An Empirical Study of the Object-Oriented
Paradigm and Software Reuse

By John A. Lewis, Sallie M. Henry,
Dennis G. Kafura and Robert S. Schulman

TR 91-6

An Empirical Study of the
Object-Oriented Paradigm and Software Reuse

by

John A. Lewis Sallie M, Henry Dennis G. Kafura
(Department of Computer Science)
and
Robert S. Schulman

(Department of Statistics)

ABSTRACT

Little or no empirical validation exists for many of software engineering's basic
assumptions. While some of these assumptions are intuitive, the need for scientific
experimentation remains clear. Several assumptions are made about the factors affecting
software reuse, and in particular, the role of the object-oriented paradigm. This paper
describes the preliminary results of a controlled experiment designed to evaluate the impact
of the object-oriented paradigm on software reuse. The experiment concludes that (1) the
object-oriented paradigm substantially improves productivity, although a significant part of
this improvement is due to the effect of reuse, (2) reuse without regard to language
paradigm is a worthy pursuit, (3) language differences are far more important when
programmers reuse than when they do not, and (4) the object-oriented paradigm has a
particular affinity to the reuse process.

Virginia Tech
Blacksburg, Virginia 24061
Internet: lewis@vtopus.cs.vt.edu

1. Introduction

The use of precise, repeatable experiments to validate any claim is the hallmark of a
mature scientific or engineering discipline. Far too often, claims made by software
engineers remain unsubstantiated because they are inherently difficult to validate or because

their intuitive appeal seems to dismiss the need for scientific confirmation.

The effects of the object-oriented paradigm on software reuse is one area which
begs further empirical investigation. While the characteristics of the object-oriented
approach and the qualities which support successful reuse seem to compliment each other,

little empirical evidence has been given to support this relationship.

Studies related to software reuse arc important because of the key role reuse
assumes in improving software productivity. Brooks asserts that while no single
development will result in an order-of-magnitude increase in productivity, software reuse is
an area where the greatest results can be achieved because reuse addresses the "essence’, as
opposed to the "accidents,” of the development problem [BROF87]. However, reusable
software is not being exploited to its full potential. According to Freeman, the state-of-the-
practice of reuse in the United States is embarrassing [FREP87]. Onan evolutionary scale,
he puts reuse technology in an awakening stage, slowly approaching an early utilization
period. Developers and users of potentially reusable products are unnecessarily hampered
because they lack specific knowledge concerning the factors which influence software
reusability.

Studies of the object-oriented paradigm are important because, according to
Biggerstaff's framework of software reuse [BIGT87], the object-oriented paradigm has a
good balance between power and generality. In his framework, procedural based solutions
are also depicted having a good balance, but are considered less effective than object-
oriented solutions. The fundamental characteristics of the object-oriented paradigm seem tO
compliment the needs of the reusing developer. Encapsulation capabilities create self-
contained objects which are casily incorporated into a new design [KERB84]. The data-
based decomposition of objects, resulting in class-hicrarchies and inheritance, promotes
reuse far more than the top-down approach which promotes "one-of-a-kind" development
[MEYB87]. Greater abstraction is the key to to greater reusability, and object-based
languages provide abstraction far better than procedural languages [WEGP83].

Tracz makes several points which tend to support the use of the object-oriented
paradigm to promote successful reuse [TRAWS8]. For instance, special tools are not
employed in current successful software reuse situations and are not the answer to the
problem. Reuse success comes from formalizations of process and product, which an
object-oriented environment creates. Furthermore, unplanned software reuse is costly.
Software must be designed for reuse, with an emphasis on interface and modularization.
The object-oriented paradigm stresses these characteristics. However, Tracz admits that no
language, including an object-oriented one, will solve the the reuse problem inherently.

While the reuse potential of the object-oriented paradigm has been promoted, little
scientific experimentation has been conducted. The research described in this paper
provides a comparison of a standard procedural approach to that of the object-oriented
techniques. A controlled experiment was designed and executed in order to measure the
relative affects of a procedural language and an object-oriented language in terms of

software reuse.

Similar experiments have been successful in making comparisons of the object-
oriented and procedural approaches relative to other aspects of software development. One
study determined that the object-oriented paradigm is quantitatively more beneficial than a
procedural approach in terms of software maintenance [HENS90]. An interesting point
made in that research is that subjects viewed the object-oriented techniques as more difficult
to accomplish, even though all objective data supported the hypothesis that using it resulted
in fewer maintenance tasks and reduced maintenance effort. This result clearly illustrates
the danger of relying only on anecdotal evidence to assess software engineering

technology.
The goal of the experiment described in this paper is to answer the following
questions with respect to the impact of the object-oriented paradigm vs. the procedural

paradigm on the successful reuse of software components:

1) Does the object-oriented paradigm promote higher productivity than the
procedural paradigm?

2) Does reuse promote higher productivity than no reuse?

3) Does the object-oriented paradigm promote higher productivity than the
procedural paradigm when programmers do not reuse?

4) Does the object-oriented paradigm promote higher productivity than the
procedural paradigm when programmers reuse?

5) Does the object-oriented paradigm provide incentives to reuse above those of

the procedural paradigm?

The experimental design was constructed with these questions in mind. We define
productivity as the inverse of the effort expended to produce a specific software product.
Effort is measured in several quantifiable ways. We hypothesize that both reuse and the
object-oriented paradigm are important factors in the software development effort.

The next section describes the design of the experiment and discusses the
specifications of the tasks performed. Section 3 defines the data collected and the statistical
analysis performed. Section 4 draws conclusions from the analysis, specifically
addressing the questions presented above. Finally, Section 5 summarizes the experimental

results and discusses future work in this area.

2. Experimental Design

Some reuse experiments employ hypothetical, question-and-answer situations
where the subjects do not actually perform all the various tasks inherent in the reuse
process. The authors believe, however, that to accurately determine influential factors, the
experimental subjects must perform all of the following tasks: evaluating potentially
reusable products, adapting them to the new situation, and integrating them into a
functionally complete product. It is important to create, as accurately as possible, a
representative situation while maintaining a valid experimental design [CURBS80].

The experiment described in this paper is based on a target system developed by
each of a set of senior-level software engineering students. The use of students as
subjects, while sometimes considered unrealistic, is justified in this case due 10 two

overriding considerations. First, empirical evidence by Boehm-Davis indicates that
students are equal to professionals in many quantifiable measures, including their approach
to developing software [BOEDS84]. Although new techniques are learned and further
refinement does occur, a programmer's basic approach and development habits are formed
quite early in their professional development. Second, given the amount of control
necessary to execute this experiment, students are the only viable alternative. The efficacy
of students as subjects is supported for within-subject experiments by Brooks [BRORS0).

The subjects in this experiment developed a specified target system. The system
specification is couched in the guise of computerizing a fictional company and is separated
into two tasks. The specific functional operations making up the system were abstracted
from the commercial software development experience of one of the anthors. They involve
a variety of programming techniques including data management, numerical processing,

and graphics.

Previous research investigating the factors affecting software reuse have
concentrated on two issues: 1) the effect of software engineering characteristics of code
components, such as readability, structured code, etc., and 2) the techniques used to find
appropriate code components from a set of possible candidates. Neither of these issues are
the focus of this study. Code quality was allowed to vary only within the controlled
confines of "adequate" testing and software engineering standards. All completed projects
were verified to meet a set of requirements concerning documentation, code quality, and
functional correctness. Furthermore, subjects were given no special tools for searching or
identifying candidate components. It is assumed that any assistance in this area would only
improve the reuse results. This study focuses on language issues, specifically the
comparison of the object-oriented paradigm to the procedural approach with respect to
reuse of previously developed components.

In the experiment, reusable code components were made available to the subjects
implementing the target system. To affect further control, the code component sets were
specifically generated for this study. Therefore, the research consists of two phases. The
first phase was preparatory, in which potentially reusable components were designed and
implemented. The experiment was executed in the second phase, in which the target
system was developed by a set of subjects, who are unrelated to the programmers who

designed and implemented the reusable components. These two phases are described in the

following sections.
2.1 Phase One: Component Development

Two sets of potentially reusable components were created during phase one. One
set was implemented in a procedural based language, Pascal, and the other in an object-
oriented language, C++. The choice of languages was not arbitrary. Specifically, we
deliberately chose not to use C as the procedural programming language. A goal of the
research is to make as clear a distinction as possible between the object-oriented approach
and the procedural approach. Since C is basically a subset of C++, we feared the
similarities of the two languages might cloud that distinction. C++ was chosen over
Smalltalk because we believed the powerful programming environment of Smalltalk, not
available to a Pascal programmer, might jeopardize the comparison. Finally, both C++ and
Pascal emphasize strong typing, thus controfling another possible source of variation.

Both component sets were implemented on Apple Macintosh II's running A/UX.
They were designed to be functionally equivalent, though design and coding techniques
naturally vary. Equivalence was guaranteed by ensuring that all code meet the same
fundamental functional and error-handling requirements. Furthermore, all developed code

must pass the same level of testing thoroughness.

Knowing the requirements of the target system to be implemented in the second
phase, each component was designed to have a specific level of applicability. The levels of
reuse can be described as:

1) completely reusable,

2) reusable with "small" changes (< 25%),

3) reusable with "large" changes (>25%), and
4) not applicable for reuse.

With respect to the target system, the component sets were designed to contain
elements from each reuse level. The 25% marks of levels 2 and 3 are only intuitive
guidelines and refer to the amount of code that must be added, deleted and modified to
create a component that meets the target system’s requirements. Providing components

which span a wide range of applicability ensures a realistic, verbose domain from which

subjects evaluate and choose components.
2.2 Phase Two: Project Implementation

Using the two sets of components, independent subjects were assigned the task of
implementing the target project. The subjects were divided into four groups, pictured as
cells in Figure 1. Half the subjects implemented the project in Pascal, the other half in
C++. Furthermore, a portion of the students from each language were not allowed to reuse
at all, while the others were encouraged to reuse. The "no reuse" groups serve as control
groups. The subjects were divided into the groups randomly, but were statistically blocked
across their computer science grade point averages. This blocking was an effort to reduce
variability within each group.

No Reuse Reuse

Procedural
(Pascal)

Object-Oriented
(C++)

Figure 1: Subject group breakdown.

The functional requirements of the system are divided into two equal tasks. The
two tasks separate the functional aspects of the project into "employee management" and
"business management" sections. Employee management functions deal with processes
such as an employee database, payroll, security control, and cost center management.
Business management functions are concerned with the details of shop floor control,
quality control testing, warehouse management, and customer interactions.

Although the two tasks focus on different aspects of running a business, they were
designed to be comparable in computational complexity. Both are divided into seven
subtasks, each of which has a counterpart in the other task that ass designed to require
approximately the same amount of effort to develop. If preliminary analysis shows that
results are not affected by the difference between the two tasks, this factor can be ignored

in subsequent analysis, thereby increasing statistical power in addressing the questions of
primary interest.

To further control this aspect of the experiment, half of the subjects designed and
implemented the employee management task first, while the other half of the subjects
designed and implemented the business management task first. Then each half switched,
resulting in both system tasks being developed by each subject. This organization offsets
any learning benefit of doing a particular task first. An introductory material section was
provided with information both groups need to perform their respective tasks.

3. Data Analysis

Given a feasible and well-controlled experimental design, the rigorous analysis of
data collected during the experiment determines the conclusions that can be made about the
hypotheses. In this experiment, the goal is to determine which groups from Figure 1, on
average, had a significantly different productivity rate than others.

The data collected during the experiment measures the productivity of a subject
during the implementation of the target system. Productivity and effort are considered to
have an inverse relationship. Therefore, the less effort expended by a subject to satisfy the
requirements of one task, the higher the productivity of that subject. The measurements of
effort, and therefore of productivity, are: '

* Runs - The number of runs made during system development and testing,

* RTE - The number of run time errors discovered during system
development and testing,

* Time - The time (in minutes) to fix all run time errors,

* Edits - The number of edits performed during system development and
testing, and

* Syn. - The number of syntax errors made during system development and
testing. '

Since each subject implemented the same tasks, a comparison of data across
subjects yields a relative measure of the effort used to develop a system task. A subject

with a high value for a given indicator is considered less productive than a subject with a
low value,

Multiple productivity variables are used to obtain a complete picture of the
development process. The Runs, RTE and Time variables, given their significance to the
development process, are considered the main variables of interest. The Edits and Syntax
Errors variables are gathered for completeness, but are not given overriding ¢mphasis.

Data was collected by the subjects using tally sheets. To assure the data's validity,
subjects were informed that their names would not be associated with these data, and that
the values themselves would have no bearing on their course evaluation. They were also
told that a negative impact on their course evaluation would occur if they did not record
their development information honestly and completely. The tally sheets were coded such
that no subject name was ever connected to particular data.

The group means for each productivity variable are depicted graphically in Figure 2.
These charts give a rough indication of how the groups compare although statistical
analyses are employed to verify perceived differences. In each analysis, a difference in
means was considered significant if the p-value for the test was less than 5% (p < 0.05),
which is an accepted norm. Since our research questions all predict the direction of
difference, all tests were performed in a one-sided manner.

Initial analysis of the task factor determined that the difference between the two
tasks played no role in influencin g any of the productivity variables (all p-values for task
effects were > 0.2073). In other words, the two tasks were determined to be equally
difficult. The lack of difference is attributed to the careful design of task specifications and
the blocking of subjects across grade point average. Therefore, all further analyses ignore
the task factor, which gives them more statistical power.

Edits Time (minutes) RTEs Runs

Syntax Errors

(a) Number of Runs

Proc - No Reuse 0.0. - No Reuss Proc - Reuse 0.0. - Reuse

(b) Number of Run Time Errors

Proc - No Reuse 0.0. - No Reuse Proc - Reuse 0.0. - Reuse

(¢) Time to Fix Run Time Errors

Proc - No Reuse 0.0. - No Reuse Proc - Reuse Q.0. - Reuse

500 - (d) Number of Edits

Proc - No Reuse 0.0. - No Reuse Proc - Reuse 0.0. - Reuse

400 - (e) Number of Syntax Errors

Proc - No Reuse 0.0. - No Reuse Proc - Reuse 0.C. - Reuse

Figure 2. Group means for each production variable.

9

4. Experimental Results

This section draws conclusions from the analysis performed on the productivity
data. In general, the hypotheses suggested at the beginning of this paper are supported,
with some notable exceptions,

The experimental questions posed in Section 1 will be used as a framework for
discussion of the statistical analysis. Each question will be addressed separately, giving the
results of the appropriate analysis,

1) Does the object-oriented paradigm promote higher productivity than
the procedural paradigm?

The third column in Table t list the means of the productivity variables calculated
from all subjects using the procedural language, including subjects who reused as well as
those who did not. The fourth column shows similar means for subjects in the object-
oriented categories. Our hypothesis is that the values for the object-oriented paradigm will
be lower than those of the procedural paradigm, indicating a higher productivity for the
object-oriented subjects.

Means
Significant? p-value Procedural 0-0
Runs Yes 0.0066 59.27 47.50
RTE Yes 0.0078 65.00 50.20
Time Yes 0.0104 354.41 261.70
Edits No 0.3469 271.55 263.635
Syn. No 0.8675 183.67 202.40

Table 1. Language Main Effect

For each productivity variable, a p-value was computed for the difference between
the means. The p-value is the probability that the difference could have been obtained by
chance, rather than reflecting a true difference in productivity. Following conventional
criteria, a difference is deemed statistically significant if its p-value is less than 0.05. Tn
such cases, it is extremely unlikely that the difference in means is due to chance, and we

10

conclude that productivity was indeed higher for subjects using the object-oriented
paradigm.

The three main productivity variables (Runs, RTE and Time) show a significant
difference between the means, favoring the object-oriented paradigm. In addition, the
object-oriented mean for the Edit variable was also lower than the procedural mean,
although not to a significant degree. The means on the Syntax Errors variable did not differ
in the predicted direction, Considering the nature of the Edits and Syntax Errors variables,
the lack of signrificance is attributed to the subjects lack of practice using the object-oriented
language. The results of the analysis on the main variables indicate that the object-oriented
paradigm does promote higher productivity than the procedural paradigm.

2) Does reuse promote higher productivity than no reuse?

From the results in Table 2, the answer to this question is clearly yes. The means
in the third column of Table 2 are calculated for all subjects who did not reuse, regardless
of the language used. Likewise, the fourth column shows means for all subjects who did
reuse. Our hypothesis is that the means will be lower for the reuse groups, indicating a
higher productivity for the subjects who were encouraged to reuse. This hypothesis is
strongly supported by all variables,

Means

Significant? p-value No Reuse Reuse

Runs Yes 0.0001 78.71 41.14
RTE Yes 0.0001 83.79 45.04
Time Yes 0.0001 420.07 255.36
Edits Yes 0.0001 405.71 198.82
Syn. Yes 0.0001 302.14 150.92

Table 2. Reuse Main Effect

This result is further supported by the charts in Tables 3 and 4, which view the data
across the reuse factor, but consider each language separately. Table 3 shows the means
for the procedural groups with respect to reuse, and Table 4 shows the means for the
object-oriented groups with respect to reuse. In both analyses, all variables showed a
significant difference in the hypothesized direction.

11

Means

Procedural Procedural
Significant? p-value No Reuse Reuse

Runs Yes 0.0001 75.38 50.07
RTE Yes 0.0008 81.25 55.71
Time Yes 0.0047 446.38 301.86
Edits Yes 0.0001 416.00 189.00
Syn. Yes 0.0001 311.00 137.14

Table 3. Procedural (No Reuse vs. Reuse)

Means
0-0 0-0
Significant? p-value No Reuse Reuse
Runs Yes 0.0001 83.17 32.21
RTE Yes 0.0001 87.17 34.36
Time Yes 0.0017 385.00 208.86
Edits Yes 0.0001 392.00 208.64
Syn, Yes (0.0001 290.33 164.71

3) Does the object-oriented-paradigm promote higher productivity than
the procedural paradigm when programmers do not reuse?

The means listed in Table 5 are calculated for subjects who did not reuse. The third
column represents subjects using the procedural language, and the forth column represents
subjects using the object-oriented language. Our hypothesis is that the object-oriented
values will be lower than the procedural values. Surprisingly, none of the variables
indicate a significant difference,

Interestingly, the group means do not consistently favor one language or the other.
The means for the object-oriented groups are lower for Time, Edits, and Syntax Errors, but
the means for the procedural groups are lower for Runs and RTEs. According to this
analysis, we must conclude that when reuse is not a factor, the object-oriented paradigm

12

does not promote higher productivity. In other words, when starting from scratch, either
language works equally well.

Means

Procedural 0-0
Significant? p-value NoReuse No Reuse

Runs No 0.8909 75.38 83.17
RTE No 0.7506 81.25 87.17
Time No 0.1607 446.38 385.00
Edits No 0.2360 416.00 392.00
Syn. No 0.1733 311.00 290.33

Table 5. No Reuse { Procedural vs. Object-Oriented)

4) Does the object-oriented paradigm promote higher productivity than
the procedural paradigm when programmers reuse?

Given the answers to the first and third questions, the answer to this question
should logically be yes. The results in Table 6 confirm this for the three main productivity
variables. The means listed are for subjects who did reuse, with the third column

subjects using the object-oriented paradigm. Once again, our hypothesis favors the object-
oriented paradigm.

Means
Procedural 0-0
Signiﬁcant? p-value Reuse Reuse
Runs Yes 0.0001 50.07 32.21
RTE Yes 0.0005 5571 34.36
Time Yes 0.0153 301.86 208.86
Edits No 0.8380 189.00 208.64
Syn. No 0.9767 137.14 164.71

Table 6. Reuse (Procedural vs, Object-Oriented)
Variables Runs, RTE and Time all proved significant with means favoring the

object-oriented group, but the Edits and Syntax Errors variables did not differ in the
hypothesized direction. Given the importance of the main productivity variables, we can

13

conclude that the object-oriented paradigm does promote higher productivity than the
procedural paradigm when reuse in employed. Note that most of the support given to the
first question comes from differences between the groups which were encouraged to reuse.

5) Does the object-oriented paradigm provide incentives to reuse above
those of the procedural paradigm?

As shown by the results in Tables 3 and 4, reuse improved productivity over non-
reuse for both the procedural and object-oriented paradigms. The fifth question asks
whether the extent of improvement is comparable for the two language paradigms. Our
hypothesis is that the improvement due to reuse will be greater for the subjects using the
object-oriented paradigm than those using the procedural paradigm, indicating that the
object-oriented paradigm is particularly suited to reuse.

The third column in Table 7 shows for each variable the difference between the
mean of the procedural non-reuse group and the mean of the procedural reuse group. This
is a measure of the amount of improvement in productivity due to reuse -- the large the
difference, the greater the increase in productivity. The forth column show comparable
mean differences for the object-oriented groups. Therefore, our hypothesis predicts that
values in the fourth column should be greater than those in the third column.

Mean Differences
Procedural 0-0
Significant? p-value NR-R NR-R
Runs Yes 0.0009 25.31 50.96
RTE Yes 0.0062 25.54 52.81
Time No 0.317¢6 144.52 176.14
Edits No 0.8753 227.00 183.36
Syn. No 09716 173.86 125.62

Table 7. Interaction (Extent of Improvement)
On the Runs and RTE variables, the increase in productivity due to reuse was
greater for the object-oriented paradigm than for the procedural paradigm. The same

pattern occurred on the Time variable, although the difference in means was not large
enough to be statistically significant, Once again, contrary to the main productivity

14

variables, the Edits and Syntax Errors variables seem to oppose the hypothesis. Given that
two of the three main measures of productivity (Runs and RTE) show significant
differences in the hypothesized direction, and that the third main variable (Time) favored
the same direction, we conclude that there is a significant difference between the extent of
improvement due to reuse actoss the two language paradi gms. In other words, the results
show that the object-oriented paradigm demonstrates a particular affinity to the reuse
process.

5. Summary and Future Work
The experiment in this paper has shown that:

(1) The object-oriented paradigm substantially improves productivity, although a
significant part of this improvement is due to the effect of reuse (questions 1,
3 and 4),

(2) Software reuse is a worthy endeavor no matter which language paradigm is
used (question 2),

(3) Language differences are far more important when programmers reuse than
when they do not (questions 3 and 4), and

(4) The object-oriented paradigm has a particular affinity to the reuse process
(question 5).

Although we did not demonstrate that the object-oriented paradigm promotes
productivity when reuse is not a factor, the development efforts using either language
paradigm were not significantly different. Furthermore, given the reuse potential
demonstrated by the object-oriented paradigm, greater benefits can be achieved by using the
object-oriented paradi gm than by using a procedural approach.,

An important facet of the experimental method is that the results are repeatable.
Experiments similar to the one described in this Ppaper should be conducted to verify the
results and clarify any inconclusive parts of this experimient, In particular, the secondary
variables of Edits and Syntax Errors did not always support the analysis of the main
variables, even when intuition says they should. This tendency deserves further
investigation.

15

Other experiments should be conducted which independently investigate the two
main elements of this research: software reuse and the object-oriented paradigm. The
factors which affect software reuse are many and varied. Similar experiments can be
designed to determine the impact of human factors, code characteristics, and other language
differences.

The object-oriented paradigm contains a wealth of possible benefits that have yet to
be shown empirically. Claims that associate the object-oriented approach with improved
design, less and easier maintenance, and higher reliability when compared to its procedural
counterpart demand further investigation. Experience reports alone are not enough to

substantiate the strong assumptions that are associated with the object-oriented paradigm.
| Experimental research into these areas is hecessary to provide a solid base to support the
theories that shape state-of-the-art software production.

16

References

[BIGTS7]
[BROF87]

[BOEDS4]

[BRORS(]

[CURBS(]
[FREP§7]

[HENS9(]

[KERBS84]

[MEYBS87]

Biggerstaft, T., Richter, C, "Reusabih'ty Framework, Assessment, and
Directions,” IEER Software, March 1987, pp. 41-49.

Brooks, FP.. "No Silver Bullet: Essence and Accidents of Software

Engineeﬁng," Computer, April 1987, pp. 10-19,

Development Process, " Technical Report GEC/DIS/TR-84-B 1V-1, Software
Management Research Data & Information Systems, Genera] Electric

Number 4, pp. 207-213.

Curtis, B., "Measurement and Experimentation in Software Engineering,"
Proceedings of the IEEE, 1980, Volume 68, Number 9, pp. 11441 157,

Frecman, P, "A Perspective on Reusabﬂity,” Software Reusabﬂity,
Computer Society Press of the IEEE, 1987, pp. 2-8.

Henry, S.M., Humphrey, M., Lewis, J.A., "Evaluation of the
Maintainability of Object-Oriented Software," Proceedings of the Conference

Meyer, B., "Reusability: The Case for Object-Oriented Design," IEEE
Software, March 1987, pp. 50-64.

17

