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Abstract. This paper introduces a new cellular automaton model of excitable media
with improved treatments of (1) diffusion and wave propagation, and (2) slow dynamics of
the recovery variable. The automaton is both computationally efficient and faithful to the

underlying partial differential equations.

1. Introduction

Excitable media support undamped traveling waves of excitation, such as waves of
oxidation in certain chemical reaction systems and waw-res of membrane depolarization in
nerve axons. Some simple models, consisting of a pair of partial differentia] equations,
have become popular representations of exeitable media, e.g., the Oregonator model [3,10,
15] of the Belousov-Zhabotinskii reaction [20,22]; and the FitzHugh-Nagumo model [1,4] of

neuromuscular membranes. But the earliest model (1946) of excitable media was a cellular
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automaton introduced by Wiener and Rosenblueth [19]. The cellular automaton approach
was pursued later by Moe et al. [14], Greenberg and Hastings [8,9], and others. These “Hrst
generation models” featured nearest neighbor connections and only a few possible states
per cell. Although they exhibited wave propagation, they failed in severa] crucial aspects
[21]:

¢ The curvature effect: A wavefront that is curved backward should travel slower than 3
planar wave, which in turn should be slower than a wavefront that is curved forward.
In particular, N = ¢ — DK, where N is the normal velocity, K is the curvature, D is
the diffusion coefficient of the excitation variable, and c is the planar wave speed.

¢ Dispersion relation: A wavefront can propagate not only into resting medium, but also
into partially recovered medium. In this case the speed of the traveling wave should
be slower than the speed of propagation into fully recovered (resting) medium.

e Spatial isotropy: The shape of spirals in these early models is always angular, not
smooth, due to the nearest-neighbor-only connections and the resulting anisotropic
speed of propagation.

These three shortcomings are addressed in “second generation” models by Gerhardt, Schu-
ster and Tyson [5,6,7], Markus and Hess [12,13], and Efimov and Fast [2].

To meodel curvature effects, Gerhardt, Schuster and Tyson introduce bigger neighbor-
hoods: squares of size (2r +1)%, where r = L,---,6. In their automaton the number of
excited cells within this square neighborhood is counted and a resting cell becomes ex-
cited if this count exceeds a certain threshold. By making the threshold a linear function
of the recovery state, they introduce dispersion into the automaton, Unfortunately, their

automaton still exhibits some directional anisotropy.
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Markus and Hess address the problem of directional anisotropy by introducing semi-
random grids. They randomize the pesition of a grid point within its unit square, and then
mark all neighbors within a circular boundary centered on the grid point. In this manner
they achieve good spatial isotropy at the cost of high computational complexity.

Efimov and Fast recognize that for determining whether a cell should become excited,
the excitation of a nearby cell has a bigger effect than the excitation of a cell that is far
away. They calculate a weighted sum of excitation of cells in the neighborhood, where cells
close to the center have high weights and cells far away have low weights. In general, the
computation of such weighted sums is computationally expensive.

This paper introduces a “third generation” automaton that combines the strengths and
avoids the weaknesses of these earlier versions. Furthermore, the cellular automaton (CA)

rules are closely related to the underlying partial differential equations.

2. Description of new mask

Gerhardt, Schuster and Tyson favor a square mask because the operation of counting
the number of excited neighbors can be done in a time independent of the size of the mask.
This property is very desirable, especially for big masks. A square mask can be constructed
as the convolution of a vertical strip and a horizontal strip. The sum within a strip is
calculated by a scanning operation.

Another mask (a diamond mask) can be constructed as the convolution of two diagonal
strips. The convolution of a square mask and a diamond mask generates a third mask,
the one we prefer. Such “combination” masks are weighted more heavily in the center
(e.g., Fig. 1). Nonetheless, the results of its application to a data array can be calculated
with 8 addition operations per cell, independent of the size of the mask. The example
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ro 6 ¢ 0 1 1 1 1t 1 1 1 0 00 01
600 1 2 3 3 3 3 3 2 1 000
001 2 4 5 6 6 6 5 4 2 1 0 0
012 4 6 8 9 10 9 8 6 4 2 1 0
1 24 6 9 11 13 13 13 11 9 6 4 2 1
1 35 8 11 14 16 17 16 14 11 8 5 3 1
1 36 9 13 16 19 20 19 16 13 9 6 3 1

Mask=|1 3 6 10 13 17 20 21 20 17 13 10 6 3 1
1 3 6 9 13 16 19 20 19 16 13 9 6 3 1
1 3 5 8 11 14 16 17 16 14 11 8 5 3 1
1 24 6 9 11 13 13 13 11 9 6 4 2 1
601 2 4 6 8 9 10 9 8 6 4 2 1 ¢
001 2 4 5 6 6 6 5 4 2 1 0 0
¢ 00 1 2 3 3 3 3 3 2 1 0400
000 0 1 1 1 1 1 1 1 0 0 0 0l

Figure 1: Effective weights in the mask diamond(2)xsquare(3).

(Fig. 1) uses a square mask of radius 3 and a diamond mask that is constructed from
diagonal strips of length 5 (radius 2). This mask, suitably normalized, is a good finite-
difference approximation to the diffusion operator D, V2, Previously [18], we showed that

the effective diffusion coefficient of the mask can be calculated from

(1) D, = E:::O E:ozl(m2 + nz)am,n
m =
H'U’U + 4 Z;?:o 2:11 a’m,n ’

where a,,, are the elements of the mask (centered on m = 0,7 = 0). For the mask in
Fig. 1, Dy = 4.

When we use such masks to simulate wave propagation in excitable media, we desire
that the normal velocity (V) of a wave be linearly proportional to the curvature (K) of the
wavefront and that the proportionality constant be close to D,,,. In [18] we showed that
these requirements are satisfied for diamond+square combination masks; e.g., for the mask
in Fig. 1, N = ¢ — DK where ¢ depends on the excitation threshold but D = 3.93 nearly

independent of excitation threshold.



3. Construction of cellular automaton rules from the PDE model

Many PDE models of excitable media, when cast in dimensionless variables, take the

following simple form

%1’: = V3 + %f(ﬁ,ﬁ),
(2}
%1—’ = e6V%9 + g(, D),

where € is a small (positive) parameter representing the ratio of time scales for changes in
7 (the fast variable) relative to % (the slow variable). Space has been scaled so that the
diffusion coefficient of % is simply €. Then 6 is the ratio of diffusion coefficients of 9 to
#. The smallness of € makes numerical solution of (2) difficult, but it can be exploited by
singular perturbation theory [16] to show that

L. traveling wave solutions are possible for these systems;

2. away from the wavefronts and wavebacks, @i changes very little, so that f(@,%) = 0;

3. within the wavefronts and wavebacks, © changes very little, since ¥ is a slow variable.

1t is typical of excitable media that the equation f(f,#) = 0 has three solution branches,

@=h_(8), a=he(d), &=hy(D),

two of which (h_(9) and 4(6)) are stable. These two branches determine the value of 4
in the regions between wavefronts and wavebacks.

The value of ¢ is limited by fiin < 9 < Bimax, Where iy, is the value of 4 at the resting
state, i.e., the stable solution of g(é,4) = 0 and f(#,9) = 0. Likewise, 0pay is the value of
© at which ho(%) = h.(9). At this value of 9, by (4) is not stable. At & = fmax, & waveback
occurs as a jump from 4 = hy(9) to ¢ = h_(9).
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To convert a PDE of this sort into a cellular automaton, we introduce two new variables

w = 0 if 4= h_(d), (recovering state)
T f da=hy(8), {excited state)
and
. D — Py
v = L('U) = _—H}“L'Uma.xaut'

= ~
Vmax — Ymin

In the automaton, we shall convert v into an integer.

Diffusion of the variable u and the excitation jump at the wavefront are simulated
by using a big mask (Fig. 1) to count the number of excited cells in the neighborhood
and applying a threshold function to the resulting {weighted) count, Sum. This threshold
function is selected such that the correct wave speed is obtained for all values of 4. To
construct this threshold function, first we calculate from the PDE the planar wave speed
¢ = c2(%) of an isolated front propagating into medium with recovery value ©. Then, from
simulations of wave propagation using the mask with threshold k, we determine the function
c1{k}, the planar wave speed as a function of the threshold {averaged over all directions).
These two speeds should be equal (in their respective time and space scales) for all values

of 9. Therefore

(3) k(v) =i (a e (L7 1(v))).

Here L™! is an affine transformation from the automaton variable v into the PDE variable
9 and o transforms the units of measurement for wave speeds.

So a rule for updating » in the automaton is:
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Sum = Mask * u? ;
if Sum > k(v) then uit!=1

else u!tl =(;

where the superscript refers to the time step ¢ and ‘*’ denotes convolution.

4. Time and space scales

In this section the space and time scales of the excitable medium, the PDE model, and
the cellular automaton are compared. We use the units em and s (centimeter and second)
for the excitable medium, su and tu (space unit and time unit) for the PDE model and Az
and At for the cellular automaton.

To determine time and space scales, we use the strategy introduced by Gerhards et
al. [5,7]. The first equation to relate these scales describes the diffusion coefficient in the

excitable medium (D), the PDE model (¢), and the cellular automaton (D,, as determined

by (1}):
(4) Dm— =e— =

A second relation comes from equating the speeds of a solitary plane wave (that is a plane

wave propagating into resting medium):

cm su Az
5] V— = = .
( ) S Comax T =0 (kmm) AL

Here, ¢amax = €2(fmiy) in the PDE is independent of € as long as € is small. In the CA, kpin
is the minimum possible threshold, and kg, = %(0). This minimum threshold should be
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large enough so that the effective diffusion coefficient is nearly independent of & for & > ki
[18].

From equations (4) and (5) one finds that the correlation between PDE and CA is

Ap = lmin) €

Comax Dm
(6) ,
_ (elbkmin) \" €
at= ( Comax ) Do w

the correlation between PDE and excitable medium is

Comax 2
Vo«

su =
(7

we () 2

and the correlation between CA and excitable medium is

Azr = C———wl(?;nin) %cm

_ ferlbmin)\? D
At—( V ) D—m'S.

We also need «, the conversion factor for wave speeds:

€1 (kmin }{ %

C2max( % )

(9) o=

5. Update v

The update function for v is obtained directly from the PDE for 4:

9 {g(h+(ﬁ),ﬁ) ifu=1;
at | g(h_(9),9) fu=0;
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g(h4(9),%) > 0 and g{h_(9),4) < 0 in the typical PDE model.

The rule for updating v in the automaton is:

if v° = Vmaxaus then

ut+1 =0

Pl = ot
else if u'*! =0 then
v+ = max {0,v' + |L' g_(v) Atl}

else if u**! =1 then

vt = min {maxaut, v + [L' g4 (v) AL] '

where L' = dL/d# = vmaxaut/(Pmax = Bmin), g = g (hi(D),0) with 4 = L™1(v), and At is
the length of one CA time step measured in PDE time units: At = a%e/D,,.

If ¥maxaus is big, the error introduced by the discretization of % (the | | and [] opera-

tions) is small.

Another rounding error is introduced by the min{---} function. Recognizing that the
jump from u = 1 to u = 0 occurs as soon as v reaches Umaxaut, One can determine the time
of the jump within the current timestep. After the jump, v is decreased according to the

rules for u = 0. Assuming that the increase in v, [’ g+ (v) At] is distributed linearly over

the time step, an improved rule is

if u**! =0 then

vt = max {0, + | L' g_(v) At]}
else if u**1 =1 then

va = [L g4 (v) At];

if v* 4+ vy < ¥pavan: then



i+1 =’Ut + vy

k)
else

u'tl = q;

t
U, - n
'Ut+1 = Umaxaut + (1 - _nm_xa.j::__) I.L’ g- (Umax)AtJ .

If we want ¥ to be a diffusive variable (6 # 0 in Eq. (2)), then we complete the time
step by averaging v with a square mask of an appropriate size to give the desired value of
4. Typically, we use a square mask of radius 3, s0 that v diffuses with D,, = 2, i.e., § = 0.5.

Thus, a complete timestep consists of (i) application of the mask to the array of u
values, (ii) the threshold function to calculate the new values for u, (iii) the rule for v (which
depends on the new values of u and may change the value of % in case of v 2 Umaxaut ), and

(iv) diffusion in v through an averaging mask.

6. Simulating the Oregonator

To complete the description of a CA model, the functions f(1,%) and g¢(4,4) in (1)

must be specified. The Oregonator model [15] is chosen:

S o =g
= u{] — —_
f@0) = (1~ 0) - fol =L

A oA

(8, %) = & — 4,

with ¢ = 0.002. In all our calculations, we take € = 0.01.

We use vpaxans = 1000 as a compromise between roundoff error and computational
complexity. For f = 3 the intersection of f(#,4) = 0 and 9(4,%) = 0 is Dy, = 0.00399 and
the intersection of k() and A, () is v,y = 0.084. The function ¢4(%) is calculated as the
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Figure 2: Speed as a function of recovery variable 9 (co(9)).

solution of the nonlinear eigenvalue problem [17]

2" + e ﬁw’-}-wl—m—"ﬁm_q
2 (D) ( ) f$+q

¥

z(~c0) = h_{3), z(+o0)=hy(d).

The result for f = 3 is shown in Figure 2. The speed vs. threshold function c; (k) is
shown in [18], Figure 10. In order to calculate k(v) (from (3)), a needs to be known.
There are two possibilities: (a} fix kmin and calculate o from (9) or (b) fix « and calculate
Brin = ¢ 1 (€€ max). We use the second possibility and choose @ & D,,, for the following
reasons. The thickness of a wavefront is O(e) in the PDE models of excitable media {17),
but it is less than one cell length in the CA model. In order that the space scale not be
too small compared to the thickness of the wave front, we should require Az > €, which
implies & > D,,. However, we cannot choose o too large, because we also desire that
Frin > 50, see [18] Figure 9a. Choosing & too small does not affect u, since only the speed
of wave propagation is modeled correctly for u. However, the update rules for v assume
that the jumps in v at wavefronts are instantaneous, so some errors are introduced into

the v dynamics if « is too small. As a compromise, in our examples, where D,, = 4 and
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Figure 3: Threshold as a function of automaton variable v (k(v) ).
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Figure 4: Rule for v: v¥*! — ot foryt =1 (positive) and w' = 0 (negative).

C2maz = 1.533, we use @ := 3, so that €1 (kmin) = 4.599 and k;, = 68. The resulfing
function k(v) is shown in Figure 3.
The updating rule for v is shown in Figure 4, where dv = v**! — y? is shown for both
u* = 0 and u* = 1. The sharp change in dv for u = 1 marks the point where the jump from
front to back occurs within the current time step. At v! ~ 1000, the jump occurs at the
beginning of the time step, therefore the behavior is essentially the same as for u? = 0.
For the parameter f ; several values are tested. An example of a snapshot of a spiral

is shown in Figure 5. Here f = 3 and the diffusion coefficient for v is 2 (compared to a
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diffusion coefficient of 4 for 1) and therefore § = 0.5. The greylevels indicate the value of

the recovery variable v. This CA simulation of the spiral wave shows many features that

appear in simulations of the Oregonator PDEs by standard numerical methods [10,11].
The Oregonator is a model of the Belousov-Zhabotinskii reaction [3,15]). In this case,

equations (4) and (5), which determine time and space scales, are

cm? su2 Az?
L5 x 1079 — =001 =422
®x 10 s 0 tu At
and
cm su Az
O013— = 1.53— =450,
0.0 8 3tu At
Thus,

Az = 0.0075s5u = 0.0013cm,

At =0.0225 tu = 0.47s.

7. Comparison to the “second generation” automaton of GST

The “second generation” automaton developed by Gerhardt, Schuster and Tyson (GST)
15,6,7] was also intended to model the BZ-reaction. To compare our automaton with theirs,
we reconstructed the threshold function, using a square mask of radius 6 ( as in [6]). Figure 6
compares this new threshold function, for o := 4.5, with the piecewise linear function from
[6].

For updating v, GST used constant rates »'+! — gt + g with g = 20 (when u = 1)
and g = —5 (when u = 0). Taking into account that Ymaxaut = 100 in [6] and 1000 here,
these values are not far from the v-updating rules in Figure 4. The major difference is that,
during the recovery phase, v decreases by a constant amount in each time interval in 6],
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Figure 5: Spiral wave (recovery variable v ) for § =3 on a 686 x 960

(5.1 x 7.2 Oregonator space units, or 0.91 x 1.27 em).
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Figure 6: Threshold k(v) for the new automaton (dots) and the GST automaton

(lines). In the gap fromv ="7T1-..85 the GST automaton disallows changes in u.

whereas it decreases exponentially in the model presented here. Furthermore, in [6] the
values 420 and —5 were chosen empirically, i.e., to get a good fit of the automaton to the
observed period of rotation of spiral waves in the BZ reaction. On the other hand, in our
approach, the v-dynamics is derived directly from the PDE for v. A final difference is that

v is nondiffusive in [6], but allowed to diffuse in the present model.

8. Comparison of cellular automaton simulations to PDE simulations

An interesting feature of solutions to the Oregonator PDEs is the meandering of the
tip of a spiral for certain parameter values, A study of the meandering for different values
of f and ¢ in the Oregonator model was undertaken by Jahnke and Winfree [11]. They used
explicit numerical methods to solve the PDEs.

Using the automaton we study the behavior of the tip for different values of f . Sections
of tip traces are shown in Figure 7a. Figure 7b shows the tip traces reported in [11], using
the same space scale as in Figure 7a. We observe that the tip traces from the automaton are
qualitatively similar to the PDE solutions (for € = 0.01). The differences in spatial extent
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Table 1: Periods and wavelengths for some spirals compared to results from Jahnke
and Winfree (J+W) (all in cellular automaton units).

FIOOA] 3+W ), 7| J+W 7
1.4 | 118 144 a8 70
2 | 147 170 | 65 76
3 |2 2281 75 90
4 | 945 270 | 87 101
6 | 320 354 | 122 124

are most likely due to differences in the method of determining the position of the tip. A
different and more reliable measure of space scales is the wavelength of the spiral far from
the core. Comparing wavelengths for the CA model and the PDE calculations [11] in Table
1, we see that the space scales for the two numerical approaces are nearly identical. (Note
that the scaling used by Jahnke and Winfree differs by a factor of \/€ in the space scale.)
The time scales are also nearly the same, as witness the spiral rotation periods for CA and

PDE models in Table 1. (For meandering spirals, an average over many rotations is taken.)

9. Parallel implementation

Parallel implementation on a ring-connected multicomputer is straightforward: for P
Processors, the simulation domain is split into p strips of equal width. Each Processor stores
this strip plus two overlap areas each with a width equal to the radius of the mask. At
the end of each cellular automaton step, which is carried out exactly as in the sequential
implementation, the information in the overlap areas is updated by messages between neigh-
boring processors. This scheme is efficient as long as the width of each strip is larger than
the size of the mask used. Some speed examples on the Intel iPSC860 hypercube with 128
processors are listed in Table 2. Here Nint refers to the number of cells in the x-direction
assigned to each processor. In the y-direction there are 700 cells. Thus the total amount of
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Figure 7:  Tip traces for different values of f (a) from the automaton and (d) from

Jahnke and Winfree [11]. The position of the tip is the point of largest cross product of the
gradients of u and v. Space scale: the length of the rule on top is 133 cells or 1 Oregonator
space unit.
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Table 2: Simulation speed om the iPSC860 hypercube. Times in psec for one cell-
update on each processor.

processors | Niny = 15 | Ny = 25 | Ny = 100 | N;p,p = 400
1 14.33 11.95 6.56 7.83

4 12.39 8.76 6.85 7.83

16 12.14 9.33 6.85 7.83

64 12.83 9.62 6.85 7.83

128 12,75 9.91 - -

work is proportional to the number of processors. These measurements are taken without
control over the load of the host processor, which is the bottleneck for small Niy;. Also,
each reported run-time is the result of averaging 3 or 4 runs with 200 steps each. Factors
influencing the performance are (i) the speed of the host and (ii) the cache hit ratio on the
1860 processors. It can be seen that the overhead for higher degrees of parallelism is negli-
gible (the execution time is independent of the number of processors if the problem size is
proportional to the number of processors as in the columns of Table 2). In other words, this
application belongs to the applications ideally suited even for distributed memory parallel

machines.

10. Conclusion

A new way to construct a cellular automaton for simulating excitable media has been
presented. The construction is based on singular perturbation analysis of the partial dif-
ferential equation models for excitable media, and it shows the close relationship between
the cellular automaton and the PDEs. It is not necessary to use the simulation results
for tuning parameters, since all aspects of the automaton rule are derived from the PDE
model. This approach is applicable to all PDE models that can be expressed in the form
of (2), with a small parameter 0 < e <« 1. As ¢ decreases, the PDEs (2) get increasingly
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difficult to solve by standard numerical methods, but the CA model getﬁincreasingly more
reliable. Indeed, we view this CA model as a non-standard numerical method for solving
excitable-media PDEs when € is very small (say, e < 0.01).

Since simulations of this automaton are computationally inexpensive compared to stan-
dard numerical methods for solving the PDE, three-dimensional calculations become more

feasible.

19



References

(1] M. Courtemanche, W, Skaggs & A. T. Winfree, “Stable three-dimensional action poten-
tial circulation in the FitzHugh-Nagumo model,” Phys. D41 (1990), 173-182.

[2] V.G. Fast & I. 3. Efimov, “Stability of vortex rotation in excitable cellular medium,”
Phys. D, (submitted).

(3] R. J. Field & R. M. Noyes, “Oscillations in chemical systems IV. Limit cycle behavior
in a model of a real chemical reaction,” J. Chem. Phys. 60 (1974), 1877-1884.

(4] R. FitzHugh, “Impulse and physiological states in models of nerve membrane,” Bijo-
Physics J.1(1961), 445-466.

[6] M. Gerhardt, H. Schuster & J. J. Tyson, “A cellular automaton model of excitable

media including curvature and dispersion II. Curvature, dispersion, rotating waves and

meandering waves,” Phys. D 46 (1990), 392-415.
[6]

; “A cellular automaton model of excitable media Including curvature and dis-

persion III. Fitting the Belousov-Zhabotinskii reaction,” Phys. D 46 (1990), 416-425,

[7]

, “A cellular automaton mode] of excitable media including curvature and dis-

persion,” Science 247 (1990}, 1563-1566.

(8] J. M. Greenberg, B. D. Hassard & S. P Hastings, “Pattern formation and periodic
structures in systems modeled by reaction-diffusion equations,” Bull. Am. Math. Soc.
84 (1978), 1296-1327.

9] J. M. Greenberg & S. P, Hastings, “Spatial patterns for discrete models of diffusion in
excitable media,” STAM J. Appl. Math. 34 (1987), 515-523.

(10] W. Jahnke, W. E. Skaggs & A. T. Winfree, “Chemical vortex dynamics in the Belousov-
Zhabotinskii reaction and in the two-variable Oregonator model,” J. of Physical Chem.
93 (1989), 740-749.

[11] W. Jahnke & A. T. Winfree, “A survey of spiral wave behaviors in the Oregonator

model,” Intern. .J. of Chaos and Bifurcations (submitted).

20



[12] M. Markus, “Dynamics of a cellular automaton with randomly distributed elements,” in
Mathematical Population Dynamics: Proc. Second Intern. Conf., Marcel Dekker, New
York, NY, {in press).

[13] M. Markus & B. Hess, “Isotropic cellular automaton for modeling excitable media,”
Nature 347 (Sept. 1990), 56-58.

[14] G. K. Moe, W. C. Rheinboldt & J. A. Abildskov, “A computer model of atrial fibrilla-
tion,” Am. Heart J. 67 (1964), 200-220.

[15] J. J. Tyson, “A quantitative account of oscillations, bistability, and traveling waves in
the Belousov-Zhabotinskii reaction,” in Oscillations and Traveling Waves in Chemical
Systems, R. J. Fields & M. Burger, eds., Wiley, New York, 1985, 93-144.

(16] J. J. Tyson & J. P. Keener, “Singular perturbation theory of traveling waves in excitable
media (A review),” Phys. D 32 (1988), 327-361.

[17} J. J. Tyson & V. S. Manoranjan, “The speed of propagation of oxidizing and reducing
wave fronts in the Belousov-Zhabotinski; reaction,” in Non-equilibrium dynamics in
chemical systems, C. Vidal & A. Pacault, eds., Springer-Verlag, Berlin, 1984, 89-93.

(18] J. R. Weimar, J. J. Tyson & L. T. Watson, “Diffusion and wave propagation in cellular
automaton models of excitable media,” Phys. D (previous paper).

(19] N. Wiener & A. Rosenblueth, “The mathematical formulation of the problem of con-
duction of impulses in a network of connected excitable elements, specifically in cardiac
muscle,” Arch. Inst. Cardiol. de Mexico 16 (1946}, 205-265.

(20] A. T. Winfree, “Spiral waves of chemical activity,” Science 175 (1972), 634-636.

[21) —__, When time breaks down, Princeton University Press, Princeton, NJ, 1987.

[22] A. M. Zhabotinskii & A. N. Zaikin, “Concentration wave propagation in two-dimensional
liquid-phase self-oscillating systemn,” Nature 225 (1970), 535-537.

21



