automaton model of excitable media including curvature and dis-
persion,” Science 247 (1990), 1563-1566.

[7} A. L. Hodgkin & A. F. Huxley, “A quantitative description of membrane current and
its application to conduction and excitation in nerve,” .J. Physiol. 117 (1952), 500-544.

[8] W. Jahnke, W. E. Skaggs & A. T. Winfree, “Chemical vortex dynamics in the Belousov-
Zhabotinskii reaction and in the two-variable Oregonator model,” J. of Physical Chem.
93 (1989), 740-749.

[9] W. Jahnke & A. T. Winfree, “A survey of spiral wave behaviors in the Oregonator

model,” Intern. J. of Chaos and Bifurcations {(submitted).

[10] J. P. Keener, “A geometrical theory for spiral waves in excitable media,” SIAM J. Appl.
Math. 46 (1986), 1039-1056.

(11] S. A. MacKay, “Computer Simulation of aggregation in Dictyostelium discoideum,” .J.
Cell Sci. 33 (1978), 1-16.

[12] M. Markus, “Dynamics of a cellular automaton with randomly distributed elements,” in
Mathematical Population Dynamics: Proc. Second Intern. Conf., Marcel Dekker, New
York, NY, (in press).

30



{13] M. Markus & B. Hess, “Isotropic cellular automaton for modeling excitable media,”

Nature 347 (Sept. 1990), 56-58.

[14] R. N. Miller & J. Rinzel, “The dependence of impulwse propagation speed on firing
frequency, dispersion, for the Hodgkin-Huxley model,” Biophys. J. 34 (1981), 227-259.

[15] G. K. Moe, W. C. Rheinboldt & J. A. Abildskov, “A computer model of atrial fibrilla-
tion,” Am. Heart J. 67 (1064), 200-220.

[16] A. V. Panfilov & A. N. Rudenko, “T'wo regimes of scroll ring drift in three-dimensional
active media,” Phys. D 28 (1987), 215-218.

[17] A. V. Panfilov, A. N. Rudenko & V. L Krinskii, “Vortical rings in three-dimensional
active media with diffusion over two components,” Biophysics 31 (1986), 926-931.

[18] A. M. Pertsov, E. A. Ermakova & A. V. Panfilov, “Rotating spiral waves in a modified
Fitz-Hugh-Nagumo model,” Phys. D 14 (1984), 117-124,

[19] R. D. Richtmyer & K. W. Morton, Difference methods for initial-value problems Inter-
science Publishers, New York, 1967.

[20] L. S. Schulman & P. E. Seiden, “Percolation and galaxies,” Science 233 (1986), 425-431.

[21] O. Selfridge, “Studies on flutter and fibrillation V. Some notes on the theory of flutter,”
Arch. Inst. Cardiol. de Mexico 18 (1948), 177-187.

[22] J. M. Smith & R. J. Cohen, “Simple finite-element model accounts for wide range of
cardiac dysrhythmias,” Proc. Natl. Acad. Sci. USA 81 (1984), 233-237.

(23] J.J. Tyson & J. P. Keener, “Singular perturbation theory of traveling waves in excitable
media ( A review),” Phys. D 32 (1988), 327-361.

[24] N. Wiener & A. Rosenblueth, “The mathematical formulation of the problem of con-
duction of impulses in a network of connected excitable elements, specifically in cardiac

muscle,” Arch. Inst. Cardiol. de Mexico 16 (1946), 205-265.
[25] A.T. Winfree, “Spiral waves of chemical activity,” Science 175 (1972), 634-636.
[26] ——, When time breaks down, Princeton University Press, Princeton, NJ, 1987.

[27] A. M. Zhabotinskii & A. N. Zaikin, “Concentration wave propagation in two-dimensional
liquid-phase self-oscillating system,” Nature 225 (1970), 535-537.

31



[28] V. S. Zykov, “Analytical evaluation of the dependence of the speed of an excitation
wave in a two-dimensional excitable medium on the curvature of its front,” Biophysics

25 (1980), 906-911.

(29] — — | “Kinematics of the steady circulation in an excitable medium,” Biophysics 25

(1980), 329-333.

[30] — “Cycloid circulation of spiral waves in an excitable medium,” Biophysics 31
D

(1986), 940-944.

B1] — . Simulation of wave processes In excitable media, Manchester Univ. Press,

Manchester UK, 1987.

32



