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Abstract. Simple necessary and sufficient conditions that a gquartic pelynomial f(z) be
nonnegative for z>0or a<z<h are derived, and illustrated geometrically. The geometry provides
considerable insight and suggests various appro ximations and computationzl simplifications,
The theory is applied to monotone guintic spline interpolation, giving necessary and sufficient
conditions and an algorithm for monotone Hermite quintic interpelation,
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1. Introduction. Consider the fourth degree polynomial with real coefficients,
(1) F(2) = a2t + b2° + 2 + dz + e,

where ae # 0 (the problem reduces to consideration of a cubic if ae = 0). This paper
outlines conditions under which this polynomial has positivity, i.e., f(z) > 0 for every
2 > 0. This is a rather general condition since positivity on any fixed interval {u,v)
can be directly related to positivity on the positive reals through the transformation

u-+ zv
142z

t =

The property of positivity has a number of important applications to mathematics
and computer science, and to shape preserving polynomial approximations in partic-
ular. For example, Jury and Mansour [6] relate positivity to a number of problems
in control theory. Fritsch and Carlson [4], who derived positivity conditions in the
case of quadratic polynomials, use the result to construct monotone cubic spline inter-
polants. Schmidt and HeB [8] provided conditions for positivity of cubic polynomials
and used their result to construct positive cubic splines with minimum curvature and
complex rational cubic splines. For the case of the fourth degree polynomial, Jury
and Mansour [6] use the discriminant of (1) along with other characteristic expres-
sions from the theory of equations to derive an algorithm for verifying positivity of
quartics. Their conditions are difficult to implement and provide no geometric insight
into the underlying mathematical phenomena. Dougherty, Edelman, and Hyman [3]
derive conditions for monotonicity and convexity of quintic Hermite interpolants, but
explicitly state only sufficient conditions. Our results are very similar to those of {3],
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but differ in that we give elegant sharp (necessary and sufficient) conditions for posi-
tivity of a quartic directly in terms of its coefficients, whereas [3] couches its sufficient
conditions in terms of derivatives of Hermite quintics. We also give sharp conditions
on the second derivatives, for given fixed first derivatives, such that a quintic Hermite
interpolant is monotone; this question is not addressed by (3).

deBoor and Swartz [2] were perhaps the first to address monotone quintic spline
interpolation, and monotonicity was also recently considered by Huynh [5] and Ulrich
and Watson [11}.

The present paper uses a simpler, but equivalent, form of the polynomial (1) to
obtain positivity conditions which are as elegant as those available for the quadratic
and cubic polynomials. The quartic polynomial is reparameterized to this simpler form
in §2 where the regions of positivity are described and a formal proof of positivity is
provided. The geometric characterization of positivity in §2 provides considerable
insight, and easily leads to various approximate criteria and computational simplifica-
tions. Section 3 outlines the conditions used to test for positivity and provides some
heuristics on constraining a nonpositive polynomial to be positive. Section 4 briefly
describes applications of this result in polynomial interpolation.

All of the algebra in this paper was done with Mathematica [12], and thus alge-
braic derivations showing intermediate steps are not given here.

2. Regions of positivity. Consider the transformation used in (8), e.g-,

a
ot = -4
e

This reparameterization should exist since a necessary condition for positivity of the

polynomial (1) is that the coefficients a and e are both positive. The polynomial
f(z)/e then becomes

2 +ba‘314e‘lf4a:3+ca"‘1/2e“1/2m2 4 da~ e 3 4 1,
which can be written as the polynomial
(2 oz, B,7) = et +az® + fat +ye+ ],

where a, 8, and v are defined appropriately. This reparameterized polynomial has
only three coefficients. In previous work on the quadratic and cubic equations, the
regions of non-positive roots were bounded by parametric curves corresponding to
double roots of the polynomial. The same holds true for the quartic polynomial (2)
above. A well known result in the theory of equations is that double roots exist when

the discriminant
A= 4[(:2 — 3bd + 12ae]3 - [2c3 + 97ad? 4+ 27h%e — Qbed — ’{Qa.::e]2

of the polynomial (1) 1s zero (a proof is given In [7]). Setting A =0 leads to the sixth
order equation

3  A=4[f? —3ay+12° - [126+ 9By~ 0% — 27a% — 2777 = 0.
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The discriminant for the quadratic and cubic polynomials was a second and fourth
degree polynomial, respectively, and region inequalities could be represented and de-
rived in a straightforward manner. In the case of the quartic, the discriminant is a
sixth order polynomial and we see no way of approaching the problem direcily; we
will construct a geometric argument which utilizes the parametric form of the double
root boundary. The presence of a double root (say t) implies that

pt) = 4t +30t?+20t+v =0 and 4p(t)—tP() = a3+ 262 +37t +4=0,

where the latter equation comes from the fact that 1/t isalsoa double root of z* p(1/z).
Solving simultaneously for o and 7 (for fixed §), we obtain parametric equations for

t € (—00,00),

1— gi — 3t - ptt -3
(4) at) = Y and ()= 5 .
Symmetry clearly shows up in these parametric equations since al-t) = —a(t),

y{—t) = —(1), e(1/t) = ~(t), and ¥{1/t) = a(t). By applying curve tracing tech-
piques, we can identify three distinct shapes (corresponding to zero, one, or two cusps
on each component) for the double root curves as shown in Figure 1 (important fea-
tures of these curves are aiso labeled in the figure). Figure 9 shows the family of
double root curves as varies, plotting only the top portions.

The region of positivity for the quartic, like the quadratic and cubic, is bounded
by the double root curve. Trying to prove this directly from (4), however, does not
work out well. To prove this result, we employ the following theorem (from [11, [9]):

TupoReM 0. The quariic polynomial g(z) nonnegative for all & > 0 if and
only if there exist polynomials u(z) and v(z) such that

g(z) = v?(z) + = v (z).
Rewriting (2) as
ple;e, B,7) = [z +rz+ s]2 +z{(a- or)z® + (8 - (r* +28))x + {7 — ors)]

for some r and for s = =1, then the above theorem implies that p(z) is nonnegative
for all z > 0 if and only if there exists real r such that

{5) (a — oryz? + (8~ (r* 4 2s)e+ (v — 2rs)

is a perfect square. f(5)isa nontrivial perfect square, the first and last coefficients
must be positive. The values of v which make (5) & perfect square correspond to the
roots of the quartic

2
(6) g(ria,B,7) = [B— (" + 95)]” — 4(a — 2r)(y = 2r8) =0,
where a—2r>0 and 5 —2rs > 0.

(The limiting cases a—92r = 0and y—2rs =0 corresponding to B—(ri+2s) = Qare also
possible and have trivial solutions, so we will not clutter the discussion by mentioning
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B2 -2<f<6

(12) (1b)
Dy ((ﬁ+6)m+ (B-Q)Sr:’ (B+5}3f2- (13-6)3”5
6/3 6/3
@Bz 2FD) \ .......... o

et

6<p
(1)

F1G. 1. Parametric curves from (4).

these special cases each time.) The discriminant of this quartic is proportional to (3)
indicating that the quartic equations (2) and (6) have the same double root boundary;
even though the double root boundary is the same for the two quartics (i.e., equations
(2) and (B)), their parametric representations differ. Proceeding from (6), as was done
from (2) to (4), gives parametric expressions a(r), ¥(r) in terms of a double root r of
(6). Cleaner expressions result from writing the double root as +sgn(f)t, where t 1s
simply a parameter with restrictions obvious {rom the structure of the formulas. For
s=1and 2 > 4, a double root of (6) is —sgn(t)t and the corresponding boundary is
parameterized as

(7a) a(t) = sga(t) {—Qt + gt—z;?—:@ [t + \/152———_Z] }

and



0 -
2
0 L
-26  -1p L 0z 30"
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=20

Fia. 2. Top components of curves from (4) for 8= -20, —12, -2, 5,12, 20
(top to bottom).

2
(75) v(t) = sgn(t) {—Qt + g—;gj-—z—) [t — 12 — 4] } .
This curve (aft), v(t)) is the top half of the double root boundary in Figure 1. The
bottom half of the double root boundary corresponds to the double root sgn{t)t and
parameterization (—a(t), —7(t)).
For s = ~1 and t € (=00, o0), the double root is ¢ and the parametric represen-
tation of the top half of the double root boundary is

(82) o(t) = 2 + g-z—"—f—"a t+ Ve + 4]
and
(85) 1(t) = —2t — (irilfj—) [t SNCETR

The bottom half of the double root boundary corresponds to the double root ¢ and
parameterization (—¥(t), —a(t)). The substitution of w? = 2 — 4 in equation (7)
would lead to equation (8), showing that these parameterizations are equivalent. For
technical reasons that only become apparent much later, (7) is the cleanest form of
the three parametrizations (4), (7), (8) to work with. Only equation (7) is needed for
the proof of the following theorem concerning the region of positivity:

THEOREM 1. For fived 8, the region of positivily for the quartic polynomial (2)
is bounded below by the curve T, which is defined by (7) for t? > max{4,3-2}. In
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i2=4

2<B<6
(3b)

B<-2
(32)

6<B
(3¢)

Fic. 3. Regions of positivily for the quartic polynomial.

other words, for any (a,7), the polynomial p(x;c, B,7) has posilivity if and only if
there exist (o*,v*) on g and 6 > 0 such thet « = o™ + § and y=v* + 6.

Proof. For any given 3, the region of positivity is depicted graphically in Figure
3. In each case, the parametric curve I'g is convex; this is easily proved by looking at
the signs of the first and second partial derivatives:

da* VP2 -4+t
= <0, for t*>max{4,8-2},

&a* 4 (VE=A+1)

— = sgn(t
ov~? Sgn()(?,t?—e—ﬁ) (12 -2-tv12 -4 >0
for 2 >.max{4,,8—2}2£§~§.

(An alternative argument for convexity is that the set of (a,8,7) for which (2) is
nonnegative for all z > 0 is convex, hence every constant slice is convex, hence the
bounding curve I'; must also be convex.) Assume for the moment that s = 1. TFor a

fixed B, consider (a’,v') defined by
o =a"()+6 =7+

for some value of § > 0 and for some t such that t* > max{4,$ — 2}, and for
(a*(t),7*(f)) given by equation (7). Since the parametric curve, [, is part of the
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double root boundary of equation (6), and since (a*(t),7*(t)} € T's, then ¢ from
equation {6} with double root — sgn(t)¢ can be factored as

@) glre* (.87 ®) = (r+ sen(t)?)” (r* — 2sgn(t) rt + 3% — %8 + 6))

and g(—sgn(t) t;a* (1), 8,7 (1)) = 0. The double roots satisfy the conditions of equa-
tion {6). The other pair of roots,

sgn(t)t £ /2(8 + 6 —t2),

are complex when ¢2 > f + 6, but do not make the lead and tail coefficients of (5)
positive when they are real. Hence, the double roots —sgn(t){ are the only roots
satisfying (6) and its side conditions along I'g.

We next show that if p(z; e, 8,7) has positivity, then so does p(z; &+ 6, 8,7 + 8)
for any § > 0, i.e., moving northeast from a point of positivity (a,7) preserves posi-
tivity. For simplicity, consider first the case of ¢ negative, i.e., 7 < min {-2,-VF =2}
for which we have a*(t) < v*(t) and q(t;a*(t),5,7"(#)) = 0. It is obvious that
a*(t) — 2t > 0 and v"(t) — 2t > 0 which means that the conditions of (6) are satisfied
and p(z; a*(t), 8,7 (t)) is nonnegative for positive z. Substituting (', 3,7') into the
function ¢ yields

gt e, 8,7) = o(t; 2 (2) + 6, 8,7" (1) + )
(10) = q(t; (1), B, 7" (1)) — 4[6(e* () + 7" (1) — 41) + &%
= —4[6(a* (t) + 7 (1) — 41) + §°].

When § > 0, this last term is negative since o*(f) + v*(¢) — 4¢ > 0. Noting that the
limsup g(r;a’, 8,7) = +oo > 0, it is clear that there exists a root, say ¢ < t, such

T = OG

that
ot';e/, 8,7) =0, & ~2t">0, ¥ -2'>0.

Hence, p(z;e’,3,7") is nonnegative for positive z. Notice that this argument did not
require starting on the double root boundary; it uses the fact that  Is a root satisfying
equation (6) for a given pair of coefficients, (a, 7}, to show there exists a root ts which
satisfies the equation for the pair (& + 6,7+ 8), for all § > 0.

For small § < 0, equation (10) indicates that the effect of the perturbation is to
add a positive increment (in the form of a linear term) near the double roots so that
they become complex. This has negligible effect on the other two roots which did
not satisfy (6) so that, within a sufficiently small neighborhood below the double root
boundary, the conditions of (6) are not satisfied. But this in turn proves that for any
(a,v) below the double root boundary, such that o <7, the conditions of (6) are not
satisfied: if this were not true we could choose a § > 0 such that (a + 6,7 + ) lay
in the neighborhood just described which would be a contradiction of the argument
given in (10).

A similar analysis can be performed for positive ¢, ie, t > max{2,B — 2},
with similar conclusions for a > 5. Since I'p is convex, every (a,7) in the region of
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positivity can be reached from I'g through an appropriate choice of (a™(t),7” {)) and
§ > 0.

We have shown that p(z; @, 3,7) has positivity for every (e,v) above the curve
I'g, and that for (a,7) below T, ¢(r;a,$,7) has no roots satisfying (6) for s = 1.
Thus, all that remains to prove is that for (e, v) below T'g, ¢(r;a, B,7) has no roots
satisfying (6) for s = —1.

So mow assume s = —1, 4 is fixed, o = a*(t) + 81, ¥ = 1° (1) + b, 2> p8+2,
where (e*(t),7*(f)) is given by (8). Recall that the double root boundary described
by (8) is the same as that given by (7), and thus I's lies on the curve defined by (8).
The double root ¢ satisfies (6) if and only if 12 > [ + 2, so only those double roots
need be considered. For double root t,

q(r;e, B,7) = (r— )2 (r? + 2rt + 3% +12 - 28),
and the other two roots are
—t+/2(8—-6—1%),

which are both complex since t*> > f+ 2 > 8 — 6. Therefore, the double root t is the
only root satisfying (6) near the portion of I'p corresponding to t? > B+ 2. Arguing
as before, where now the sign of { does not matter, we conclude that g(r; ', 5,7') has
a root satisfying (6) for any & > 0 and é» > 0, but not for small 6; < 0, é2 < 0.
If ¢(r; o, 8,7) had a root satisfying (6) for (a,7) below I, then the analog of (10)
would prove that g(r; o+ 61, 8,7+ 62) also had a root satisfying (6) for (o + 61,7+ 62)
arbitrarily near and below the part of ['g corresponding to 12 > #+9, for appropriately
chosen 6, > 0, 62 > 0. (It is always possible to choose such §; because I'g is convex
and 8v/8a < 0 along I's.) Therefore we conclude that g has no roots satisfying (6)

for (@,7) below Tg. [

3. Positivity conditions. Verifying that a point (@, 7) lies above I'g is nontrivial
using (7), and therefore computationally simple tests are sought for the positivity
regions in Figure 3. A confinuity argument implies that the discriminant in (3) changes
sign every time a double root boundary is crossed. This leads to the distribution of
signs for A, in the three types of regions, as shown in Figure 4. The conditions for

positivity in the first case (8 < —2) are simply
(11 A< and a+7v>0.

For the second case, —2 < 8 < 6, we can use (11) as one of the conditions, but need
another condition to cover the middle region with A positive. Linear bounds on (a,%)
could be used in this case, but a more compact representation is obtained by using &

parabola,
(12) AMsla—v)2-16a+3+7+2)=0,

which surrounds the positive middle region (see Figure 5b). The algebra required to
show that the parabola indeed lies below the curve I's on the positive middle region
is straightforward but tedious (because of convexity, it suffices to check the slopes at
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25p<6
{4b)

6<p
(4c)

Fia. 4. Sign distribution for the discriminant A of the quartic.
the three points where A intersects Tp). The resulting pair of conditions in the case
of ~2 < B <6 are
A<0 and a+7> 0
(13) or
A>0 and M S 0.

In a similar way, a parabolic curve can be constructed to bound the middle region
(sce Figure 5c) in the final case, § > 6, leading to the curve:

4(8 +2)

14 Ap=(a—7) — (a+7+4v —32) =0.

( ) 2 ( 7) m a7y 6

This last case is more complicated than the previous one because the parabolic curve
will not contain the tips of the cusp region for large 3; however, noting that the cusp is
always contained in the first quadrant leads to the following three positivity conditions
corresponding to S > 6:

A<0 and a+y>0
or
(15) a>0 and 7>0
or

A>0 and Ay L0,

9



6<p
(5¢)
Fig. 5. Positivily conditions for the quartic polynomial.

A graphical depiction of these conditions is shown in Figure b for the three cases. The
theorem from §2 and these simple tests for positivity can be summarized in:

TuroREM 2. Let f(z) = azd + b e Hdzte be a quartic polynomial with
real coefficients and @ > 0, e > 0. Define

o= ba'3/4e'1/4, 8= ca'll’?e"l/?’ v = da‘1/4e‘3/4,

A =4[ —3ay+12) = (728 + 90y = 9g® — 27a% — 2771,

A= (a~7)2—16(a+ﬁ+7+2), Ay = (a—7)2— 4_&3_____?4'72_2) (a+7+4m) .

Then f(z) >0 for all z > 0 if and only if

() B<-2 and A <0 and a+v >0
A<0 and a+y>0

(2) ~2<B<6 and or
A>0 and A S0
A<0 and at+y>0
or

(3) <P and a>0 and 7>0
or
A>0 and Ay <0
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These conditions can be costly to implement and a set of simplified sufficient
conditions can be used as a pretest for positivity. ;From Figure 1, it should be clear
that the following conditions are sufficient for positivity:

(1) ar>—-ﬁ+2 and 7>—ﬁ+2 for B <6

2
{H a>-2/p-2 and 7>-2y/B-2 for 5>6.

4. Applications. The initial motivation for this work was in the application
of Hermite interpolation to construction of random number algorithms for arbitrary
continuous distributions. Results from a previous paper [10] suggested that a fifth
degree piecewise polynomial approximation could achieve accuracy comparable to that
of an exact algorithm implemented in single precision for many common distributions.
That same paper outlined an approach for constructing the piecewise polynomial
interpolant but indicated that, even though the inverse «df was monotone, piecewise
interpolants using higher order polynornials might not be monotone. The problem of
testing for monotonicity of cubic interpolants was solved by Fritsch and Carlson [4],
of quartic interpolants by [8], and of quintic interpolants (sufficiency) by and [3] and
[11). Theorem 1 can be used in testing for monotonicity of the quintic interpolant as
described below.

Suppose that a quintic interpolant is constructed on the interval {Us, U 1) to match
the ordinates and first and second derivatives of the function f(U), e-g.,

(16)

Xo= f(Uo), Xo=F(Us) X¢ = [ (Uo),
X = f(Uy), Xi=f{U) = ().

. The fifth degree Hermite polynomial interpolant on (Up, U1} can be written as

() = = { [RCKY = X§) = (X% + X1 + 3 = Xo)]o”

+ [P2(XY + XY) = h(X] — Xg)] v

+ [-2R*(XY — X§) + 10R(Xg + X1y = 10(X1 — Xo)]u®
+ [~2R3(XY + XT) + BR(X] — X4)]e?

T [BCXY = XYY - Th(Xg + X7) + 15(Xs = Xo)]u

+ [R2(XY + XY) - 5h(X7 = Xo) + 8(Xo + Xy)] }

(17)

where u = (U — U)/h, U = (Up+ U1)/2 and h = (U1 — Up)/2. The polynomial
in (17) is monotone on (Ug, Ur) if and only if its derivative is nonnegative over the
interval. Taking the derivative and using the transformation u = i—:& we obtain the

test polynomial
(18) Bzt +4(B- D) +6(D-C—2B-24+ 5)z7 + 4(A+ C)z + A,

where A = 2% B = 225 ¢ = BXY p = XL and v = (X1 — Xo); the quintic in
(17) is monotone if and only if (18) is nonnegative for z > 0. (The special case AB =0
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reduces to a cubic, and will not be considered further. Thus we assume 4 > 0, B > 0
henceforth.)
This quartic can be reparameterized to fit the form of equation (2) by defining

_4B-D) _ 6(D—C—2B—2A+5) 4(A+C)
(19) = ijagsjar B = aijzgije ’ V= 4s/agija-

Theorem 2 can be applied to these coefficient values to determine whether the poly-
nomial in (17) is monotone. If the quintic is not monotone then we can adjust the
derivative values to make it monotone over {I/y,U1}. One strategy is to scale the
derivative vector (X}, X1, Xy, X{') by an appropriate factor p € (0,1), e.g.,

P(X(’h X;.JXE!’:X?)’

which will always lead to monotonicity for p small enough. To see this, note that,

after scaling, the coefficients in (19) become

 4B-D) mﬁ(D—C—ZB—2A+%) 4A+0)
= Jvige A= FYEE v 1= spagiia

and decreasing p increases 3 without affecting a or y. The nature of the positivity
regions is such that increasing # will eventually satisfy the conditions of Theorem 2,
for fixed o and v. In particular, equation (16ii) can be used to provide an approximate

value for p, e.g., choose p as

120

2y , where § = min{a, +3.
P JAB(5 +8) + 2424+ 2B+ C— D) ten 7}

A more satisfying strategy for constraining {17) to be monotone would involve
adjusting only the second derivatives. For much of what follows, we will assume that
the values of A and B are fixed. If a point 5y = (Cy, Do) could be located within the
interior of the monotonicity region, for fixed (A, B), then (17) would be monotone for
(A, B,C*, D), where

(20) (C*, D) = p{(C, DY+ (1 — p)(Cho, Dy)

for sufficiently small p.

With fixed (A, B), using (19) and plotting A = A(C, D) = 0 in the (C, D) plane
gives tear drop shaped regions for the permissible values of (C,D) (3], [11]. The
discussion below, based on [11}, derives entirely from translating the positivity region

in (e, 8, 7) space to a region in (4, B, C, D) space.
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We establish the notation 5 = (C, D) for fixed (4, B), and consider the points
(determined in conjunction with a previous paper {11] concerned with monotonicity
of the quintic Hermite polynomial) defined by

m=(Ci, D) = (:—}@ (7~/Z+3x/§+ \/5 (24+2\/E-3(A+B))) ,

4

VB (3\/A‘+7x/§+\/5 (24+2\/E—3(A+B)))) ,

Vi (6A +3B — 15+ 2/AB 4A3/“Bl/4)
= (Cr Dr) = 3(VA++/B) - YAB)V1

(21)
VB (3A + 68— 15+ 2V/AB — 4A”“B3/4))

3(VA+VB) - 4(AB)1/4

s = (C3, D3) = (-‘—Z—Z (7\/E+3«/§— \/5 (24+2@—3(A + B))) ,

-—‘? (3\/71+?\/§—\/5 (24+2\/E-3(A+B)))).

These points lie along the line {y = o)
(22) VB(A+C) = VA(B - D),

and we will show that this line passes through the tear drop shaped region of (C,D)
values for which equation (17) is monotone, for fixed (4, B). Also consider Regions
I and II, depicted in Figure 6, showing values of 4 and B (both positive) over which
the 7; will provide endpoints bounding the segment of (C, D) values along (22) for
which the Hermite interpolant is monotone. Note that the Region II boundary is the
same as the one defined in Figure 4.2 of {3]. If we define a(v), B{v), ¥(v) to be the
coefficients in (19) evaluated at v = M, 72, OF 73, then we can prove the following
results:

THEOREM 3. The coefficients in (19) ezhibit the following properties:
i. n2 = n3 along the boundary between Regions I and IT;
. B(m) > 6 over Regions I and ITI;
lii. B(n2) < 6 over Region I and B(1;) > 6 over Region II:
iv. B(n3) < 6 over Region I and B(n3) > 6 over Region [I;

v. a(m) = y(m) = -2/B(m) - 2;

vi. afna) = 7(m) = -ﬁ—(n%ﬁ;

vil. e(ns) = v(n3) = ~2+/B(ns) - 2.

The proof of these results involves tedious, but straightforward, algebra and there-
fore will not be given here. The points 1y, 112, 73 provide the endpoints to intervals
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9 -—
L Region I
7 T, >0
6 —
Region |
5 T, (A.8) = 2042 AB-3(A+B) = 0

<

Ty (AB)=25-AB+{A+B-10{A+B+AB)=0

|

FIG. 6. Boundary regions on n(A, B).

of monotonicity for n along the line given by equation (22). Note that n; and p3 are
complex for (A4, B) beyond Region II, a reflection of the fact that equation (17) cannot
be monotone for (4, B) outside of Regions I and II. The endpoint relationships can
be summarized in the following theorem:

THEOREM 4. Let (A4, B) be fized and contained within Region I or II. If
o = (Cg, Dy) is any point on the line geven by (22), then (17) is monoione for
(A,B,C[),D{]) zf and anly If

1. (A, B) is in Region I and 7y = pm + (1= pypa for some p € [0, 1], or
ii. (4, B) is in Region IT and ny = o+ (1= p)ns for some p € [0,1).

Proof. Sufficiency. Note first that (1) = (o) since 7, lies along the line given
by (22). Consider first the case of (A, B) in Region I1. According to (16), we need to
show that a(ng) > ~2,/B(n0) = 2. Clearly, for fixed (4, B), a(n) and A(n) are affine
in 7 so that (using Theorem 3)

() = pa(m) + (1= pla(ns) = p(=2v/B(m) — 2) + (1 — p)(~2/Bl7a) = 2)
2 ~2\/(pB(n) + (1= P)B(ns)) ~2 by convesity of ~ 25

= —2\/,3(1’)0) —2.

Figure 7b depicts the relationship established in the above inequality.
For the case of (4, B) in Region I, the proof is similar except that we have to
consider the convex function defined by

z42
u(:c):{— 9 7 <6

—2/2 -2 z>86.
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Again using Theorem 3 and (16), as Figure 7a suggests, we have

(1) = pa(m) + (1= palm) = o2/ =) + (1 - ) (A7) 22 %)

= pw(B(m)) + (1 - p)w(8(12))
>w(pflm) +(1 - p)B(n2)) by convexity of w(z)
= w(B(m)).

Necessity. From Figures 1 and 3 and Theorem 2, both the situations

a(no) = y(ne) < _“ﬁ(n%-f_g, (8(n0) < 6),

and

a(no) = 7(m0) < —24/B(no) — 2, (B(no) > 6),

correspond to nonmonotonicity of {17). These situations obtain precisely when p ¢
[0, 1] for Region I (Figure 7a) or p ¢ [0, 1] for Region I (Figure 7b), from the convexity
of w(x). This proves the necessity and completes the proof. [

By choosing 7 as any point satisfying the conditions of Theorem 4, we obtain
a point interior to the region of monotonicity. The adjustment described in (20) can
then be used to constrain the quintic to be monotone. For (A, B) in Region 11, a
reasonable choice of 5 is the average of the interval endpoints, 7, and N3, namely

(23) o = (- ‘/;1(7\/2 +3vB), l?(s\/z + 7\/5))_

4

Actually, this same point is interior to the monotonicity region for (4, B) in Region I
as well since 73 lies between 7y and 5, within Region I along the line given in {22).
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We will summarize all of these results in algorithmic form. v = X; - X, < 0,
monotonically increasing is impossible, and if » = 0, the solutionis A= B=C =D =
0. Assume v > 0 in the following, and that nominal values of A, B, C, D are given
(obtained, e.g., by a C* quintic spline interpolant or finite difference approximations).
The case where (4, B) lies outside of Regions [ and II will be handled in the first and
second steps of the algorithm.

Algorithm for consiructing ¢ monotone tncreasing Hermite quintic.

L Set A := max{0, 4}, B = max{0, B}. If AB = 0 use the simpler positivity
criteria of [8] for cubics.
2. fn{(A4,B) = 24+2\/,71§—3(A+B) < 0 then scale the derivative vector (X35, X{)

until 71 (A4, B) > 0.

3. Let n = (C, D). If a(n), B(n), and 7(n) do not satisfy the conditions of Theorem

2, then find p such that a(y*), B(n*), and 7(n*) do satisfy the conditions, where

" =pm+(-pm,  pe(0,1),

with 7y defined in (23).

Following Huynh [5], Step 1 can be preceded by: Set X := median {0, X}, =1,
X] = median {0, X}, 72}, and then compute (A, B). Step 2 can be replaced by
a simpler sufficient condition which would scale the derivative vector till the first
derivatives lie within the square imbedded within Region II (e.g., the square defined
by [0,6] x [0,6]). Yet another alternative to Step 2 would be to scale the derivatives
X§, X{ back independently until (A, B) > 0{2], [3]. In a similar fashion, we can use
the conditions in (16) to simplify verification of menotonicity of the quintic in Step 3
of the algorithm.

' Note that the above algorithm is for a single monotone increasing Hermite quintic
polynomial piece, and does not address at all the iterative adjustments required to
achieve a monotone Hermite quintic spline. From Theorem 4 and (21} it is clear,
however, that such an adjustment is always possible: for sufficiently small {A,B) >
0 the admissible (C, D) line segments are arbitrarily long. An efficient and robust
computer algorithm for monotone Hermite quintic spline interpolation based on the
tear drop regions of [11] will be the topic of a future paper.

5. Conclusion. Elegant necessary and sufficient conditions that a quartic poly-
nomial f(z) be nonnegative for z > 0 have been derived. Simple and computationally
cheap sufficient conditions were deduced from the more general conditions. Important
applications are to monotone quintic spline interpolation and the efficient generation
of random variates from arbitrary continuous distributions. Applying the theory to
monotone quintic interpolation, sharp necessary and sufficient conditions for mono-
tonicity were derived. Simpler sufficient conditions for monotonicity were condensed
into an algorithm suitable for quintic spline interpolation.
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