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Abstract.
Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of

equations that are giobally convergent from an arbitrary starting point with probability one. The
essence of these homotopy algorithms is the construction of a homotopy map p, and the subse-
quent tracking of a smooth curve ¥ in the zero set p:1(0) of p,. Tracking the zero curve 7 requires
repeated evaluation of the map p,, its n X (n + 1) Jacobian matrix Dp,, and numerical linear
algebra for calculating the kernel of Dp,. This paper analyzes parailel homotopy algorithms on a
hypercube, briefly reviewing the numerical linear algebra, several communication topologies and
problem decomposition strategies, and concentrating on function component complexity, problem
size, and the effect of different component complexity distributions. These parameters interact in
complicated ways, but some general principles can be inferred based on empirical results. Implica-
tions for developing reliable and efficient parallel mathematical software packages for this problem

-area are also discussed.

1. Introduction.

Algorithms for solving nonlinear systems of equations may be broadly classified as locally or
globally convergent. Locally convergent methods include Newton’s method and various modifica-
tions of Newton’s method. Globally convergent methods include continuation, simplicial methods,
and probability-one homotopy methods. The overall purpose of this research is to design efficient
algorithms for solving systems of nonlinear equations using probability-one homotopy methods on a
hypercube, and to eventually build a production quality math software package which will provide
reasonable efficiency and reliability across a range problems and hypercube machines. Previous
papers have addressed the computational linear algebra aspects of parallel homotopy algorithms
in considerable detail [10],[11],[12]. Here we study another, often more expensive step in the ho-
motopy approach, namely, the function evaluations needed to comstruct the Jacobian matrix of
the homotopy map. Predicting and analyzing the performance of parallel algorithms for the linear
algebra computations is relatively straightforward: performance depends “only” on the size of the
linear systems, the data distribution, and on communication and synchronization requirements. In
evaluating the Jacobian matrix, however, one has to deal with additional complicating factors. For
example, it is possible that the computational complexity of evaluating the various components of
the Jacobian matrix differs significantly from row to row, or even from component to component.
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There may also be varying degrees of dependence among the components (e.g., the components of
a column may depend on several common subexpressions). Furthermore, these characteristics are
usually not accurately known a priori. In this paper we study efficient parallel Jacobian matrix
evaluation by considering several hypothetical but realistic distributions for component complexity.
Both static and dynamic assignment of work to processors are studied, for various matrix sizes and
cost distributions. We also consider briefly a realistic problem from fluid mechanics.

Our focus here is on general nonlinear systems of equations with small and dense Jacobian
matrices. Polynomial systems are not considered here since they have a very special structure
which leads to different strategies for parallelism [2], [3], [4], [5], [16], [19], [20] and [22]. Large
sparse problems also call for different approaches [15], [17}.

Section 2 summarizes briefly the mathematical theory behind the homotopy approach, and
reviews parallel algorithms for the computational linear algebra aspects of these algorithms, namely
orthogonal factorization and triangular system solving. Section 3 discusses various possibilities for
paralle! Jacobian matrix evaluation, presenting computational results on a 32 node Intel iPSC/1
hypercube and a discussion thereof. Some concluding remarks are made in Section 4.

2. Homotopy theory, algorithms, and linear algebra.

The fundamental problem under consideration is to solve the nonlinear system of equations
(1) F(z) =10,

where F : E" — E™ is a C? (twice continuously differentiable) function defined on n-dimensional
real Euclidean space E™ The mathematics behind homotopy algerithms [26], {27] for solving (1)
is summarized in
Theorem. Let F: E* — E™ be ¢ C? map and p: E™ x [0,1) X E® — E™ a C* map such that

1) the Jacobian matriz Dp has full rank on p=*(0);
and for fired a € E™,

2) p(a,0,2) = 0 has a unique solution W ¢ E™,

3) pla, 1, 2) = F(z),

4) the set of zeros of pa(A, z) = p(a, A, x) is bounded.
Then for almost all a € E™ there is a zero curve v of pa(A,z) = p(a, Az}, along which the
Jacobian matriz Dp,(X, 2) has full rank, emanating from (0, W) and reaching a zero & of I at
X = 1. Furthermore, v has finite arc length if DF(Z) is nonsingular.

A homotopy algorithm consists of following the zero curve v of p, emanating from (0, W) until
a zero & of F(z) is reached (at A = 1). It is nontrivial to develop a viable numerical algorithm
based on this idea, though, conceptually, the algorithm for solving the nonlinear system of equations
F(z) = 0 is clear and simple. If G(z) = 0 is a simple problem with a unique, easily obtainable
solution W, then a typical form for the homotopy map is

(2) pa(Ay2) = A F(z) + (1= NG(a).

Although (2) has the same form as a standard continuation or embedding mapping, there are
crucial differences. In standard continuation, the embedding parameter A increases monotonically
from 0 to 1 as the trivial problem G{z) = 0 is continuously deformed to the problem F(z) = 0.
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In homotopy methods A need not increase monotonically along v and thus turning points present
no special difficulty. The way the zero curve v of p, is followed and the full rank of Dp, permit
) to both increase and decrease along 7 and guarantee that there are never any “singular points”
along v which afflict standard continuation methods. Also, the theorem guarantees that v cannot
just “stop” at an interior point of [0,1) X E™

The zero curve v of the homotopy map pa(A, z) (of which the simple convex combination of
F(z) and G(z) in (2) is a special case] can be tracked by many different techniques; refer to the
excellent survey {1} and recent work [26], [27]. There are three primary algorithmic approaches to
tracking y: 1) an ODE-based algorithm, 2) a predictor-corrector algorithm whose corrector follows
the flow normal to the Davidenko flow {a “normal flow” algorithm); 3) a version of Rheinboldt’s
linear predictor, quasi-Newton corrector algorithm [6}, [22], (an “augmented Jacobian matrix”
method). Alternatives 1), 2) and 3) are described in detail in [26], [27] and [6] respectively.

Fach of these tracking algorithms requires a unit tangent vector at different points along
the zero curve. By the supporting mathematical theory, finding a unit tangent vector amounts
to computing the one dimensional kernel of the n X (n + 1) Jacobian matrix Dp,, which has
(theoretical) tank n. Parallel algorithms for this kernel computation have received considerable
attention [10], [11], [12]. The best approach depends strongly on the characteristics of the Jacobian
matrix. For the applications of interest here (general nonlinear systems with relatively small, dense
Jacobian matrices), and in order to achieve the required accuracy, an orthogonal factorization of
Dp, is required.

In [12], parallel algorithms for both @R and L@ factorizations of the Jacobian matrix are
considered, as well as two strategies for mapping the data to the processors of a hypercube. Sig-
nificant complications in the comparison of @R and L@ include the need to do column pivoting
and a triangular system solve for QR, and the need to explicitly form the matrix @ in the L)
factorization. The results and analysis in [12] indicate that the @R factorization is preferred over
the L6). The algorithms in [12] are based on work of Chu and George [13]. Recent work combining
pivoting and orthogonal factorizations [7], (8], [14] may be applicable in our context as well, and
we are considering these possibilities.

Two strategies for mapping the data to the processors are also considered in [12]. One approach
is to organize the processors in a linear ring, and assign rows of the Jacobian matrix to the processors
in a wrap-mapping fashion. Thus, processor 0 gets row 1, processor 1 gets row 2, etc.. The second
approach is to organize the processors in a 2% % 2% rectangular grid, where each row and column
of processors forms a subcube, and the dimension of the hypercube is d = dy + ds. Rows of the
Jacobian matrix are assigned to subcubes corresponding to grid rows in a wrap-mapping fashion.
Elements of each matrix row, in turn, are assigned to the processors in the corresponding row
subcube in a wrap-mapping fashion. Thus a single processor does not hold a complete row or
column of the matrix. Instead, each row subcube holds a complete matrix row, and each column
subcube holds a complete matrix column. Of these two data mapping strategies, the rectangular
mapping is seen in [12] to be the most efficient for orthogonal factorization and kernel computation,

for the types of problems under consideration.



3. Jacobian matrix evaluation.

Despite the significance of the linear algebra summarized above (orthogonal factorization and
triangular solution), the function evaluations needed to simply construct the Jacobian matrices are
often the most time consuming part of a homotopy algorithm. Fortunately, they are often the most
easily parallelized part of the computation as well. Byrd et al. [9] and Schnabel [24] discuss parallel
function evaluation in the context of unconstrained optimization. Their approach is to compute
the function and gradient completely, but only part of the Hessian matrix. Each component of the
gradient is computed by a single processor, and each of the remaining processors computes a single
component of the Hessian matrix, assuming that the number of processors is greater than (n + 1)
but less than (n? 4 3n + 2)/2. They do not let any processor compute more than one component.
Byrd [9] describes an algorithm that uses a partly computed Hessian matrix, and analyzes the
convergence properties of that algorithm.

In the present work we assume that the complete n X (n + 1) Jacobian matrix needs to be
formed, and that each component of the Jacobian can be computed independently (although some
redundant computation may be required). Since the number of processors is generally less than
(n? 4+ n), each processor must compute more than one component. In this section we consider
several strategies for assigning components to processors. Section 3.1 discusses two static and one
dynamic assignment strategy, and comments on their expected performance. Section 3.2 presents
results from several computational experiments on a 32 node Intel iPSC/1 hypercabe. We first
consider the basic question of when parallel Jacobian evaluation is even appropriate. Next, we
examine the effect of different component complexity distributions, and of Jacobian matrix size,
on the different assignment strategies, determining experimentally in what cases one assignment
performs better than the others. Finally, we report performance for the entire kernel computation

on a test problem from fluid mechanics.

3.1. Component assignment strategies.

Strategies for assigning components to processors may be classified as static or dynamic,
depending on whether the assignment is made a priori or at runtime. We consider one dynamic
and two static assignments in the experiments described below. In the first static assignment the
distribution is determined by the requirements of the subsequent linear algebra. That is, each
processor computes exactly those components assigned to it during the orthogonal decomposition
phase. As mentioned in Section 2, the most efficient mapping for the orthogonal decomposition is
the “rectangular” mapping, where processors are organized in a rectangular grid, with each row
and column of processors forming a subcube. This means that a single column of the Jacobian
matrix is evaluated by more than one processor. The second static assignment strategy is based
on what may be most efficient for the Jacobian evaluation itself. Thus, a linear wrap-mapping
by columns is used, so that an entire column is located on a single processor. In many cases,
considerable redundant computation can be avoided if a single processor has respounsibility for an
entire column. For example, it is typical in many applications to have many common subexpressions
in the components of a given column. Obviously, this cannot be fully exploited if a column
is distributed over a subcube. See [19] for a good example of this situation in the context of

polynomial systems of equations.



Beyond the issue of redundant computation, a few other points of comparison between the two
static strategies should be made before turning to the experimental resuits. Clearly, a significant
potential disadvantage of the linear mapping is the data rearrangement required if the subsequent
(R factorization is done using a rectangular mapping. An efficient algorithm for moving the
data from the linear column mapping to the rectangular mapping is nontrivial at best; and the
straightforward approach of returning all the data to the host for redistribution would clearly be
a very serious bottleneck for all but the smallest problems. In [12] parallel QR factorization with
a linear mapping was considered, but found to be considerably less efficient than the rectangular
mapping. Furthermore, the algorithm in {12] requires a linear mapping by rows and not columns,
so significant data movement would still be required (the linear column mapping to linear row
mapping is essentially a matrix transposition [18]). With rectangular mapping for Jacobian matrix
evaluation however, no data movement is required before the ) R factorization begins. In fact, a
“pipelined” strategy could be considered, in which the first phase of the @ R factorization begins as
soon as the required components are computed, but before the entire Jacobian matrix is computed.
The potential gain here does not appear to be substantial however, at least with our current
formulation of @R. One final important point of comparison between the two static algorithms
deals with load balancing. A very rough measure of load balaneing is the maximum number of
components assigned to a single processor under each scheme. If dy and d» are the dimensions of
the subcubes in the rectangular grid, and the Jacobian matrix is » X (» + 1), then the maximum
number of components a processor has to compute under the linear and rectangular mapping is

-+ 1 d 7 n+1

9d1tdz n an (ég;-i 242 :
Which strategy is favored by these expressions is not immediately obvious, but it clearly depends on
problem size and cube (and subcube) dimension. We address load balancing issues more carefully

respectively

in Section 3.2 helow.

In either of the static assignments, if variation in the evaluation times of the components is
high there may be load imbalance. In this situation it may be better to use a dynamic assignment
strategy in which the host functions as a master, assigning components to slave processors as they
become available. This approach requires a large communication overhead during Jacobian matrix
evaluation, in addition to the added cost of redistributing the data for the QR factorization. Also,
when there is a large number of components relative to the number of processors, the variation
in total evaluation time among the processors is not as likely to be high. Thus the master/slave
paradigm is likely to be advantageous only when the Jacobian matrix is relatively small, some
components are very expensive to evaluate, and there is a large variation in evaluation times. We
make these comments more precise through the experimental results in the next section.

3.2. Computational results.

Serial vs. parallel evaluation.

Since a longterm goal of this research is to produce a robust, reliable, efficient version of
the math software package HOMPACK [27], it is important to consider a question that is often
overlooked, namely, “Should a {sub)problem be run in parallel at all?”. This is a surprisingly
difficult question to answer in the context of a large package applied to a wide range of problems
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Table 1. Serial and parallel execution time (in seconds) for different costs of component evaluation
(in KFLOPS), for a small Jacobian matrix (n = 11).

Cost |Serial jParallel

0.50 9.4 9.8
0.65 9.8 9.9
1.00 | 15.5 10.2
2.00 | 27.5 10.3
5.00 | 55.7 11.8
10.00 | 103.5 13.5
40.00 | 372.0 24.1

on a wide range of machines. Obviously, the Jacobian matrix may be large or small, with each
compotent cheap or expensive to compute; and this is the kind of information the software needs
in order to determine how best to use parallelism. If the Jacobian matrix is large enough so that
parallel factorization is advantageous, then it is always better to evaluate the components of the
Jacobian matrix in parallel. This is true because parallel evaluation has little overhead in addition
to that already incurred by the decomposition algorithm. When the Jacobian matrix is very small
but component evaluation expensive enough to justify parallel evaluation, it may be better to do
the factorization and triangular system solving on a small subcube, or perhaps even serially. The
crossover point at which it is better to use a parallel evaluation algorithm depends not only on the
complexity of component evaluation but also on the interdependency among the components. A
simple example of Jacobian matrix evaluation for small » is given in Table 2. Here it is assumed
that component evaluation is totally independent and the cost of evaluation for each component
is the same. The serial evaluation is done on the host; the parallel evaluation is done using the
static rectangular mapping, with a 4 X 8 processor grid. We see that for this case, parallel function
evaluation is better than serial evaluation when each component requires more than about 0.7
KFLOPS, and very much better for more expensive components. The crossover point would be
higher if the components had significant interdependencies. While the exact numbers are obviously
machine dependent, the point is that such a crossover point always exists, and a math software
package that claims to be efficient across a range of problems cannot ignore this.

Effect of component cost distribution on assignment strategies.

Experiments were done to study the effects of matrix size, cost of component evaluation, and
the distribution of cost on static and dynamic assignment strategies. The cost of evaluating each
component is taken as a random variable with various distributions. Tables 2-8 show the mean
and variance of timings taken from three runs with different seeds. The cost of each component
was generated randomly from the following probability distributions:

1) U{a,b) - uniform distribution with lower bound ¢ KFLOPS and upper bound b KFLOPS;
2) N(a,b) - normal distribution truncated on the left at 0 with mean ¢ KFLOPS and standard

deviation b;

3) E(a) - exponential distribution with mean a KFLOPS.

In the tables, R and L refer to a 4x8 rectangular mappingand a linear column mapping respectively;
DYNAMIC refers to the master/slave strategy. STATIC(L20) and STATIC(L50) denote algorithms
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Table 2. Execution time in seconds (mean and variance) for various assignment strategies and
component cost distributions (Uniform, n = 11).

Methods | U(0,2) U(0,4) | U0,10) | U(0,20) | U(3,27) | U(38,62) |U(88,112)

SERIAL [12.8, .01 | 21.5,.03 |46.6, .06 | 91.0,0.3 | 138,1.6 | 443, 3.0 | 874, 9.0
STATIC(R) |12.4, 0.4 |12.8, .03 |14.1,.07 | 16.8, .4 [18.1, .60 | 31.0, .70 | 49.2, 1.5
STATIC(L) |13.7, .03 | 15.0,.15 |17.4,.22 |22.1, 1.33 |25.5, 2.5 | 48.7, 3.0 | 80.5, 5.5

STATIC(L20) |13.5, .03 | 14.8,.03 |16.1,.04 | 20.5,.06 |23.8, .66 | 42.3, 1.1 | 68.0, 1.4
STATIC(L50) |13.2, .03 | 13.7,.03 [148, .05 | 17.4,.22 [20.3, .49 | 33.2, 2.3 | 48.7, 3.0
DYNAMIC |14.5, .03 | 14.6, .04 |14.8, .04 | 15.3, .04 |16.4, .06 |25.9, 1.56 | 39.1, 2.0

Table 3. Execution time in seconds (mean and variance) for various assignment strategies and
component cost distributions (Normal, n = 11).

Methods | N(1,1) | N(2,2) | N(55 | N@o,7) N(15,7) | N(30,7) | N(100,7)

SERIAL |13.1, .04 |22.4, .33 |52.1, 6.0 |96.3, 8.0 |141.5, 13.0 | 451,25 | 879, 44
STATIC(R) |12.1, .03 |12.8,.13 |14.5,0.8 |16.8, 1.7 | 18.5, 1.8 [31.2, 47 | 511, 6.0
DYNAMIC [13.2,.06 |13.2,.14 |14.8, .22 (152, 66 | 17.8, 1.1 |28.1, 4.7 | 44.5, 6.3

Table 4. Execution time in seconds (mean and variance) for various assignment strategies and
component cost distributions (Exponential, n = 11).

Methods £(1) E(2) E(5) E(10) | E(Q5) E(50) | E(100)

SERIAL |12.8, 1.8 [22.5, 1.8 |51.8, 6.0 [100.3, 12.0 148, 43 502, 104 | 963, 1400
STATIC(R) }12.3, .06 {13.1,.22 {15.2, .36 19.1, .94 (22.9, 1.6 491, 12.0 [86.1, 101
DYNAMIC (14.0, 0.7 |14.2, 0.7 |14.9, 0.7 15.5, 1.1 |17.7, 2.2 31.1, 4.3 52.5, 6.0

Table 5. Execution time in seconds (mean and variance) for various assignment strategies and
component cost distributions (Uniform, » = 50).

Methods U(0,2) U0, | U0,10) | U(0,20) U(3,27) |U(38,62) |U(88,112)

SERIAL |196.5, 1.3 1377.9, 2.2 |925.3, 4.3 | 1838, 8.0 | 2742, 12.0 | 9014, 18 | 18008, 7¢
STATIC(R) | 27.7,.03 | 32.0,.04 | 47.3,.06 | 78.7, 1.1 | 104.5, 1.1 | 294, 2.0 | 563, 3.0
STATIC(L) | 29.4, .04 | 39.1,.06 | 610, .66 | 94.0, 2.0 i 125.0, 4.7 | 334, 8.0 | 832, 13.0

STATIC(L20) | 31.3,.04 | 36.7,.04 | 53.0,.06 | 92.6,.22 | 107.4, 1.3 | 274, 4.7 | 511, 6.0
STATIC(L50) | 29.3,.03 | 29.4,.04 | 42.7, .06 | 60.0,.66 | 76.4,.73 | 195, 1.3 | 365, 8.0
DYNAMIC 95, .04 | 97.0,.04 | 99.4,.06 |107.5, .66 | 109, 1.3 | 256, 2.2 | 491, 6.7

which assume a linear mapping where the computation is 20% and 50% less than for the rectangular
mapping, respectively. For example, if the random variable generates a component cost of 10
KFLOPS, the STATIC(L20) case assumes the cost is only 8 KFLOPS due to savings from assigning
an entire column to a single processor.

First consider a comparison between the two static assignment schemes. It can be seen from
Tables 2,5, and 8 that as the matrix size increases the linear mapping becomes quite competitive,
especially for fairly expensive components and when savings are assumed (120 and L50). Table 5
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Table 6. Execution time in seconds (mean and variance) for various assignment strategies and

component cost distributions (Normal, n = 50).

Methods | N(1,1) | N(2,2) | N(5,5) | N(10,7) | N(15,7) | N(50,7) | N{100,7)

STATIC(R) |23.5,.06 |29.1,.06 |44.9,.22 172.2,1.1 | 97.8, 1.3 |286.3, 1.7 [570.7, 2.2
DYNAMIC | 94, .04 |96.8, .04 |98.7,.06 199.8, 50 |106.5, 1.1 |256.1, 1.7 |490.3, 4.0

Table 7. Execution time in seconds (mean and variance) for various assignment strategies and

component cost distributions (Exponential, n = 50).

Methods E(1) E(2) E(5) E(10) EQ15) | E(30) | E(100)

STATIC{R) }26.6, .06 |32.5, .22 [48.9, .66 77.2, 1.3 |109.8, 2.2 | 314, 8.0 607, 13.3
DYNAMIC {94.2, 1.1 |96.4, 1.1 198.7,1.3 |100.2, 2.2 108, 6.0 269, 12.0 | 518, 50.0

Table 8. Execution time in seconds (mean and variance) for various assignment strategies and

component cost distributions (Uniform, n = 98).

Methods U(0,2) U(o,4) | U(o,20) | U(0,20) | U(3,27) | U(38,62) | U{88,112)

STATIC(R) | 60.7, .66 | 82.5, 1.1 | 142, 1.3 | 240,22 | 339, 6.6 | 1015, 8.0 [1982, 16.0
STATIC(L) | 74.0, 1.1 | 99.4, 1.1 [167.0, 1.6 |286.0, 3.0 |422.0, 8.0 | 1204, 12.0 |2397, 51.0
STATIC(L20) | 70.5,.70 | 89.5, 1.1 |140.0, 1.4 |241.5, 2.2 [335.5, 6.6 | 991, 8.0 |1925, 18,0
STATIC(L50) | 63.5,.66 | 75.5, 1.1 |113.0, 1.1 |170.0, 1.6 [230.0, 1.7 | 639, 8.0 |1221, 12.0
DYNAMIC |434.0, 2.2 |434.6, 2.2 | 435.5, 2.2 |438.0, 2.2 | 441, 3.1 | 803, 6.6 |1836, 16.0

shows that for n = 50 the linear mapping outperforms the rectangular mapping in all cases if there
is 50% savings, and in cases with mean component cost at lest 50 KFLOPS if there is 20% savings.
Table 8 shows that for a 98 x 99 Jacobian matrix the linear mapping again does considerably
better in all cases with 50% savings, and only 15 KFLOPS are needed before STATIC(L20) is an
improvement over STATIC(R).

In fact, the results for the linear mapping on n = 98 would be even better if not for an inherent
load balancing problem afflicting the linear mapping for moderate n. It is not hard to see that for
very small 7 the linear mapping suffers load imbalance. In fact, for n < p, where p is the number of
processors, p — n processors will be idle during the evaluation phase. Even for n somewhat larger
than p however, the load balancing is much more sensitive to how evenly p happens to dividen 41
for the linear mapping than for the rectangular. Figure 1 illustrates this for a simple case. Here
we plot the maximum number of components assigned to a single processor, and an estimate of
utilization, vs. n, for p = 32 processors. Qur estimate of utilization is

1223 ks
util = = —

where k; is the number of components assigned to processor i, and kp is the maximum number
assigned to any processor. It is clear that the rectangular mapping generally has an advantage
for n of modest size in that it is much less sensitive to the particular value of n. With n =
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Figure 1. Maximum number of components per processor and utilization vs. matrix size n, for
linear {left) and rectangular (right) static mappings.

50 the utilization for linear mapping is 0.80 (ky = 100) and for rectangular mapping it is 0.88
(ko = 91); but for n = 98, the corresponding figures are 0.77 (kg = 392) for linear and 0.93
(ko = 325) for rectangular. Based on these numbers, one would expect the linear mapping to be
more compefitive for n = 50. However, this data takes no account of variation in the costs of the
components. As n grows, variation in average component cost for a given processor is less. Hence,
although the difference in our estimate of utilization between linear and rectangular mapping is
more pronounced for n = 98, the larger number of components actually compensates for this and
makes load imbalance less of a problem.

We make one firal comment regarding static assignment strategies. Careful examination of
the data in Table 5 reveals superlinear speedups for several of the cases with large mean component
costs (e.g., U(88,112)). There are two contributing factors. One is the lack of sufficient memory on
the host for large problems (this problem fits on the host, but it runs more efficiently when the local
memories of 32 node processors are all being used). The second reason is that we have assumed
no savings for the serial times. Hence, comparing STATIC(L20) and STATIC(L50) directly with
SERIAL is misleading. Note that some savings could be realized for the rectangular mapping as
well, since a single processor will have responsibility for a large portion of a column (one-fourth of
a column in our experiments). We have not assumed this savings in our experiments.
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Tahle 9. Execution time in seconds for Jacobian matrix evaluation and kernel computation for a

problem from fluid mechanics.

Jacobian Evaluation Kernel Computation
n | Serial Parallel | Serial Par+Ser Parallel
11 28.7 31.8 29.5 33.0 34.1
23 107.1 37.4 | 110.3 38.5 39.6
35 236.1 47.0 | 239.2 49.0 49.8
74 | 1053.0 76.8 |1074.6 93.5 87.1
119 1 2850.0 130.8 {3000.0 278.0 144.0

Regarding the comparison between static and dynamic assignment strategies, we see that for
small problems (Tables 2, 3, and 4), when the components are not expensive to evaluate (mean
is less than 10 KFLOPS), dynamic assignment is not as good as the static assignments. How-
ever, when each component takes more than 10 KFLOPS, dynamic assignment performs better
than static assignments. This is most evident when component evaluation times are exponentially
distributed (Table 4). In this case the variation in computation time is high and thus static as-
signment results in a poor load balancing among the nodes, Tables 5, 6, and 7 show the results
for a 50 x 51 Jacobian matrix. For low variation cases (Tables 5 and 6), the dynamic assignment
is performing better than static assignments only when component evaluation takes at least 50
KFLOPS. This is true because there are more assigned components per processor for the 50 x 51
matrix than for the 11 x 12 Jacobian matrix. Thus the load balancing among the nodes is not as
uneven. However, when component evaluation time is exponentially distributed (high variation),
the dynamic assignment performs better than static assignment even at mean component cost 15
KFLOPS (see Table 7). Finally, in Table 8 we again see that larger n means dynamic assignment is
a bad idea, unless the cost of the individual components is very high. Even in the case most favor-
able to dynamic assignment (small n, large variation in cost, some very expensive), the advantage
over STATIC(R) is only about 64% (see column E(100) in Table 4). This may not be enough of an
advantage to compensate for the extra complexity and overhead of the master/slave approach, as
well as the cost of redistributing the data for subsequent orthogonal factorization. The dynamic
approach might be more attractive on a machine with relatively improved communication capa-
bilities (e.g., Intel iPSC/2), or if several masters were used (each controlling a subcube of slaves,
for example). But cases where a huge advantage would be realized by using the dynamic approach
would still seem to be the exception rather than the rule. A comprehensive, robust parallel math
software package should probably have a dynamic assignment capability as an option; but the
rectangular static assignment appears to be a reasonable default choice.

Kernel computation on a test problem.
Table 9 shows timing results for Jacobian matrix evaluation in combination with factorization

and triangular solving, for systems with small to medium sized Jacobian matrices. The matrices
are obtained from a Galerkin approximation to a buoyant rotating disc fluid mechanics problem
[25]. Each component evaluation requires approximately 2 KFLOPS, and there is little variation
among components. Since the cost and variation is not great enough to justify dynamic assignment,
a rectangular assignment is used for the parallel Jacobian matrix evaluations. The columns nunder
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“Kernel Computation” report time for the entire computation: Jacobian matrix evaluation, func-
tion evaluations for the right hand side, R factorization, and triangular system solving. Column
“Par+Ser” reports time for parallel Jacobian matrix evaluation combined with serial orthogonal
factorization and triangular solution. The Jacobian matrix is computed using central finite dif-
ference approximations. Thus 2(n? + n) function component evaluations are required. Although
no communications are involved in the function evaluations {except minor communication at the
beginning and at the end), some computations are duplicated. This redundancy explains why a
speedup of 32 is not achieved. For this problem the function evaluation time dominates the unit
tangent vector computation time and thus parallel function evaluation contributes most to the
speedup. We see however that there are cases where the entire computation is best done serially,
and other cases where only the Jacobian matrix evaluation should be done in parallel. While the
differences in performance are not great, it does suggest that a general parallel software package
can not always assume that every step of the computation should be done in parallel.

4. Conclusions.

Machine characteristics, problem dimension, matrix to hypercube mapping, function compo-
nent complexity, degree of redundancy in component evaluations, and the statistical distribution
of the function component complexities all interact with each other in complicated ways. Short
of conducting expensive experiments or analysis to measure these quantities, it may be impossible
to predict @ priori the optimal choices. However, in an ideal case, a user may be able to sup-
ply estimates of some of these factors, enabling a sophisticated math software package to exploit
parallelism in the most efficient way. More realistically, in our context we are considering taking
advantage of the iterative nature of homotopy algorithms. That is, since the overall solution pro-
cess requires Jacobian matrices to be evaluated and factored at many points along the curve v,
it is conceivable that the performance of Jacobian evaluation could be monitored, and a strategy
adaptively selected which is most appropriate for the problem at hand.

The detailed discussion of the computational results in the previous section cannot be suc-
cinctly summarized with complete precision, but some general principles can be inferred. 1) A
master/slave paradigm will be advantageous for only a restricted class of problems—small di-
mension, and very expensive components from a heavy-tailed distribution. 2) Parallel function
evaluation is preferred for all but the smallest problems (n < 10 for our examples) with cheap
component evaluation costs (< 0.7 KFLOPS). 3) If the Jacobian matrix component evaluations
are mostly independent (i.e., there are few computations common to several components), the
rectangular hypercube mapping is better than the linear wrap-mapping. If the level of redundancy
(shared expressions or function values) between the components is high, the reverse is true, espe-
cially when component cost is high. 4) Performance cannot be predicted by simple measures like
the maximum number of components that any processor has to evaluate, although this measure
does indicate a slight preference for the rectangular mapping over the static for modest n. 5) In
a large heterogeneous calculation like homotopy curve tracking, optimizing the individual parts
(e.g., Jacobian matrix evaluation, orthogonal factorization, triangular system solving) may result
in a far from optimal overall algorithm. 6) Even for apparently inherently sequential homotopy al-
gorithms applied to small {(n ~ 20 in our examples) nonlinear systems of equations, the hypercube

architecture yields a moderate speedup.
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