COLLEGE OF ARTS AND SCIENCES

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

Blacksburg, Virginia 24061-0106

DEPARTMENT OF COMPUTER SCIENCE 562 McBRYDE HALL (703} 231-6931

Geometric Performance Analysis of
Mutual Exclusion: The Model

By Marc Abrams

TR 90-58

Geometric Performance Analysis of Mutual
Exclusion: The Model

Marc Abrams
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106

TR 90-38
4 December 1990

Abstract

This paper is motivated by the need for techniques to better under-
stand parallel program run-time behavior. The paper first formally de-
scribes a general model of program execution based on Dijkstra’s progress
graphs. The paper then defines a special case of the model representing
two cyclic processes sharing mutually exclusive, reusable resources. Pro-
cesses synchronize through semaphore operations that are not embedded
in conditionally executed code segments. Model parameters are the times
at which each semaphore operation completes and the independently de-
rived, constant execution time required hy each process between points of
completion of semaphore operations.

Any program execution leads to either a nondeterministic state, a
deadlock, an oscillating and nonblocking steady state execution sequernce,
or one of at most N oscillating and blocking steady state execution se-
quences, where N is twice the number of semaphores. Varying a parameter
near a critical value suddenly changes the steady state execution sequence.
Progress graphs illustrations lend insight into the synchromization struc-
ture of a program. An algorithm deriving the set of all blocking steady
state execution sequences that arise for all initial process starting orders
is stated and proved correct.

Categories and Subject Descriptors: D.2.8 {Software]: Metrics -— Performance
measures; D.4.8 [Operating Systems]: Performance — Modeling and predic-
tion; C.4 [Performance of Systems]: Modeling techniques

General Terms: progress graphs, software performance analysis

Additional Key Words and Phrases: resource sharing, synchronization, parallel
programs, Petri nets

Contents

[

0 o W e

Introduction

Performance Analysis with Progress Graphs
2.1 ComputationModel
2.2 Progress Graphs: The Geometric Consequence of the Computa-
tion Model
2.3 Special Case: Cyclic Processes, Constant Timings.
2.4 Characterizing Graph Points
2.5 Homomorphic Execution Trajectories
2.6 Imitial Conditions,
2.7 'Transient and Steady State

Solving Progress Graphs

3.1 Denoting Execution Trajectories, ...
3.2 Algorithm AO
3.3 Correctness of Algorithm AGC

Related Work

Conclusions

Characterizing Graph Points
Proof of Lemma 6

Proof of Theorem 1

Proofs of Correctness of Algorithm A0
D.1 Properties About £ L
D.2 Proofsof Theorems

25

28

29

33

1 Imtroduction

Oue approach to software performance analysis starts with a definition of state
and program execution. State is an instantaneous description of some properties
of interest of a program. Program ezecution is a mapping of a state to a succes-
sor state. Analyzing program performance then means deriving the sequence of
states and state occupancy times that a program passes through during execu-
tion, given some initial program state. This state sequence is called the program
execution sequence, and is formally defined later.

In general, for a given program there may exist an infinite number of pos-
sible execution sequences. For example, there may exist a different execution
sequence for each initial program state. There may even exist multiple execution
sequences for a single initial state, if program execution is nondeterministic.

Knowing the execution sequence of a program is desirable for several reasons.
For example, the execution sequence may help in tuning a program, because it
can be used to calculate a variety of performance metrics. For example, if the
choice of program state distinguishes when a process in a parallel program is
blocked from when it is running, then the fraction of time each process spends
waiting may be derived. Finally, execution sequences reveal information about
the transient behavior; such information ig recognized to be particularly impor-
tant in analyzing program behavior [18].

There are several ways to derive execution sequences for a program. One is
to instrument a program, execute it for a finite time period, and observe a state
sequence, Another is to use the definition of program execution, along with the
initial state, to step through an initial subsequence of the execution sequence;
this is simulation.

Both program execution and simulation have drawbacks. First, both tech-
niques must be repeated for each initial condition. Second, if the program
behavior is nondeterministic, the execution sequence observed represents only
one possible behavior. Third, each technique is executed for a finite period,
generating only an initial portion of an execution sequence. Therefore, any
repetition of behavior that exists in an execution sequence may not be revealed.

This paper investigates the problem of efficiently finding the set of all pos-
sible execution sequences for a particular definition of state and for a class of
two process programs that share mutually exclusive, reusable resources using
semaphores. For this class, the paper:

1. defines transient and steady state execution sequences, and a notion of
equivalent execution sequences,

2. shows that any program execution leads to either a nondeterministic state,
a deadlock, an oscillating and nonblocking steady state execution se-
quence, or one of at most &V oscillating and blocking steady state execution
sequences, where N is twice the number of semaphores; and

3. presents and proves the correctness of an algorithm that outputs one mem-
ber of each equivalence class of blocking steady state execution sequences
that arise for all initial process starting orders.

The paper is organized as follows. The next section formally extends Di-
jkstra’s progress graphs to analyzing program performance, and in doing so,
establishes items (1) and (2). Section 3 then presents the algorithm of item (3)
above, and section 4 contrasts the approach in this paper with related litera-
ture.

2 Performance Analysis with Progress Graphs

The first subsection states a set of postulates which form a model of compu-
tation. The second subsection defines a mapping from the computation model
to progress graphs. Subsequent subsections identify and derive properties of a
special class of programs using process graphs.

2.1 Computation Model

The cormputation model is based on six postulates. First, progress of processes
is measured with respect to a clock external to the program. No processor has
knowledge of this clock, and its value has no effect on the program. Second,
the salient feature of a process that the model represents is whether a process
is running or blocked.® Programs whose processes do not all simultaneously
start execution are modeled by viewing each process as blocked at all time
instances prior to when the process initially runs. Third, for the purpose of
program performance analysis, the “state” of each process is represented by a
single nonnegative real number equal to the duration of time the process has
spent running. The state of a program is an ordered tuple whose components
each represent the state of one process. Therefore the state space of a program
is continuous, and each state is an instantaneous description of the program.
Fourth, an execution of a program is represented by the sequence of program
states, called an ezeculion sequence, that a program passes through during that
execution. Fifth, a dead program state is a state in which all processes are
blocked. Finally, an execution sequence either does or does mot have a final
state; if a final state exists, the state is dead.

P1: A single clock external to the parallel program exists. References to time
refer to values read from this clock.

P2: At any instant of time, each process is either running or blocked.

10perating systems literature sometimes distinguishes blocked, ready, and running states.
In this paper, ready states are included with blocked states.

P3: A program slate (or state) is represented by an ordered tuple of non-
negative real numbers, each of whose elements corresponds to one process.
Each component of the program state at a particular time equals the total
duration of time that the corresponding process has spent in a running
condition.

P4: The sequence of program states that a program passes through during a
particular execution defines a program ezecufion sequence.

P5: A program state is dead if and only if all processes are blocked.

P6: An execution sequence contains a dead state if and only if that state is
the final state of the execution sequence.

The choice of state in Postulate P3 leads to a simple formulation of the
computation model, but has several subtle implications that will become ev-
ident in the remainder of this section. For example, one cannot tell from a
single state whether a process is blocked or running; this is only evident from
sequences of states. Formally, by Postulates P2, P3, and P4, the subsequence
(z,y),...,(x+8y) of some execution sequence represents a period of time dur-
ing which process zero runs for § time units and process two is blocked, where
x,y, and & denote nonnegative real numbers. Therefore in the execution se-
quence (0,0}, ..., (10,15}, ..., (10,25), ..., (20,25), ..., at state {10,15) process
zero is blocked for ten time units, after which process one blocks for ten time
units.

Definition. The predecessor io the program state af time t (t > 0} in an
execulion sequence 18 the program stale af fime lims_,ot— 6 in that sequence. If
the program stale af time t (£ > 0) in a particular execution sequence is not a
dead staite, then its successor is the program state aif time lmg_ o1+ 8, provided
that S(t) is not a dead state.

Program states may be classified in two ways. The first classification par-
titions all program states into (1) those which either have no successor in any
execution sequence or have a unique successor state in all execution sequences,
and (2) the complement. Such states are called deterministic and nondetermin-
tstic staies, respectively, The second classification partitions all program states
into those in which (1) at least one process is blocked and (2) no processes are
blocked. Such states are called blocked and running program states, respectively.
The categories are defined below.

Definition. A deterministic state is @ state thet, in oll ezeculion sequences
containing the slale, has either no successor or the same successor. All program
states that are not deterministic are nondeterministic states. A blocked state is
a state in which al least one process is blocked. All program states that are not
blocked are running states.

Lemma 1 A program state is nondeterministic if and only if the stale of a
process changes between running and blocked in the transition from the state to
the successor in some but not all execution sequences containing the state,

Proof: Follows from Postulates P2 and P3.]

2.2 Progress Graphs: The Geometric Consequence of the
Computation Model

The general model is based on Dijkstra’s progress graphs [7]. A progress graph
is “a multidimensional, Cartesian graph in which the progress of each of a set of
concurrent processes is measured along an independent time axis. Each point
in the graph represents a set of process times.” [6]

Papadimitriou, Yannakakis, Lipski, and Kung [14, 19, 25] use progress graphs
to detect deadlocks in locked data-base transaction systems, the equivalent of
two process programs containing straight line sequences of binary semaphores.
Carson and Reynolds [6] prove liveness properties in systems with an arbitrary
number of processes containing straight line sequences of Dijkstra’s P and V
operations.

Previous formulations of progress graph models are concerned with the order
ofevents. The formulationin this paper represents the timings of events. Adding
timings allows analysis of performance properties of a program.

Interpreting the ordered tuple representing a program state as the Cartesian
coordinates of a graph point implicitly defines a bijection from program states
to Cartesian graph points. In general, some graph points may represent states
that do not arise in any execution sequence. Each graph axis corresponds o
one process. Corresponding to each program execution sequence is a continuous
path in the graph called a program execution irajectory; the correspondence
arises from the mapping from program states to graph points.

Definition. A program execution trajectory is e directed, coniinuous peth in
a progress graph corresponding 1o the set of states in an erecution sequence;
furthermore the path is rooted at the point representing the initial state of the
ezeculion sequence.

Two process programs: In progress graphs of two process programs, sub-
trajectories of execution trajectories representing either a sequence of running
states or a sequence of blocked states in which the same process remains blocked
have a simple geometric manifestation: a ray. This paper uses the conveniion
that a ray is closed at its initial point and open at its final point. The following
lemma establishes that an execution trajectory consists of a sequence of rays
possibly followed by a point.

Definition. A ray is directed line segment of possibly infinile length.

Lemma 2

2a. All points in a continuous path in an ereculion irajectory defined by two
end points represent running states if and only if the path is o ray with
slope one rooted at the end poini closest fo the origin.

2b. All poinis in a continuous path in an eveculion {rejeciory defined by two
end points represent blocked states in which the same process is blocked iof
and only if the path is a ray parallel to the azis representing the running
process and rooted at whichever end point is closest to the origin.

Z2e. An execution trajectory is a continuous path in @ progress graph consisting
of either a sequence of zero or more rays followed by a point or @ sequence
of one or more rays. In either case, each ray has slope 0, 1, or infinity.

Proof: By P2 and P4, no component of any state in an execution sequence can
be larger than the corresponding component of any subsequent state. Therefore
any two unique states in an execution sequence obey the following property:
Each component of the tuple representing the earlier state cannot be greater
than the corresponding component of the tuple representing the other state.

2a and 2b: Follow from postulates P3 and P4.

2¢: By postulates P2, P3, and P4, an execution trajectory is a continuous path.
By postulate P6 and Lemmas 2a and 2b, an execution trajectory consists
of either a sequence of zero or more rays followed by a point or a sequence
of one or more rays. All program states are either blocked or runmning;
therefore by Lemmas 2a and 2b each ray has slope one or is parallel to an
axis. o

Rays with slope one are referred to as diagonal rays; rays parallel to an axis are
referred to as nondiagonal rays.

Definition. Given two distinet stales in an execution sequence, a state
transition exists from the earlier to the later state. A state transition vector
is an ordered pair corresponding lo a ray in an execulion irajectory representing
the amouni of time that each process has spent running during the transition
from the staie represented by the inttial point of the ray 1o the state represented
by the final point of the ray.

Based on Lemma 2, Figure ! illustrates several possible execution traject-
ories. P3 implies that the initial state of an execution sequence, representing
the earliest time at which any process is running, corresponds to the origin.

Figure 1(a) represents a program in which both processes run in parallel for
two time units, followed by process one blocking for one time unit, followed by
process zero blocking for one time unit, followed by both processes running in
parallel. The arrowhead at point (8,8) indicates that only the initial portion of

b R > o0
— -ttt

- wnnEOO R

2 4 6 8
PROCESS 0

(a) Process one, then zero blocks

= wnEOO T Y
[N R - >~ N @ o]

‘2 4 6 8
PROCESS 0

(c)} Process one starts first

b2 » oo
e ——

= wnuEnOmH-d

2 4 6 8
PROCESS 0

(e) Nondeterminism

= Oy oo

4

2 4 6 8
PROCESS 0
(b) Deadlock

~ nnEQO=E"

— nunEiQCHEY
(W] 19 o] [o's]

2 4 6 8
PROCESS 0
(d) Multiprogramming

Figure 1: Several illustrations of progress graphs in two dimensions.

the trajectory is illustrated. In contrast, the execution trajectory in Figure 1(b)
is finite in length: by postulate P6, the final point, (2,4), is a dead state. Fig-
ure 1{c) illustrates a program execution in which process one alone executes for
two time units, after which both processes run in parallel for at least six time
units. Figure 1(d) illustrates a program whose processes are multiprogrammed:
exactly one process is running at any time. Figure 1(e) illustrates the four
possible outcomes of a nondeterministic program state in a program with two
processes, according to Lemma 1: after both processes run for two time units,
the program reaches a nondeterministic state represented by point (2,2). In
each execution, either process zero blocks or process one blocks or both pro-
cesses block (therefore point (2,2) represents a dead state) or both processes
contlnue running.

2.3 Special Case: Cyclic Processes, Constant Timings

The remainder of the paper analyzes a special case of progress graphs, in which
two processes synchronize through P and V operations on binary semaphores [9].
(The requirement of binary semaphores could be relaxed to permit general sema-
phores, but this would complicate the presentation.) Let o denote a semaphore.

The special case models programs meeting the following conditions. First,
a program consists of two processes. Second, each processor is uniprogrammed.
Third, each process loops forever without termination. Fourth, certain degen-
erate uses of semaphores are ruled out. (The fourth condition is stronger than
required, but wil simplify the presentation). Fifth, processes only block due to
P operations. Fuarthermore, whenever a process blocks, blocking starts in the
state following the program stale representing the completion of ¢ P operation.
Sixth, processes only unblock due to. V operations. Furthermore, a process only
unblocks in the state following the program state represeniing the completion of
a V operalion. Seventh, a process loop body consists of straight line sequences
of semaphore operations. Eighth, the code segment that follows each semaphore
operation, up to and including the next semaphore operation within a process,
requires an independently derived, constant amount of execution time, exclusive
of time spent blocked; furthermore this time must be greater than zero. Finally,
both processes start running simultanecusly (This is relaxed in section 2.6.).
These properties are formalized in the conditions below.

C1l: A program consists of two processes.
C2: A separate processor executes each process.
C3: The code that each process executes consists of a nonterminating loop.

C4: for each semaphore & in all execution sequences, the initial semaphore
value is one and the j-th V() (respectively, P(o)) operation executed by a
process is preceded by execution of exactly j P(¢) operations (respectively,
if > 0, j — 1 V operations) by that process.

C5:

C6:

CT:
C8:

C9:

If a process is blocked in some state in an execution sequence and was
running in the predecessor state, then the process was executing a P
operation in the predecessor state and is not executing a P operation in
the current state.

If a process is running in some state in an execution sequence and was
blocked in the predecessor state, then the other process was executing a
V operation in the predecessor state and is not executing a V' operation
in the current state.

No P or V operation is contained in a conditionally executed piece of code.

Fach code segment within each process that either:

e starts at the initial statement of the loop body and continues to and
includes the first semaphore operation, or

o follows each semaphore operation and continues to and includes the
next semaphore operation

requires an independently derived, constant, finite, and nonzero amount
of execution time, exclusive of time spent blocked.

The initial state of all execution sequences is a running state whose com-
ponents are both zero.

The class of programs modeled consists of two non-terminating processes

that

share mutually exclusive, reusable resources. Furthermore, no explicit as-

sumptions are made about the architecture (e.g., multiprocessor, network of
workstations) on which programs are executed beyond the fact that semaphore
semantics can be implemented.

Example 1 The Dining Philosophers problem [8] meets the conditions stated
above. In this problem, two philosophers eating a meal share two chopsticks. If
one philosopher attempis to acquire the chopsticks while the second is eafing,
the first must wail. The code for each process is shown below.

/* Identifier ‘‘a’’ is a semaphore with initial value one*/

L

The

Think;

P(a); /* acquire chopsticks */
Eat;

via); /% release chopsticks */
goto L;

time required for each code segment referred to in C8, excluding blocking,

appears in Table 1.

Code segment Process
0] 1
Think; P{a); 1 1
Eat; V(a); 30 1
goto L; Think; P(a); | 2| 2

Table 1: Time required for each code segment of Example 1 referred to in C8,
excluding blocking.

Reasoning about timings of semaphore operations requires a notation to
represent the time at which a process completes each P or V operation in a
particular execution sequence. This is defined below. Without loss of generality,
assume a process uses cach semaphore exactly once on each iteration of the
cutermost loop in its body.

Definition. For each semaphore o, (po(o), pr(0) (respectively, (vo(o),v:{c)))
denotes the components of the final state of the subsequence of states correspond-
ing to the first execution of a P(c) (respectively, V(o)).

Let r € {0, 1} denote a process. C7 implies that p,(¢) and v,{o) have the same
value in all execution sequences.

Another way to interpret the preceding definition of p,(o) (respectively,
v,(0)) is with respect to a clock for process » that is enabled whenever process
r switches from blocked to running and is disabled whenever process » switches
from running to blocked. (By postulate P3, the state of a process is the value of
this clock.) Then p,(¢) and v.(c) represent the value of this clock the moment
process r completes the first P(o) or V(o) operation in any execution sequence.

The cycle time of a process r, denoted e,, is the time required to execute
the outermost loop of & process once, excluding blocking time. For example,
in Table 1, summing the elements of the last two columns of the last two rows
vields ¢g = 5 and ¢; = 3,

Example 2 In Ezample 1, p,(a) is the time at which process r compleles the
P(a) operation in the first iteration of its loop body, which is the time required
to execute “Think; P(a);”. From Table 1, po(a) = pi(a) = 1. Similarly, v.(a) is
the time required to execute “Think; P{a); Eat; V(a);”. From Table 1, vo(a) =4
and vy{a) = 2.

Let uppercase letters with optional superseripts denote graph points (e.g.,
PY). Let the subscripts 0 and 1 denote the components of a point (e.g., P° =
(P, PY)). Let =1 —r.

Definition. Two points P® and P! are congruent (denoted as P° = P} if and
only if ¥r, F? mod ¢, = P! mod ¢,.

10

Lemma 3 Process r is blocked in the state represented by a point P if and only
if there exists a semaphore o such that

P, mod ¢, = p.(c) and

Py mod er € [pr(0), ve(0)).
Proof: Follows from C4, C1 through C9, and the definition of a semaphore. O
Example 3 By Lemma 3, the following statements hold.

1. Process 0 will block in any state represented by a point P meeting ihe
Jollowing two conditions:

Pymodb=1 and
Pymodde(l1,2).

2. Similarly, process 1 will block in any state represented by a point P meeting
the following two conditions:

Prmod3 =2 and
Pymod 5 €{1,4).

Figure 2 illustrates a progress graph for the Dining Philosophers prograrm.
Vertical and horizontal line segments in the figure are the set of points in the
plane described by statements 1 and 2, respectively, in Example 3. By Lemma 3
each constraint line is closed at its initial point and open at its final point, as
Figure 2 illustrates. These line segments are called constraint lines, because no
execution trajectory crosses them; this is demonstrated later in Lemma 5.

'The constraint lines in Figure 2 belong to one of two congruence classes.
A progress graph is defined in terms of one element in each class, namely the
line closest to the origin. Each such line is called a constraint fine generator,
because it may be used to generate the coordinates of all line segments in the
congruence class to which it belongs. The coordinates of the end points of a
constraint line generator are determined as follows. Let [P, P’) denote a line
segment with closed end point P and open end point P,

Definition. For each semaphore o and for each process r, there ewists a
constraint line generator, which is an ordered pair (W, X) such that

X, =W, = pr(a):

Xr- = 'U‘,-(O'), and

11

—
%]
t

©

=wnEQOmY

[ox]
——t

51
s D —
i) ol 1015
PROCESS 0

Figure 2: Synchronization constraints for the Dining Philosophers in the Carte-
sian graph. Open (filled) circles represent open (closed) end points. Thick lines
represent two possible execution trajectories implied by Lemma 5.

Wr = pi{0).

W (respectively, X} is called the initial (respectively, final) poini of the con-
straint line generalor. Each element of {[W + (ineo,%101), X + (foco, t1¢1)) |
Vr, i, € {0,1,.. }} is a constraint line. The end point of a constraint line con-
gruent to W (respectively, X } is called the initial (respectively, final} point of
the constraint line.

C8 implies that no constraint lines may overlap (see Figure 3(a)), that the
final point of one constraint line never lies on another constraint line (see Fig-
ure 3(b)), and that the final point of all constraint lines must be distinet (see
Figure 3(c)).

Example 4 Because each semaphore corresponds to two consiraint line gener-
ators, Ezample 1 requires the following constraint line generators: ((1,1),(4,1))
and ((1,1},(1,2)).

The following lemma establishes the geometric manifestations of dead,
blocked, running, nondeterministic, and deterministic states.

Lemma 4

4a. A point represents a dead state if and only if it is the point of intersection
of two constraint lines,

12

P} P 1 P 1
Rl R.l Real
0 6 1 0 6 8 6 1
C C 1
E 4 g 4 E 4 |
5 S
24 21 24
S s S“] oo
1 ——t—+—t—+ l e R T e e 1 — 1
2 4 8 2 4 6 2 4 6
PROCESS 0 PROCESS 0 PROCESS 0
(a) Process one does (b) Process one does {c) Both processes do
simultaneous P ops simultaneous P, V' simultaneous P, ¥V

Figure 3: Constraint line geometries precluded because each code segment in
C8 requires time greater than zero. '

4b. A point represents a blocked state if and only if it lies on a constraint line.

4e. A point represents o nondeterministic siate if and only if it is the indtial
point of @ constraint line.

4d. No running staies are nondeterministic,

Proof:

4a. Follows from P5 and Lemma 4b.
4b. Follows from Lemma 3.

4c. Let P denote the point.

If part: By the definition of a constraint line, P = (po(o), pi(c)). The
conclusion follows from the definition of a semaphore.

Only if part: By Cb, C6, and C8, the transition béiween running and
blocked, and by Lemima 1 any nondeterministic state, can only correspond
to completion of a single P or V operation within a process. Furthermore,
by definition of a semaphore, completion of a V' operation cannot corre-
spond io & nondeterministic state because the process performing the ¥V
operation does not block and the other process either unblocks or it was
already running in all execution sequences containing the state. Therefore
a nondeterministic state can only correspond to a process completing a
P operation, Therefore a nendeterministic state corresponds to both pro-
cesses completing a P operation on the same semaphore simultaneously,
implying P = (po(), p1()).

4d. Follows from Lemmas 4b and 4ec. i}

13

The contrapositive of Lemma 4b will sometimes be useful: “A point does not
lie on a constraint line if and only if it represents a running state.”

Given the placement of constraint lines in a progress graph, the following
lemma describes how to construct the set of all possible execution trajectories
in that progress graph.

Definition. For any two points P and P', P < P’ if and only if Po < P{A P <
P{ A Po+ PL< Py+ Py

Lemma 5 Consider any point P in an execulion trajectory T.

5a. If P lies on some constraint line [P’, P"), then there either (1) will or (2)
will not ezist a point PP on the line [P/, P") representing a dead state
such that P < PP. In case (1), the execution trajectory is a ray with
inttial point P and final point PP, In case (2), the eveculion trajectory
is a ray with inétial point P and final point P", followed by an exvecution
trajectory rooted at P,

5b. If P does not lic on e consiraini line, then a slope one ray rooted at P
either (1) will or (2) will not inersect a constraint line. In case (1), the
trajectory is an infinite length, slope one ray rooted at P. In case (2), the
trajectory is a slope one ray with initiel point P and final point P', where
P’ is the only point on the ray thai lies on a constraint line, followed by
an ezxccution frajectory rooted at P'.

Proof:

5a: In both cases, the initial ray of the execution trajectory must be contained
within a constraint line by Lemmas 2b, 2¢, and 4b. Furthermore, in case
(1), the execution trajectory consists of a single ray whose final point
represents a dead state by Lernma 4a and postulate P6.

5b: Follows from Lemmas 2a, 2¢, and 4b. O

By Lemma 5, no execution trajectory crosses a constraint line. By Lemmas 4c
and 5, there are exactly two possible initial rays of an execution trajectory
rooted at a point representing a nondeterministic state, corresponding to the
two constraint lines on which the point lies.

Example 5 Illustrated in Figure 2 is an iniliol portion of the execution trgjec-
tory with initial point (0,0). The ezeution trajectory is a consequence of Lem-
mas 2¢ and 5. Because (0,0) does not lie on o constraint line, by Lemma 5b
the initial ray of the evecution trajectory must have slope one, and ezactly
one ray point (i.e., the final point} must lie on a constraint line; thus the
ray is [(0,0),(1,1)). Point (1,1) lies on two constraint lines. By Lemma ba
the state represented by point (1,1) has two possible successors. No maller

14

ALL STATES
BLOCKED RUNNING
NON—/DYL\IG\LIVE FREE RESTRICTED

DETERMINISTIC
Figure 4: Mutually exclusive and exhaustive categorization of program states.

which successor occurs in a particular execuiion sequence, the ray with initial
point (1,1) must have as ils final point the final point of a constraint line, by
Lemma ba. Therefore the second execcution trajectory ray is either [(1, 1), (1, N
or[(1,1),(4,1)). The remaining rays of each ezecution trajectory are consiructed
similarly.

2.4 Characterizing Graph Points

Section 2.1 classifies program states as either blocked or running and as ei-
ther deterministic or nondeterministic. Blocked states may be further parti-
tioned into three mutually exclusive and exhaustive classes: (1) nondeterminis-
tic states, (2) dying states, which are deterministic states that are dead or lead
to a dead state before the blocked process unblocks, and (3) live states, which
are the complement of (1} and (2). Running states may be classified into those
in which all processes will forever remain running and the complement; states
belonging to each category are called free and restricied, respectively. Figure 4
illustrates the categorization.

Definition. A dying state is either a deterministic and dead state or a deler-
ministic and blocked state in which, in all cxeculion sequences containing the
state, one process is blocked and remains blocked in all subsequent states and
the final state is dead. A live state is any deterministic and blocked state that
is not dying. A free state is a state in which all processes are running and ev-
ery subsequent state in any ezecution sequence containing the state is a running
state. A restricted state is any running state that is not free.

Appendix A establishes the following. A point P on a constraint line repre-
sents a dying state if P is not the initial constraint line point and there exists a
point P! at which the line intersects another constraint line such that P < PI,
A point P on a constraint line represents a live state if there does not exist a
point P! at which the line intersects another constraint line such that P < PL.
A point off a constraint line represents a free state if a diagonal ray rooted at
the point does not intersect a constraint line; otherwise the point represents a
restricted state.

Let (P, P’) denote a line segment with open end point 7 and open end point
P

15

P L

Rel R

08 0°

¢ 4+ > C 4

E-] [o E

Sol S,

S S

1 + *r—20 1 /—/

2 4 6 2 4 6

PROCESS 0 PROCESS 0

(a) Deadlocking constraints (b) Sample execution trajectories from (a)

Figure 5: Geometry of deadlock. Each process tries to hold both resources simul-
taneously, and some execution trajectories reach a dead state. Point (3.3) rep-
resents a dead state. Points (1,3) and (3, 1) represent nondeterministic states.

Example 6 Nondeterministic states are represented by points (3, 1) and (1,3)

in Figure 5(a). Dying states are represented by points on lines ((1,3),(3,3)) and
({3,1),(3,8)) in Figure 5. Live states are represented by points on line segments

((1,3),(1,6)), ((3,3),(4,3)), ((3.3),(3,9)), and {(3, 1),(6,1)) in Figure 5(a).
Free states will be illustrated later (in Figure §). Restricied states are represented
by all points off a constraint line in Figure 2.2

2.5 Homomorphic Execution Trajectories

In Figure 2, the execution trajectories rooted at (3,1), (3,4), and (8,4) are
homomorphic. That is, adding the vector (0, ¢1) to all points on the trajectory
rooted at (3, 1) yields the trajectory rooted at (3,4). Furthermore, adding vector
(o, c1) to the trajectory rooted at (3,1) yields the trajectory rooted at (8, 4).

Intuitively, due to the congruence of constraint line end points, shifting an
execution trajectory by a vector whose components are multiples of the cycle
lengths yields another execution trajectory. The following definition and lemma
establish that execution trajectories rooted at congruent points are homomor-
phic. The lemma is used in many subsequent proofs.

Definition. Two line segments, rays, or trajectories are equivalent if and only
if there cxists a one-to-one correspondence between their points such that corre-
sponding points are congruent. The operator = denotes equivalence.

Lemima 6 Given any fwo ezecution sequences confaining only deferministic
states with initial states represented by points P and P if P = P! then the
execution trajeciories rooted at P and P' are equivalent,

?That all points off a constraint line in Figure 2 represent restricted states is not cbvious
from the figure, but follows from Theorem 2 in the companion paper,

16

Proof: See Appendix B.]

2.6 Initial Conditions

Condition C9 requires both processes to start execution simultaneously. This
section relaxes C9 to permit one process to start execution before the other, as
is illustrated in Figure 1{c).

This presents two technical problems, with respect to the way progress
graphs have been defined. First, as discussed in section 2.2 (see Figure 1)
there is exactly one initial state in a progress graph, represented by point (0, 0).
Second, by Lemma 4b a blocked state corresponds to a point on a constraint
line, and by definition, constraint lines correspond to semaphores.

To relax C9 without altering the definition of progress graphs, the key idea is
that given any execution sequence violating C9, the execution sequence obtained
by deleting the longest prefiz of blocked states will be represented by an execution
trajectory in a progress graph.

Definition. The concurrent portion of an erecution sequence is oblained by
deleting the longest inttial subscquence of the execution sequence consisting of
blocked states.

For example, point (0, 2) represents the initial state of the concurrent portion
of the execution sequence represented in Figure 1(c).

Lemma 7 reduces the problem of finding the concurrent portion of eny execu-
tion of a program to the problern of obtaining the set of all execution trajectories
whose initial point is on the z or y axis and within one cycle length of the origin.

Lemma 7 The concurrent portion of any erecution sequence is represented in
a progress graph by an ezecution trajectory whose initial point lies on either line
[(0,0),(co,0)) or[(0,0), (0, 1)}, provided that the initial state of the concurrent
portion is deterministic.

Prooft By P3, the initial state of the concurrent portion of any execution
trajectory must lie on the = or y axis. Applying Lemma 6 completes the proof.
m}

The concurrent portion of all possible execution sequences of a program may
be illustrated by drawing a progress graph along with ell execution trajectories
whose initial point lies on line [(0,0), (es, 0)) or {0,0), {0, ¢1}. This is exemplified
in Figure 6, in which each process of a program performs five P and five V
operations. The shaded arcas in the graph represent an infinite number of
execution trajectories and have infinite extent. The figure will be discussed
further in the following section.

— U.'!UDHOOPU*'Q_,

PROCESS 0

Figure 6: Illustration of a complex progress graph.

17

18

2.7 Transient and Steady State

In general, an execution sequence consists of a fransient portion followed by
an infinite number of repetitions of a steady state cycle. Either portion may
be empty. The final state in the transient portion is the initial state of the
first cycle of the steady state sequence. These concepts are formalized in the
following definition and established in Theorem 1.

Definition. The following definitions apply 1o execution trajectories that con-
tain only deterministic states. A steady state execution trajectory s any sub-
trajectory of an execution irajectory that contains exactly two congruent and
distinct points, namely the initial and final points of the subtrajectory, which
are colled the initial and final points of the steady state execution trajectory,
respectively. The transient execution trajectory is the portion of an erecution
trajectory consisting of all points that do not &e on a steady state execution tra-
Jectory. The initial point of a transient execution trajectory is the initial point
of the erecution trajectory. The final point of a transient execution trajectory
18 the smallest point of the execution trajectory lying on any steady siate eve-
cution trajectory, if the execution frajeciory contains a steady state execution
trajectory.

Example 7 Figure 2 contains two program czecution trajectories; consider the
one containing point (1,2). This trajectory contains a transient execution tra-
jyectory with initial and final points (0, 0) and (3,4), respectively, followed by an
infinite number of repetitions of a steady state execution trajectory. One steady
stale execution {rajectory has initial and final ponts (3,4) and (8,7), respectively.
Another steady state execution trajectory has initial and final points (8,7) and
(13,10), respectively.

Excluding execution sequences containing nondeterministic states, all pro-
grams meeting conditions C1 to C8 either reach a dead state or enter steady
state, as the following theorem establishes. Appendix C contains the proof of
the theorem,

Theorem 1 Consider any progress graph representing a finile number of sem-
aphores and any eveculion sequence containing only deterministic states. The
corresponding execuiion frajectory can be partitioned into a possibly empty tran-
sient erecution irajectory followed by an infinite number of cquivalent steady
state execulion trajectories if and only if the sequence conlains no dead state.

Example 8 Depending on the initial condition, the program whose progress
graph is shown in Figure § may reach a nondeterministic state, a dead siate,
a non-blocking steady state, or a blocking steady slale, as indicated in Table 2.
The shaded regions containing lines [(22, 30), (23, 30)] and [(30,27), (30, 28)] are
of infinile extent.

19

For initial point: | execution trajectory reaches:

on {(0,5),(0,10)) | non-blocking steady state

(0,5) nondeterministic state at (7, 12)
on ((0,2),(0,5)) | blocking steady state

(0,2) nondeterministic state at (2,4)
on ((0,0),(0,2)) | dead state (3,4}

(0,0) nondeterministic state at (3, 3)
on ((0,0),(5,0)) | non-blocking steady state

(5,0) nondeterministic state at (7, 2)
on ((5,0),(8,0)) | blocking steady state

(8,0) nondeterministic state at (12, 4)
on ((8,0),(10,0)) | dead state (13,4)

Table 2: Behaviors present in Figure 6 progress graph.

To conclude this section, note that illustrations of progress graphs represent
one more piece of information: convergence of execution trajectories. A set of
execution trajectories converge if they all contain a common point. For example,
in Figure 6 all execution trajectories with initial points on line ({0, 2), (0, 5)) con-
verge to the same blocking steady state execution trajectory. This is represented
by a shaded polygon in which one edge is the line (2,4), (2, 6).

3 Solving Progress Graphs

Theorem 1 may be summarized as follows: Fach execution trajectory in a
progress graph representing a finite number of semaphores reaches either a non-
deterministic state, a dead state, a non-blocking steady state, or a blocking
steady state. This section characterizes the set of all such steady state execu-
tion trajectories.

The example below illustrates that many steady state execution trajectories
are equivalent. By exploiting the definition of equivalent trajectories, the prob-.
lem of characterizing all possible steady state execution trajectories reduces to
finding one member of each equivalence class of steady state execution traject-
ories.

Example 9 The subtrajectory whose rays are [(3,1),(4,1)), [(4,1),(7,4)), and
[(7,4),(8,4)) in Figure 2 is ¢ sleady state execulion trajectory. In addition, the
subtrajectory consisting of rays [(4,4),(7,7)), [(7,7),(8,7)), and [(8,7),(9,7))
is a steady state execulion trejectory. The first, second, and third rays of the
first subtrajectory are equivalent to the third, first, and second rays of the second

20

subtrajectory, respectively; hence the two steady state ezecution trajectories are
equivalent.

Steady state execution trajectories may be characterized on the basis of
whether they do or do not block. A blocking steady state execution trajec-
tory contains one or more nondiagonal rays, while a nonblocking steady state
execution trajectory consists of a single slope one ray. The explicit form of a
blocking steady state execution trajectory reveals the sequence and duration of
waiting times that each process encounters. This is of interest because some
blocking steady state execution trajectories require a process to wait for longer
periods than others. In contrast, the explicit form of a nonblocking steady state
execution trajectory, representing only running states and hence no blocking,
reveals little information. Furthermore, the number of equivalence classes of
non-blocking steady states is at most infinite; and by the corollary to Theo-
rem 3 below, the number of blocking steady states is at most twice the number
of semaphores. Therefore a “solution” to a Progress graph:

1. reports whether any initial condition can lead to a nondeterministic state,
a dead state, or a non-blocking steady state,® and

2. reports one member of each equivalence class of blocking steady state
execution trajectories that may be reached by any initial condition.

Presented in algorithm A0 below is a solution to (2); (1) is left as an open
problem. Before the algorithm is given, a unique way to denote execution tra-
Jectories is chosen in the following section.

3.1 Denoting Execution Trajectories

Lemma 2¢ and Postulate P6 together imply that any execution trajeéctory that
does not reach a dead state consists of a sequence of rays. Such an execution
trajectory may be specified by an initial point and a sequence of state transition
vectors corresponding to a sequence of rays comprising the execution trajectory.*

Example 10 The exzecufion trajectory with initial point (1,2) in the progress
graph of Figure 2 consists of the state transition vecior sequence (2,2), (1,0),
(3,3), (2,0), (3,0), (2,2),

#Note that existence of nondeterministic (respectively, dying) states in a progress graph is
only a necessary condition for an execution sequence to exist that contains a nondeterministic
(respectively, dead) state. Finding a sufficient condition is an open problem. Also note that
Carson and Reynolds' deadlock detection algorithm (6] cannot directly be applied, because
a consequence of condition C2 is that the set of all execution trajectories in Carson and
Reynolds’ progress graphs is a superset of all exeention trajectoriesin progress graphs meeting
conditions C4 to C8,

iNote that the ray sequence is not unique; for example in Example 9 the rays [(7,7),(8,7)),
and [(8,7),(9,7)) are equivalent to the single ray [{7,7),(9,7)).

21

An execution trajectory may be denoted by a state transition function, de-
noted f. Such a function could be defined in many ways. In the definition below,
f maps a program state to the next state in which a process either completes a
P operation that results in blocking or a operation that results in unblocking.

Definition. If all points in the execution trajectory rooted at P represent only
live or restricted states, then function f is defined such that the set of all end
points of non-collinear rays comprising the trajectory is {f(P)|i = 0,1, .. 1
where fO(P) = P and F*(P), for nonnegative n, denotes the n-fold composition
of f epplied 10 P.

Example 11 In Figure 2, [°((4,1)) = (4,1), f1((4,1)) = (7,4), end
F(4.1) = FYT,4) = (9,9).

3.2 Algorithm A0

Algorithm AQ assumes that the number of semaphores is finite; let this number
be N/2. Hence there are N equivalence classes of constraint lines in a progress
graph. Let the set of final points of the N constraint line generators be de-
noted £ Figure 7 contains the algorithm. A0 essentially finds the smallest
i€{0,1,..., N — 1} satisfying X)) =X foreach X € & where a solition ex-
ists. A0 does not explain how to compute VX € £, f(X); this topic is addressed
in the companion paper [1].

Algorithm A0 examines exactly N points, namely the final point of each
constraint line generator. Set § contains each point already examined that is
either in set ¢ or is congruent to an element of ¢. Each iteration of the for
each loop in A0 selects an arbitrary point X in £ that is not congruent to any
point in S and determines if X lies on a steady state execution trajectory. If
X does, then X and all other end points of non-collinear rays comprising the
steady state trajectory are added to S; otherwise only X is added to .

Theorem 3 below establishs that examining the N points in set ¢ is sufficient
to find all equivalence classes of blocking steady state execution trajectories.
The intuitive justification is that all rays incident to any point representing a
live state in any element of a particular equivalence class of constraint lines
are “merged.” That is, consider point P on any ray incident to any constraint
line generated by some generator with final point X in a progress graph. Then
X must be congruent to a point on the execution trajectory with initial point
P. By Lemma 6, the execution trajectories of all such points P in the graph
contain a subtrajectory equivalent to the execution trajectory with initia) point
X. Therefore all steady state execution trajectories that block at a particular
semaphore contain a point congruent to the final point of the corresponding
constraint generator.

Example 12 The progress graph of Figure 2 contains two constraint line gen-
erators, as stated in Example J. Thus £ = {(4,1),(1,2)}. From Table 3, for

22

declare S: set of points; { Set of points X that either lie on a steady state
execution trajectory previously output or are known
not to lie on a steady state execution trajectory }

5:=0;
for each X in £ do
if

e,z el e=XA
o), LX), .. S FPN(X) are defined A
dIm,m e {1,2,.. SNLE (X)) =X
then begin
output point X and state transition vecior sequence
10 = £2(X), f2(X) = J(X), ..., f7(X) — f2=1(x),
where n is the smallest natural satisfying (xX)y=x;
S=8Su{f*X)]i=0,1,...,n~1
end
else §:=SU{X}

Figure 7: Algorithm AQ, which outputs one member of each equivalence class
of blocking steady state execution trajectories.

7o)
X m=1 m=N=9
(4,1}] (9.4) unnecessary
(1L.2) | (4.4) (9,7)

‘Table 3: Quantities requived by Algorithm AQ for Figure 2.

X = (4,1), fA(X) = X. However, for X = (1,2), Zm, m € {1,2,...,N},
*™(X)= X. Hence a single trajectory is output: point X = (4,1) and veclor
sequence (3,3), (2,0). This trajectory is equivalent {o the steady state erecution
trajectories given in Erample 9.

3.3 Correctness of Algorithm A0

The correctness of algorithm A0 is established in Theorems 2 through 5. Ap-
pendix I) contains the proofs. Note that algorithm A0 terminates if each eval-
uation of function f terminates because all quantifications are over finite sets.

Theorem 2 Every trajectory oulput by algorithm A0 is a blocking steady state
execution frajectory.

23

Theorem 3 Any blocking steady state execution trajectory that exists in a prog-
ress graph and is contained in an execution trajectory that represents only live
or restricted stales is equivalent to one of the trajectories output by algorithm
Ag.

Corollary to Theorem 3 The number of equivalence classes of steady stale
execution trajectories that block in a process graph is al most twice the number
of semaphores.

Proof: By Theorem 3 the number of equivalence classes of blocking steady state
execution trajectories cannot exceed the number of constraint line generators,
O

Theorem 4 None of the trajeciories output by algorithm A0 are equivalent.

The following theorem shows that for each trajectory output by A0, either
that trajectory or some equivalent trajectory is reachable, meaning it occurs in
some execution trajectory that exists in a progress graph.

Theorem 5 For each trajectory output by A0, either that trajectory or some
equivalent trajectory is contained in some ezecution trajectory rooted al a point
esther on line [(0,0), (co, 0)) or on line [(0,0),(0,c)).

4 Related Work

Related work on progress graphs: As was discussed in section 2, this paper
used a formulation of Dijkstra’s progress graphs, which were previously used for
characterization of deadlocks in multiprocessor systems. Progress graphs are
also similar to two-dimensional diagrams used in verification of parallel programs
and communication protocols to reason about interleaving of operations. Our
application of progress graphs for performance analysis is novel,

Related work on Petri nets: The class of programs analyzed in this paper
may be studied using Petri nets [24], queueing networks (e.g., [11, 12]), stochas-
tic processes (e.g., [10, 20]), and stochastic automata (121, 22]). A survey of
these approaches is contained in [2], Chapter 1. Of these, the most closely re-
lated work has been done using consistent Petri nets (i-e., nets that return to
their initial marking) in which a deterministic firing time is associated with each
transition.

Ramamoorthy and Ho [23] address minimum cycle time (MCT) calculation,
or the minimum time required for the program to return to its initial state (cor-
responding to an initial marking of the Petri net). The Ramamoorthy and Ho
method takes exponential time and works for both decision-free and persistent

24

Petri nets, in which a token never enables two or more transitions simultane-
ously. Methods to compute bounds on the MCT of conservative, general Petri
nets are given; finding the exact value is proved NP-complete.

Magott [15] formulates the MCT problem for decision-free and persistent
Petri nets as a linear programming problem, and therefore solvable in polynomial
time. He gives an improved lower bound and shows that it also applies to
non-conservative general Petri nets. Magott [16] gives an O(N) algorithm to
compute MCT for nets consisting of a set of N cyclic processes that mutually
exclusively share a single resource. Finally, Magott [17] extends his earlier paper
(16] by showing that finding MCT in most nets with more complex resource
sharing is NP-hard. Also proved are complexity results for systems of process
with communication by buffers. :

The problem considered in this paper, of processes sharing reusable re-
sources, cannot be represented by decision-free or persistent Petri nets. The
example nsed here, of the Dining Philosophers problem, has been analyzed by
Holliday and Vernon {13] assuming deterministic as well as geometrically dis-
tributed local state occupancy times. Their Petri net model uses frequency
expressions to resolve deterministically which transition fires when a token en-
ables two or more transitions simultaneously. In their model of the Dining
Philosophers problem, this expression takes the form of a probability.

Compared to a Petri net approach, solving progress graphs have two advan-
tages:

1. Progress graphs yield the eract steady state program execution sequence
that the program follows; in contrast the Petri net solutions listed above
provide average measures. The Ramamoorthy/Ho and Magott solutions
yield the mean cycle time, while the Holliday/Vernon solution yields the
long run fractions of time that each process spends In a state.

2. Progress graphs give the execution sequence for all possible Petri net mark-
ings in a single solution, while existing Petri net solutions require resolving
the net for each marking.

However, the progress graph solution presented here is limited to two process
programs, while Petri net solutions have no such lmitation.

Analysis of Resource Scheduling Algorithms: One final category of re-
lated work analyzes algorithms that schedule mutually exclusive, reusable re-
sources. Barbosa and Gafni ([4, 5]) consider the average number of processes
that may simultaneously use resources, denoted y¢(w), when scheduling by arc
reversal is done. Each initial assignment of resources to processes {(denoted by
w) results in a different value of Yo(w). The problem considered, finding which
w maximizes yo(w), is proved to be NP-complete.

This problem corresponds to examining a sef of multi-dimensional progress
graphs and asking what point on a steady state execution trajectory in any of

25

these graphs maximizes yo(w). The particular set used is chosen to represent
all values of w. For example, for two processes there are two values of w corre-
sponding to two unique points in a single two-dimensional progress graph. The
steady state execution trajectories obtained from algorithm A0 yield the w that
maximizes ¥,(w).

5 Conclusions

The chief qualitative result of the progress graph analysis in this paper is that
any execution trajectory of a program fitting our model that does not, contain
nondeterministic or dead staates reaches a steady-state behavior consisting of a
repetition of equivalent steady state execution trajectories. There may be sev-
eral equivalence classes of steady state execution trajectories; the initial program
condition (i.e., the relative times at which processes start execution)} determines
which class which the program reaches.

There is some similarity between parallel programs and classical dynamic
systems, such as electrical circuits with feedback. Dynamic systems may reach
a limit cycle behavior, analogous to the repetitions of steady state execution
trajectories studied here.

Furthermore, we have some experimental evidence of the similarity. Tn Chap-
ter 6 of [2], we measured a Dining Philosophers algorithm with between four
and 64 processors. For small numbers of processes, the global-state transition
sequence Is deterministic. Starting at about nine processors, small perturba-
tions oceur in the steady-state cycle for short instances of time, after which the
program returns to steady state.

Any model requires assumptions that are usually not strictly met by the
systems they model. For example, the code seginents of condition C§ require
an independently derived, constant, finite, and nonzero amount of execution
time, exclusive of time spent blocked. Drift among processor clocks and con-
tention for resources (e.g., a bus, a network, or a memory cell) prevent programs
from strictly meeting C8. One may ask how accurately the progress graphs of
this paper model programs meeting the remaining conditions (C1 to C7). Our
experience so far indicates that the model is highly accurate [2, 3].

However, parallel programs are dissimilar from dynamic systems because of
discontinuities. If we vary the length of a constraint line generator or the cycle
time of a process, the blocking time will change linearly within a certain interval
but the sequence of constrain lines intersected does remains constant. However,
when variation is large enough to exceed a critical value, the blocking times and
sequence of constraints intersected change discontinuously.

Discontinuities complicate design and tuning of a parallel prograi, because
a programmer is unaware of the discontinuity locations. This causes counterin-
tuitive behavior, such as when one process is speeded up, the overall program
performance is degraded.

26

Acknowledgements

This work arose from questions raised by an anonymous referce for the com-
panion paper [1]. The origin of this work was in the authors’ dissertation re-
search, which was done under Prof. Ashok Agrawala, Carson and Reynolds’
work ([6]) influenced the definition of progress graphs in section 2.

References

[1] M. Abrams and A. K. Agrawala. Geometric Performance Analysis Of Mu-
tual Ezclusion: The Model Solution. Dept. of Computer Science, Virginia
Tech, TR-90-59, Dec. 1990.

(2] M. Abrams. Performance analysis of unconditionally synchronizing dis-
tributed computer programs using the geometric concurrency model Ph.D.
Dissertation, Dept. of Computer Science, University of Maryland, TR-1696,
Aug. 1986.

[3] M. Abrams and A. K. Agrawala. Automated measurement and prediction
of unconditionally synchronizing distributed algorithms. Proceedings of the
Tth Inter. Conf, on Distributed Computer Sysiems. Berlin, Sept. 1987.

[4] V. C. Barbosa and E. M. Gafni. Concurrency in heavily loaded neighbor-
hood-constrained systems. Proc. 7ih Int. Conf. on Distributed Computer
Systems., Berlin Sept. 1987.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Parailel and distributed computation:
numerical methods. Englewood Cliffs: Prentice Hall, 1989. Section B.3.

[6] S. D. Carson and P. F. Reynolds, Jr. The geometry of semaphore programs,
ACM Trans. on Programming Languages and Systems 9. 1, Jan. 1987, 25-
53.

[7] E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks, ACM
Comp. Surv. 3, June 1971, 70-71.

(8] E. W. Dijkstra. Cooperating sequential processes. Tech. Rep. EWD-123,
Technological University, Eindhoven, The Netherlands, 1965,

{9] E. W, Dijkstra. Cooperating sequential processes. In Programming Lan-
guages, F. Gennys, Ed. Academic Press, New York, 1968, 67-68.

[10] E. Gelenbe, A. Tichnewsky, and A. Staphylopatis. Experience with the
parallel solution of partial differential equations on a distributed computing
system. [EEE Trans. Comput. C-31, 12, (Dec. 1982), 1157-1164.

27

[11] P. Heidelberger and K. S. Trivedi. Queueing network models for parallel
processing with asynchronous tasks. JEEE Trans. Comp. C-31, 11, (Nov.
1982}, 1099-1109.

[12] P. Heidelberger and K. S. Trivedi. Analytic queueing models for programs
with internal concurrency. IEEE Trans. Comp. C-32, 1, (Jan. 1983), 73-82.

[13] M. A. Holliday and M. K. Vernon. A generalized timed petri net model
for performance analysis. Proc. Int. Workshop on Timed Peiri Nets. July
1985.

[14] W. Lipski and C. I. Papadimitriou. A fast algorithm for testing for safety
and detecting deadlocks in locked transaction systems. J. Alg. 2, 3, Sept.
1981, 211-226.

(15] J. Magott. Performance evaluation of concurrent systems using Petri nets.
Information Processing Letters 18, Jan. 1984, 7-13.

[16] J. Magott. Performance evaluation of systems of cyclic sequential processes

with mutual exclusion using Petri nets. Information Processing Letters 21,
Nov. 1985, 229-232.

(17] J. Magott. Performance Evaluation of systems of cyclic sequential pro-
cesses with mutual exclusion and communication by buffers using timed
Petri nets. Proc. Workshop on Timed Petri Nets, Madison Wisconsin, IEEE
Press. 1987, 146-153.

[18] A.D. Malony and D. A. Reed, Visualizing paralle]l computer system perfor-
mance. In M. Simmons, R. Koskela, and 1. Bucher, eds., Instrumeniation
for Future Parallel Computer Systems, Addison-Wesley. 1989, pp. 59-90.

[19] C. H. Papadimitriou. Concurrency control by locking. STAM J. Comput.
12, 2, May 1983, 215-226.

{20] B. Plateau and A. Staphylopatis. Modeling of the parallel resolution of a nu-
merical problem on a locally distributed computing system. In Proceedings
of the ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, Performance Evaluation Review 11, 4, (Winter 1982),
108-117.

[21} B. Plateau. De Pévaluation du parallélisme and de la synchronisation. Thése
d’état, Universitéde Paris-Sud, 91405 Orsay, France, Nov. 1085,

[22] B. Plateau. On the stochastic structure of parallelism and synchroniza-
tion models for distributed algorithms. In Proceedings of the SIGMETRICS
1985, Austin, Aug. 1985, 147-154.

28

[23] C. V. Ramamoorthy, and G. §. Ho. Performance evaluation of asynchronous
concurrent systems using petri nets, JEEE Trans. on Software Eng. SE-6,
5, Sept. 1980, 440-448.

{24] M. Vernon, J. Zahorjan, and E. D. Lazowska. A comparison of performance
petri nets and queueing network models. TR-669, University of Wisconsin,
Sept. 1986.

[25] M. Yannakakis, C. H. Papadimitriou, and H. T. Kung. Locking policies:
safety and freedom from deadlock. Tn Proc. of the 20th ACM Symposium
on the Foundations of Computer Science, 1979, pp. 283-287.

A Characterizing Graph Points

The following lemma formally establishes the claims about the geometric man-
ifestation of dying, live, free, and restricted states made in section 2.4,

For any point P in a progress graph, let Cn(P), Cp(P), CL(P), Cp(P),
and Cr(P) each denote a logical predicate whose value is true if and only if P
represents a nondeterministic, dying, live, free, and restricted state, respectively.
The following lemma gives a rule to decide which of these five mutually exclusive
and exhaustive predicates holds for an arbitrary point in a progress graph.

Lemma 8§
8a. Cn(P) if and only if P is the initial point of a constraint line,

8b. Cp(P) is true if and only if =Cn(P) and P lies on a constraint line
and there exists a point P! at which the constraint line intersects another
constraint line such that P < Pl

8c. Cr(P) if and only if P lies on a constraint line and %CN(P) A=Cp(P).

8d. Cp(P) if and only if P does not lic on a constraint line and a diagonal
ray rooted at P does not intersect ¢ constraint line.

8e. Cr(P) if and only if P does not lic on a constraint line and ~Cp(P).

Proof:
8a: Equivalent to Lemma 4c.
8b:

P is a blocked state
, by definition of dying state

P lies on a consfraing line
, by Lemma 4b

29

Execution sequence with initial state P contains a dead state; let PP
denote the point representing the dead state
, by definition dying state

Execution trajectory rooted at Pis a nondiagonal ray with final point PP
, by last deduction, P6, and Lemma 2b

Execution trajectory rooted at P is contained in constraint line containing

P

, Lemma 5a
PD — PI

, Lemma 4a

8c: Follows from Lemma 4b and definition of live state.

8d:
Execution sequence with initial state represented by P contains no blocked
states
, by definition free state
No point on execution trajectory rooted at P lies on a constraint line
, by last deduction and Lemma 4b
Execution trajectory rooted at P is a diagonal ray that never intersects a
constraint line
: Lemnma 5b
8e: Follows from Lemmas 4b and definition of restricted state. a

B Proof of Lernma 6

The proof of Lemma 6 is simplified by the following two lemmas. The first es-
tablishes three intuitive properties: that any two congruent points in a progress
graph either (1) both lie on or lie off a constraint line, (2) either both do or do
not lie at the intersection of two constraint lines, and (3) that given any paral-
lelogram in a progress graph with one vertex on a constraint line and two other
congruent vertices, the remaining vertex lies on a constraint line. The second
lemma demonstrates that whichever of the predicates introduced in Appendix A
holds for a point £ alse holds for any point congruent to P.

Lemma 9

9a. If P* = P? gnd P! lies on a constraind line, then P? lies on an equivalent
constraint line.

9b. Given two congruent points P! and P?, Plisg point of infersection of
two constraint lines if and only if P? is o point of intersection of two
constraint lines.

30

P

BwmnEQORET

PROCESS r

Figure 8: Tlustration of Lemina 9e, containing two equivalent horizontal con-
straint lines.

9c. For any parallelogram PYP2P3PY if P = P2 qnd P? lies on o constraint
line, then P* lies on an equivalent constraint line.

Proof:

9a and 9b: Follows from the definition of a constraint line.

9c:
P?= P24 Q% and P*= P! 4 Q4 for some vector Q* (sce Figure 8)
, by hypothesis that PIP2p3p4ig 5 parallelogram
P3 = pt
» by hypothesis P1 = P? and previous deduction
P* lies on a constraint line
, by Lemma 9a. m]
Lemma 10

10a. If P* = P2 ACn(P1) then Cy(P2).
10b. If P' = P? ACp(P') then Cp(P?).
10c. If PL=P2 A CrL(P) then CL(P?).
10d. If PT = P* A CR(P') then Cp(P?).
10e. If P = P? ACp(P?) then Cp(P?).
Proof:

10a:

10b:

10¢:

10d:

10e:

31

P lies on some constraint line [P, X)
, by Lemma 8a

There exists a constraint line equivalent to [PT, X)} with initial point P2.
, by definition of constraint line and hypothesis P! = p2

P! lies on some constraint line; let L, denote the line
, by Lemma 8b

There exists a point P7 at which L, intersects another constraint line such
that Pt < pI
, by definition of dying state
P? also Hes on a constraint line, denoted by L, such that L, = L
, by Lemima 9a
There exists a point 7 at which L> intersects another constraint line such
that P1 = pI
, by the definition of a constraint line
Pt < P!
, by last two deductions
Cp(P 2)
, by applying Lemma 8b

~Cn(P*) A~Cp(P?) and P? lies on a constraint line
» by Lemmasg 8¢, 9a, 10a, and 10b
Cr(P?)

, Lemma 8¢

A diagonal ray rooted at P! must intersect a constraint line; let P1 -+ QA
be the intersection point
, by hypothesis Cp(P!)
P? 4 Q* must lie on a constraint line (see Figure 8)
, by Lemma 9¢
Cr(P?)
» because P2, P2 4 Q4 has slope one

P2 does not lie on a constraint line and —CRr(P?)
, by Lemmas &d, 9a, and 104

32

Cr(P%)
, the definition of a free state.]

Lemma 6 [from section 2.5] Given eny two execution sequences containing
only deterministic states with initial states represented by poinis P and P oaf
P = P’ then the execution trajeciories rooted at P and P’ are equivalent,
Proof: The proof consists of demonstrating that the i-th (i = 1,2,...) non-
collinear ray in the execution trajectories rooted at P and P’ are equivalent by
induction on the value of i.

The proof for all 4 is the same. Let P! and P2 be the initial points of the 3-th
noncollinear ray in the execution trajectories rooted at P and P', respectively.
Ifi = 1, P! = P? by hypothesis . If i > 1, P! = P2 by the inductive hypothesis
that the (i ~ 1)-th noncollinear rays are equivalent. By hypothesis, =Cn(PY);
therefore there are four mutually exclusive and exhaustive cases:

CD (Pl):

Cp(P?)

, because Cp(P') and by Lemma 10b
Final point of initial ray in execution trajectory rooted at P! {respectively,
P?) is some point P™ (respectively, P%) such that [P1P:} (respectively,
[P2P12)) lies on a constraint line, does not cross another constraint line,
and Ph (respectively, P%2) is a point of intersection with another con-
straint line

, by definition of dying state and Lemma 5a
pPh= pl

, by Lemma 9b
i-th noncollinear rays in execution trajectories rooted at P and P’ are

equivalent
, combine last two deductions

Cr(P):
Cr(P?)
, because Cr(P!) and by Lemma 10c
Final point of initial ray in execution trajectory rooted at P! (respectively,
P2! is final point X! (respectively, X %) of some constraint line, such that
[P1X71) (respectively, [P?X?)) lies on a constraint line.
, by definition of dying state and Lemma 5a
Xt=Xx7?
, by Lemma 9a
i-th noncollinear rays in execution trajectories rooted at P and P’ are
equivalent
, combine last two deductions

33

Cr{P):

Cr(P?)
, becanse Cr(P?) and by Lemma 10d
Final point of initial ray in execution trajectory rooted at P! (respectively,
P?) lies on first constraint line intersected by diagonal ray rooted at Pl
(vespectively, P?); let P! (respectively, 132) denote the intersection point
, by definition of restricted state

Rays [P1, P1) and [P2, P?) have equal length
, because assuming unequal lengths and applying Lemma 9a to £* and
P? contradicts the assertion that 2! and P? represent first constraint
lines intersected

Pl = p?
, by Lemma 9c using parallelogram P1P1p2p?

i-th noncollinear rays in execution trajectories rooted at P and P’ are
equivalent
, combine second and fourth deductions

Cr(P): Follows from Lemmas 10e and 5b, =

C Proof of Theorem 1

Lemma 11 will simplify the proof of Theorem 1.

Lemma 11 Consider any progress graph represeniing a finite number of sem-
aphores and any execulion sequence coniaining only deterministic stales. If
the sequence conlains no dead siate then the corresponding execution trajeciory
contains a steady state execution trajeclory.

Proof: Let T" denote the execution trajectory. Each point in T represents a free,
restricted, or live state, by the hypothesis that execution trajectory contains no
dead or nondeterministic state. Consider two cases: (a) T intersects a finite
number of constraint lines and (b) the complement. These correspond to (a)
AP, P T, Cp(P) and (b} 2P, Pe T, Cr(P).

case (a): Let P’ be the smallest point on the execution trajectory satisfying

Cr(P).

Execution trajectory contains P’ + (coer, eoeq)
, by Lemma, 2a

Pr=pP+ (Cocl, Cocl)
, definition of congruence

Execution trajectory contains steady state execution trajectory
, by last deduction

34

case (b):
All points in execution trajectory represent restricted or live states
» by second deduction and the definition of case (b)

Execution trajectory intersects infinite number of constraint lines
, by last deduction

Execution trajectory intersects an infinite number of constraint lnes be-
longing to the same equivalence class
, by last deduction and because number of serriaphores is finite

Execution frajectory contains the final point of each constraint line it
intersects
» since all constraint line points represent live states and by Lemma 5a

There exist two congruent points in the execution trajectory
, by last two deductions

Execution trajectory contains steady state execution trajectory
, by last deduction]

Theorem 1 Consider any progress graph representing o finite number of sem-
aphores and any ezecution sequence containtng only deierministic states. The
corresponding ezecution frajectory can be partitioned into a possibly empty tran-
sient ezecution irejectory followed by an infinite number of equivalent steady
state execution frajectories if and only if the sequence contains no dead siaie.

Proof of Theorem 1:

Only if part:

Execution trajectory contains an infinite number of equivalent steady state
execution trajectories; let P and P’ denote the initial and final points of
one such frajectory

, by hypothesis
Transition from state represented by initial to final point of any steady
state execution trajectory corresponds to displacement of P’ — P in the
Cartesian plane

, using last deduction

Execution trajectory has no final point
, by last deduction and P/ — P > 0

Execution sequence contains no dead state
, by P8

If part: The inductive proof below demonstrates that the execution trajectory
contains at least i equivalent steady state execution trajectories, for all
¢ > 0. The base case (i = 0) is established by Lemma 11. The case of
¢ > 1 follows:

35

The execution trajectory contains at least i -- 1 steady state execution
trajectories
, statement of the inductive hypothesis

Let P and P’ denote the initial and final points of the (i — 1)-th steady
state execution trajectory; then P = P’
, by definition of steady state execution trajectory

Execution trajectories rooted at P and P’ are equivalent
, by Lemma 6

There exists a point P” on the execution trajectory such that P” > P’ A
Plr=p

, by last deduction
‘There exist at least ¢ equivalent steady state execution trajectories

, combine last deduction with inductive hypothesis a

D Proofs of Correctness of Algorithm A0

All execution trajectories considered in this appendix are presumed to con-
sist of points representing either live or restricted states. {This excludes dead,
nondeterministic, and free states, which never arise in a blocking steady state
execution trajectory.)

D.1 Properties About f

Stated and proved below are several propertics about function f. Recall that
€ denotes the set of final points of all constraint line generators, and that set £
contains N elements. Let X denote an element of £. Let i and J denote integers.

F1: If Vj, j < 4, f¥(X) and fY+(X) are defined, then f%(X) € ¢ and
CL(F#HH(XY).

F2: Let P be any point congruent to X that lies on the execution trajectory
rooted at X. If 34,4 > 0, X = f*(X), then 35,5 > 0, P = f¥(X).

F3: 3i,i >0, X = f%(X) = 3j,5¢ {L,2,..,N}Lf9(X)=X.
Proof of F1: Follows by induction on i. Note that all running states are re-
stricted, and all blocked states are live.
If i = 0 then f¥(X) e &
, from premise that X € ¢

If i > 0 then f#-1(X) lies on a constraint line
; by Lemma 4b applied to the inductive hypothesis Cr{f%~1(X))

Hi>0then f2(X)cé
, by Lemma 5a applied to last deduction

36

Vi, i > 0,f%(X)e¢
, combine first and last deductions

FPHY(X) lies on a constraint line
» by contrapositive of Lemma 4b, Lemma 5a, and last deduetion

Cr(F¥H(X)
, by Lemma 4b m]
Proof of F2:
aj,ij,Pij(_X) ,by Theorem 1
35,i20,P=f¥9(X) , combine last deduction with F1 O
Proof of F3:
Vi,i >0, f%(X) e ¢
, by F1
3i,i>0,X = f7(X)
, hypothesis
Jhie{1,2,.. N}Lf(X)=X
, by last two deductions and because £ contains N elements O

D.2 Proofs of Theorems
Theorem 2 Every trajectory output by algorithm AQ is a blocking steady state

execulion trajectory.

Proof: By definition, a blocking steady state execution trajectory must:

1. contain a point that lies on a constraint line,
2. be a subtrajectory of some execution trajectory in the progress graph, and

3. contain exactly two congruent points, namely the initial and final points.
Let X denote the initial point of a trajectdry output by AQ.

Proof of 1:
F(X) is defined
, because AQ outputs a trajectory with initial point X
Cr(F(X))
. by F1 and last deduction

f(X) lies on a constraint line
, by definition of live state and last deduction

37

Proof of 2: Follows from definition of I
Proof of 3:

Initial, final points of trajectories output are congruent
; because X = f27(X) in algorithm AQ

Trajectory contains a subtrajectory with initial point P and final point P’
that is a steady state exccution trajectory

, by last deduction
X <P <P < PX)

, by last deduction

P = f2n (.X)

; by Theorem 1 and since n is smallest natural satisfying f27 X)=x
P=X

, by F2
Every trajectory output by A0 contains exactly two congruent points

, because P = X P/ = 7 (x) a

Lemma 12 Consider q steady state execution trajectory S representing only
deterministic states. There exists g steady state evecution trajectory rooted at
any point congruent 1o a point on S.

Proof: Let the initial and final points of S be P and P/, respectively. Let Y be
any point on 5. The proof first demonstrates that there exists a steady state
execution trajectory rooted at V.

Steady state execution trajectory rooted at ¥ exists; denote its final point
by ¥’
, by Theorem 1 and Lemma 6

Subtrajectory with initial and final points P and Y is equivalent to subtra-
Jectory with initial and final points P’ and Y”, respectively
; because P = P/, Y =Y, and by Lemma 6

S is equivalent to steady state execution trajectory rooted at ¥
; by last deduction and because trajectory with initial point ¥ and final
point P’ is a subtrajectory of both S and the trajectory rooted at ¥

S is equivalent to steady state execution trajectory rooted at any point
congruent to Y

, by last deduction and Lemma 6 .

Theorem 3 Any blocking steady state execution trajectory that exists in a
progress graph and is contained in an execution trajectory that represents only

live or resiricted states is equivalent 10 one of the trajectories output by algorithm
Ag.

38

Proof: Consider some blocking steady state execution trajectory, denoted S,

S contains ray with its initial point on a constraint line
» because steady state execution trajectory blocks
Final point of ray in last deduction is final point of some constraint line
, because steady state execution trajectory does not contain dead points,
and by Lemma 5a,
3X € ¢, where X is congruent to final point in last deduction
» by definition of constraint line
Steady state execution trajectory with initial point X exists and is equivalent
to §; denote it by S
, by Lemmsz 12
dm,m € {1,2,...,N},f2m(X) =X
. by F3 and last deduction
AD outputs §
» by last deduction and Theorem 2 O

Lemma 13 Given o point, all steady staie execution trajectories containing
that point are equivalent,

Proof: Follows from Lemma 12, i
Theorem 4 None of the trajectories outpui by algorithm AQ are equivalent.

Proof: Consider any two trajectories output by A0. TLet X1 (respectively,
X?) be the initial point of the first (respectively, second) of these trajectories.
Let 5! denote the set of all end points of non-collinear rays comprising the first
of these trajectories. Let n be the smallest natural satisfying X = x2.
Proving that there exists a single point (namely, X %) on the second trajectory
that is not congruent to any point on the first trajectory is sufficient to establish
Theorem 4.

X 7Y must be end point of two non-collinear rays in any steady state
execution trajectory on which it lies
, by Lemma 13
X? must be end point of two non-collinear rays in any steady state execution
trajectory on which it lies
» because X2 = f27(x2)
S C S when A0 applies if test to X2
» S'is set to SU ST after point X7 is output in AD
Az, z € S, 0= X2
, if X? is output then if test in AQ was true
Pe,zeS e= X2
, combine last two deductions

39

Theorem 5 For eqch trajectory output by AU, either that trajectory or some
equivalent trajectory is contained in some ezecution trojectory rooted at o point
etther on line [(0,0), (co,0)) or on line [(0,0),(0,¢1)).

Proof: Let S denote some trajectory output by A0. Let X denote the initial
point of §. Let n be the smallest natural satisfying f**(X) = X. Let i, and 31
denote naturals,

f2(X) lies on §
, by definition of f
33-0, Hil,fzn(X) =X+ ('io(:o, 2'1(_‘1)
, because f2(X?) = X, where n > 0
AP, PS8, Ir,re {0,1}, X< P< Xy A P, mod ¢, = 0
» by last deduction and becanse X € S A A (X)es
P= (Pg mod g, P1 mod Cl)
, by definition of congruent points
Execution trajectory rooted at (Py mod ey, P, mod ¢1) contains a point con-

gruent to f27(X)
» by Lemma 6 and last deduction

Execution trajectory rooted at {Ps mod g, P, mod ¢1) contains a trajectory
equivalent to §
, by Lemma 12 and last two deductions m

