Specifying and Inheriting Concurrent Behavior
in an Actor-Based Object-Oriented Language

by Greg Lavender and Dennis Kafura

TR 90-56

havior results in the explication of a mapping from the domain of ob ject

Specifying and Inheriting Concurrent Behavior
In an Actor-based Object-Oriented Language

Greg Lavender Dennis Kafura
lavender@vtopus.cs.vt.edu kafura@vtopus.cs.vt.edu
(703) 953-3458 (703) 231-5568

Department of Computer Science, Virginia Tech
Blackshurg, Virginia, U.S.A 24061

Fax: (703) 231-6075

Abstract

Using CCS behavior equations to specify and reason about the observable

behavior of concurrent objects, we demonstrate that a language mechanism
called a behavior set can be used to capture the behavior of actor-like objects.

Using behavior equations as a formal representation of concurrent object be-

to a domain of behavior sets. We call this mapping the behavior function. By
expressing relevant object states, behavior sets, and the behavior function
as first-class, inheritable, and mutable entities in a concurrent object-oriented

language, we have defined the conditions which must be met in order to inherit

concurrent behavior free of known anomalies.

Keywords: Actors, ACT+

Object Behavior

states

+, Behavior Sets, CCS, Concurrency, Inheritance,

Specifying and Inheriting Concurrent Behavior
in an Actor-based Object-Oriented Language

Greg Lavender Dennis Kafura
lavender@vtopus.cs.vi.edu kafura@vtopus.cs.vt.edu

Department of Computer Science, Virginia Tech
Blacksburg, Virginia, U.S.A 24061

Abstract

Using CCS behavior equations to specify and reason about the observable behavior
of concurrent objects, we demonstrate that a language mechanism called a behavior set
can be used to capture the behavior of actor-like objects. Using behavior equations
as a formal representation of concurrent object behavior results in the explication of a
mapping from the domain of object states to a domain of behavior sets. We call this
mapping the behavior function. By expressing relevant object states, behavior sets, and
the behavior function as first-class, inheritable, and mutable entities in a concurrent
object-oriented language, we have defined the conditions which must be met in order

to inherit concurrent behavior free of known anomalies.

1 Introduction

In a concurrent object-oriented language, we would like to be able to inherit behavior and
realize synchronization control without compromising the flexibility of either the inheritance
mechanism or the synchronization mechanism. A problem called the inheritance anomaly
[Matsuoka 1990] arises when we implement, synchronization control within a class and then
attempt to specialize behavior through inheritance,

In this paper, we formalize the notion of concurrent object behavior using Milner’s
Calculus of Comrmunicating Systems (CCS) [Milner 1989]. The formalization facilitates
the identification of the fundamental cause of the inheritance anomaly and leads to the
definition of a set of conditions which are necessary for inheritance and synchronization

contral to coexist in concurrent object-oriented languages,

For the those not familiar with the inheritance anomaly, we briefly review the problem
in section 2. Those familiar with the problem may wish to continue with section 3.

In section 3, we use the notation of CCS to specify and reason about the behavior of a
concurrent object. We also define the elements of a model which are necessary for identifying
the fundamental canse of the inheritance anomaly

Having developed a means for reasoning about object behavior and having identified the
cause of the inheritance anomaly, we discuss in section 4 what it Ineans to inherit concurrent
behavior. We use our prototype object-criented actor language ACT++ as an exainple.

We conclude with a summary of the ideas presented in the paper and we discuss the

current status of our work and the ACT++ prototype.

2 The Inheritance Anomaly

In the object-oriented paradigm an object is viewed as an encapsulation of state and code in
the form of instance variables and methods, respectively. In object-oriented languages, the
declaration of the types and names of instance variables and the signatures of the methods
are most often declared in a elass definition. The class definition serves as a contract, between
objects of that class and clients or subclasses that intend to use instances of the class. A
subclass is a specialization of a particular class. The specialization is achieved through an
inheritance mechanism. These are the features of the object-oriented paradigm that we are
interested in here. A more thorough discussion can be found in [Wegner 1990a).

In standard object-oriented models, all the methods declared in a class definition are
always available for execution by a client regardless of the internal state of an object of that
class. The class implementor typically provides, within the implementation of each method,
the code necessary to determine whether or not the object is in a state in which execution
of the requested method is appropriate.

For example, a stack object with a pop method must first verify that the stack is non-
empty before proceeding. Typically, the pop method will return an error value indicating
that an underflow condition has occured. The usnal mechanism for communicating the

underflow condition to the client requires an overloading of the return type of the method.

That is, the return value is outside the domain of values returned by a legitimate pop
operation. The client of the stack object must be aware of this value and always verify that
either the stack is non-empty before requesting the pop operation or check the return value
of each pop operation.

A non-standard object-oriented model can be defined in which the collection of methods
in a class definition are partitioned into subsets with respect to the state of an object.
Depending on the object state, only a subset of the methods declared in the class definition
are available for execution. Ty & non-concurrent object-oriented language, objects with such
semantics may or may not be useful. In a concurrent object-oriented language, mechanisms
based on such semantics provide a natural and elegant means for expressing synchronization
control.

In this paper we are interested in concurrent objects which by necessity employ some
form of synchronization control. In particular, we are interested in specializing the concur-
rent behavior of such objects. The concurrent behavior of an object is captured in part
by the class definition of the object and in part by the mechanism employed by the class
to guarantee synchronization. The inheritance anomaly occurs when we attempt to spe-
clalize concurrent behavior using an inheritance mechanism. The anomaly occurs because
the inheritance mechanism and the synchronization mechanism seem to interfere with one
another, limiting the ability of the subclass to reuse the method implementations of the
superclass. Furthermore, the anomaly has been observed across a spectrum of concurrent
object-oriented languages regardless of the kind of synchronization mechanism employed
[America 1987], [Briot 1990], [Kafura 1989], [Nierstrasz 1987].

There is a general consensus that we do not yet fully understand what it means to inherit
concurrent behavior [Wegner 1990b]. In the remainder of this Paper, we address this issue in
a formal way. A formalism is presented which exposes the essential elements of concurrent
object behavior and leads to conditions which mmst exist if the inheritance anomaly is to

be avoided,

3 Defining Concurrent Object Behavior

When we speak of the behavior of an object, we are concerned with the set of messages
that an object will accept at a given point in time, or alternatively, the set of methods that
are visible in the interface of the object upon receipt of a message. From this perspective,
the behavior of an object is its observable behavior since we are concerned with how the
object appears to those clients that communicate with the object. Our notion of observable
behavior is motivated by the similar notion described in [Milner 1989]; however, in this paper
the machinery of CCS is used in specifying and reasoning about the observable behavior of
individual objects, not systems of objects.

In dealing with concurrent objects, the relationship between the state of an object and
the subset of methods which define its observable behavior is critical. This relationship is
precisely what defines the behavior of a concurrent object. In order to understand concurrent

object behavior, we must investigate this relationship.

3.1 Specifying Behavior

We may define the behavior of an object as a set of behavior equations which capture the
states of an object and the subset of methods which are visible when the object is in a
particular state. As an example, we define the behavior of an object that maintains some
prescribed linear ordering over a collection of items and whose size is bounded. We call such

an object a bounded linear ordering and its behavior is described by the following equations:

A[) = in(a:) .A]_
Al = ill(l') .Ag + m(.’l’i)Ao

A ¥ SHE(2).A4,_,

This set of behavior equations is similar to an example in [Milner 1989]. The equations
capture precisely the states that an object representing a bounded linear ordering may
occupy during its lifetime. In the equations, we use only the Prefixing (.) and Summation

(+) combinators of Milner’s caleulus. In each of the equations the name on the left-hand

side denotes an agent whose behavior is defined by the right-hand side. Intuitively, agent A;
represents the behavior of the object when the size of the collection is ¢, where 0 < 7 < n.
One can verify, through recursive substitution, that this set of equations defines all possible
behaviors of a bounded linear ordering,

In the behavior definition of the A, agent, the Summation combinator conveys that the
agent offers both the in and ou% operations simultaneously to a client. If the in operation
is chosen, the Prefix combinator requires that an agent accept an input value denoted by »
and then become agent A.. Similarly, if the out operation is chosen, the agent outputs a
value denoted by 2 and then assumes the behavior defined by agent A,.

In general, we say that agent A; becomes agent A;y1 following an in operation and agent
A;—; following an out operation, with the behavior of agents Ag and A,, being special cases.
From this perspective, the behavior equations define the operations offered by an agent as
well as a replacement behavior. The notion of replacement behavior is a fundamental aspect
of the Actor model [Agha 1986]. Hence, it seems appropriate to use behavior equations as
a formal means for spectlying and reasoning about the behavior of individual actor-like
objecis.

Although we have specified a generic bounded linear ordering, the above set of behavior
equations is isomorphic to a set of equations representing a bounded buffer accepting put
and get operations, a stack accepting push and pop operations, or a queue accepting enguene
and dequeue operations. The isomorphism is realized through an application of the CCS

Relabeling operator to yield the desired name substitution:

Buffer = Au[in/put,out/get],..., 4, [in/put, out/get]
Stack = Ag[in/push, out/pop),..., An{in/push, out/pop]
Quene = Ap[in/enqueue, out/dequeue], ..., 4,[in/enqueue, out/dequeue]

We can achieve the isomorphism becanse at this level of abstraction we are not concerned
with the actual semantics of the in and o operations, e.g., whether or not the out op-
eration returns values according to FIFO or LIFO semantics. To maintain generality, the

equations describing a bounded linear ordering are used in the remainder of this paper with

the understanding that we can apply the isomorphism at any time,

3.2 Object States and Behavior Sets

Behavior equations may be viewed as defining independent agents representing the various
states of an object. In this section a model is defined which captures the essential ele-
ments used in developing a programming abstraction to represent a collection of behavior
equations.

In our model, we associate with each A; a state o; and an set 3; called the observable
behavior set. For a given behavior equation A;, the observable behavior set B: is constructed
from the non-restricted prefix operations on the right-hand side of behavior equations. By
non-restricted prefix operations, we mean those operation names that do not appear within
the scope of the CCS Restriction operator, thereby removing those operations from the
set of observable behaviors. The collection of all states is given by the state set S =
{o0,04, ... yOn }. The set of a]l possible observable behavior sets is the powerset B = P(M),
where M = | 2 8. To complete our model, we also need a function which relates states

to behavior sets.

3.3 Mapping States to Behavior Sets

We can define a function fs ' 8§ —~ B which maps elements of the state set to elements
of the powerset of observable behaviors, We might argue that in developing an abstract
data type of a bounded linearly ordered structure in the standard model, a programimer
implicitly defines s mapping from S to B. More precisely, each o; is ahways mapped to a
single element in B, namely M, where M = { in,out}. We call fs the behavior function
since it defines the observable behavior of an object in any given state. In the standard

model f5 is defined as:

foloo) = M
falor) = M
f,@(o'n) = M

That is, objects in the standard model alway have the same observable behavior regardless
of the object state,

We argue that the definition of 5 in the standard model is unnatural. Because f3(og) =
{in, out}, we are forced to write the method implementing the 3ut operation in such a way
that an underflow condition is detected. A similar situation occurs for fp(orn). What is
needed is a more natural mapping for f5. A more natural mapping from S to B can be

given as follows:

fagloo) = {in}
fola1) M

falon) = {out}

This new mapping corresponds to our intuition about the observable behavior of a bounded
linear ordering.

Consider that one wants to realize the behavior captured by the behavior equations
by implementing an object in an appropriate object-oriented language which embodies the
abstraction of a linear ordering. We observe from the mapping fs that a useful abstraction
is to partition the above behavior equations into three sets based on the notion of the
state of the object. Such a partitioning appeals to our intuition about the behavior of a
linear ordering. Furthermore, we only need to reason about three behaviors, not n; that
18, we reason that the structure is either empty, full, or somewhere in between. When we
implemens the abstraction Just formed, we will define a class which exports two methods, in
and out, and which either explicitly or implicitly implements a synchronization mechanism
which is consistent with the behavior equations previously formulated.

Suppose now that we wish to introduce a new constraint on the behaviors. For ex-
ample, we distinguish the behavior given by the A; equation as being different from the
As, ..., An_1 behaviors because a new operation is introduced which angments the behav-
lor sets of agents Agy. o Ay_s. In distinguishing the Ay behavior, we must define a new

partitioning different than the one previously formed. We now distinguish the conditions

empty, full, singleton, and somewhere in between.

If we attempt to specialize the previously implemented abstraction through inheritance
we find that we have to redefine the mapping given by fs. Redefining the mapping means
that we have to change the domain § , the codomain B, and the mapping of elements in $ to
elements in B. If we have implemented the abstraction is such a way that these components
are implicitly imbedded in the implementation, then we run into the inheritance anomaly.
That is, because the components of the mapping fz are implicitly imbedded in the imple-
mentation, the only way we can redefine the mapping to give us the new synchronization
control we desire is by reimplementing the methods in which the mapping components are
embodied. This renders the inheritance mechanism nseless. The solution, as we shall see
In the next section, is to dissassociate the components of the mapping fg from the method

implementations and make them explicit,

4 Inheriting Concurrent Behavior in ACTH++

The types of concurrent object-oriented systems we are interested in are composed of actor-
like objects with properties similar to those described in [Agha 1986]. Each object possesses
its own thread of control and communicates with other objects via message passing. Concur-
rency in our system is limited to inter-object concurrency which is achieved using message
passing and an actor-like become operation. The become operation results in a replacement
bekavior (object) with its own thread of control. Fine-grained intra-object concurrency is
not a feature of objects in our system.

We are specifically interested in expressing and inheriting concurrent object behavior
in ACT++ [Kafura 1990], [Lee 1990], a prototype object-oriented language based on the
Actor model and C4++ [Ellis 1990). ACT++ is a collection of classes which implement the
abstractions of the Actor model and integrates these abstractions with the encapsulation,
inheritance, and strong-typing features of C4+. The language falls in the heterogeneous
category of concurrent object-oriented languages [Papathomas 1989] since we have both
active and passive objects. Active objects are instances of any class derived from a special

Actor class. Any instance of a class not derived from the Actor class is a passive object.

Concurrency is achieved using an actor-like become operation which is implemented in the
Actor class. The become operation permits an object to specify a replacement behavior.

The notion of behavior abstraction was previously proposed in ACT+-+ [Kafura 1989} as
a mechanism for capturing the behavior of an object. Upon initial examination, behavior
abstraction seems powerful since synchronization can be achieved naturally by dynamically
modifying the visibility of the object interface using the become operation. The eflicacy of
this mechanism and its degree of interaction with the ACT++ inheritance mechanism has
been examined by others [Papathomas 1989], [Matsuoka 1990] and has been found to have
serious limitations. The most serious limitation occurs because a behavior abstraction is
not a first-class entity in the language and is thus subject to the effects of the inheritance
anomaly,

Enabled sets [Tomlinson 1989] improve on the notion of behavior abstraction by pro-
moting the control of the visibility of an object’s interface to a dynamic mechanism which
can be manipulated within the language; i.e., objects in Rosette are first-class entities.

The flexibility offered by enabled sets lead us to investigate the combination of behavior
abstraction and enabled sets which resulted in the notion of a behavior set as introduced
in the previous section. The ACT++ mechanism which captures the idea of a behavior set

has the following properties:
® it is a natural extension of formal methods for specifying concurrent object behavior,

¢ it does not interfere with the ACT-++ inheritance mechanism,

1t is free from known inheritance anomalies,
® it can be expressed entirely within ACT++, and
e it can be enforced efficiently at run time.

We use ACT++ in the following sections to illustrate how to express elements of the
object state set S, elements of the observable hehavior powerset B, and the behavior function

fs, such that concurrent behavior may be defined and inherited free from known anomalies

4.1 Expressing Concurrent Behavior

To represent concurrent object behavior within the ACT++ language, we rely on three

first-class entities expressible within the langnage:
1. state functions representing some or all of the elements of the state set S,
2. a next behavior function representing the function fa, and
3. behavior sets representing elements of the observable behavior powerset B,

In the example shown in Figure 1, we demonstrate how each of these entities is expressed
and used in an ACT++ class definition of a bounded linear ordering.

In this example, we use two boolean functions empty and full to distinguish three states:
empty, full, and neither empty nor full. Although not shown, the functions are compnted
based on implementation dependent instance variables representing the actual number of
elements in the linear ordering. Both functions are nsed by the nextBehavior function
which maps the current object state to a behavior set represented by an instance of the
BehaviorSet class. There are three behavior sets defined: Zero, N, and Other. The Zero
and N behavior sets correspond to the previously expressed behavior equations A and A4,
respectively. The Other behavior set is used in this abstraction to collectively represent
the observable behaviors of the intermediate behavior equations Ay, As,..., A,_;. FEach
behavior set is initialized in the class constructor. Instances of the BehaviorSet class are
first-class objects and we have given an overloading to the binary + operator denoting set
union when applied to two behavior sets; hence, Other is formed as the union of the behavior

sets Zero and N.

4.2 Inheriting Concurrent Behavior

To substantiate our claim that the inheritance anomaly is avoided, we derive from LinearOrd
a new class called HybridLinearOrd. The main feature of HybridLinear0rd is that a new
method is introduced which forces us to change the mapping given by Js. The new method
allows a client of an instance of the Hybridlinear0zd class to atomically read a pair of

elements instead of a single element. The method cannot simply invoke the out method

10

class LinearOrd : Actor {
-«.. // private instance variables

protected: // instance variables and methods visible to subclasses
BehaviorSet Zero, N, Other;

virtual bool empty () { ... }
virtual bool full () { ... }

virtual BehaviorSet nextBehavior () {
if (empty ())
return Zero;
else if (full ())

return N;
else
return Other;
}
public: // methods visible to subclasses and clients

void in (int x) {

become nextBehavior (;

}

int out () {

become nextBehavior 0;

}

LinearOrd () { // construct initial empty object
Zero = BehaviorSet (&in);
N = BehaviorSet {&out);

Other = Zero + H;
become nextBehavior() ;

Figure 1: The Linear0Ord Class Definition

11

twice since the out method executes a become operation after each invocation. Due to
the concurrency in the system, another object may have its out request executed before
the second out is processed. We specify the behavior of this new type of object with the

following behavior equations:

Ay &f in(z).A4;
A E in(a) A, + 598(2). 4
As def in(z). A3 + out(z).4; + outpair(z,y).4y

A, def EE(;&:).An_l+ou1:pair(;tz,y).An_2

The behavior equations for a hybrid linear ordering differ from the equations specifying
the behavior of a linear ordering only in the addition of the choice of an outpair operation
in the definitions of the Az through A, behaviors. There are two effects of this refinement.
First, we need to add the outpair operation to the observable behavior set and compute a
new powerset B’. Second, since we now distinguish the A, behavior and since B’ D B, a

new mapping _fé is required:

falo0) = fs(o0)
folor) = fp(o)

fa(oa) = {in,Sﬁ,outpair}
falon) = {5ut, outpair)

Clearly there is cause to reuse the implementations of the in and out methods defined in
the Linear0rd class. In addition, we can see from the new mapping f; that we can also reuse
the nextBehavior function. In order to do so, however, we must redefine both the Other
and N behavior sets to include the method representing the outpair operation. We must
also define a new instance of the BehaviorSet class containing the methods representing

the in and ou% operations defined in the A; behavior equation.

12

The definition of the AybridLinear0rd class shown in Figure 2 inherits from the LinearOrd

class and introduces the following:
® a new state function singleton,
¢ a new behavior set One,
¢ a redefinition of the behavior function nextBehavier, and
¢ a new method outPair.

The singleton function corresponds to distinguishing the agent A4, from the Ay, Ag, o A,
agents, and the new instance of the BehaviorSet class corresponds to the behavior set
associated with agent A;. The Other and ¥ behavior sets are augmented in the class
constructor with the outPair method corresponding to the enlarged codomain B’. Thus,
the inherited nextBehavior function can be trivially redefined to correspond to the new
mapping f5 by only adding a check for the state corresponding to agent A; and invoking
the superclass behavior function Linear0rd: :nextBehavior for all other states.

Inheriting concurrent behavior means that we can reuse the superclass methods and
specialize the mapping given to fs by the superclass. This means the elements of S , the
elements of B, and the function fs must be representable in the language and the represen-

tations must be:
1. first-class,
2. inheritable, and
3. mutable,

The inheritance anomaly oceurs in previous formulations of this problem precisely because
the behavior sets and the behavior function, as they occured in the superclass, were neither
first-class nor mutable.

State functions representing elements of S, instances of the BehaviorSet class repre-
senting elements of B, and the nextBehavior function representing fa have these proper-

ties. All are first-class language entities inheritable by a public subclass. Instances of the

13

class HybridLinearQOrd : public LinearQrd {

Protected:
BehaviorSet One;
bool singleton () { ... }

BehaviorSet nextBehavior O{
if (singleton ())
return One;
else
return LinearOrd: :nextBehavior (;

}
public:
intPair outPair () {

become nextBehavier 0;

T

HybridLinearOrd () {
BehaviorSet Tmp(&outPair);
One = Other;
Other = QOther + Tmp;
N =N + Tmp;

Figure 2: The HybridLinear0Ord Class Definition

14

BehaviorSet class are mutahle by a subclass since they are within the scope of a protected
clause. The empty and full functions representing object states and the nextBehavior
function representing the behavior function are mmtable because they have the virtual
attribute. These functions are also within the scope of the protected clause; the purpose

being to hide them from clients of the subclass.

5 Summary and Status

We have attempted io explicate the relationship hetween concurrent object behavior and
inheritance. In doing so, we are forced to first define the meaning of concurrent object
behavior as it occurs in our actor-based concurrent object-oriented language. We have
offered a formalized approach for specifying and reasoning about concurrent object behavior
based on CCS behavior equations. This approach emphasizes the relationship between the
state of an object and subsets of the set of methods in the interface to the object, called
behavior sets. This relationship is embodied in the mapping given by the behavior funetion.
If the inheritance anomaly is to be avoided, behavior sets and the behavior function must
be first-class, inheritable, and mutable. We have shown that the language mechanisms of
ACTH+ (and therefore CH+) are sufficlently expressive in this regard.

We are continuing to refine our ideag about what it means to inherit concurrent object
behavior, We are exploring the ideas presented here in the context of distributed object-
oriented systems with a high degree of both intra-node and inter-node concurrency. In
particular, we have developed an object-oriented structure for the upper layer ISO protocols
and we are Investigating CONCUTTENCY issues.

We are also addressing the semantic issues I a more rigorous fashion than is presented
here. We suspect that type-theoretic semantics currently applied to object-oriented lan-
guages are incapable of addressing the temporal natore of a changing object interface as
captured by the behavior function. Interesting work in this area is [Nierstrasz 1990] which
also uges CCS as a starting point,

We have not discussed in this paper the run-time enforcement of behavior sets. We are

experimenting with a binary ovetloading of the C++ method invocation operator (->())

15

and a reinterpretation of the message passing semantics of ACT4++. A sub Jject of our current
regearch is to determine the relationship between our implementation approaches and others
based on reflection. We do not currently know how the approach in this paper relates to
approaches based on reflective languages.

The ACT+-+ prototype continues to evolve as we gain understanding about the semantic
issues underlying concurrent object-oriented languages. We have implemented ACT++ over
the Experimental Systems Kit (ES-Kit) [Leddy 1989], [Joshi 1990]. ES-Kit is a distributed
object-oriented run-time system which allows us to experiment with ACTH+ on a network of
Sun workstations. We are currently implementing behavior sets in ACT++ and integrating
the behavior set implementation with PRESTO [Bershad 1988]. PRESTO is a C++ based
threads package which will allow us to experiment with ACT++ on the Sequent Symmetry,

a shared memory multiprocessor.

Acknowledgements

The previous work of Keung Hae Lee on behavior abstraction in ACT++ and the work on
enabled sets in Rosette by Chris Tomlinson and Vineet Singh set the stage for the results
described here. More recently, the presentations and discussions during the Workshop on
Object-based Concurrency at the 1990 Joint ECOOP /OOPSLA conference motivated us to
explore exactly what we mean by object behavior and to investigate the relationship between
inheritance and concurrent object behavior in our actor-based language. We thank Satoshi
Matsuoka for originally formulating the inheritance anomaly in the context of behavior

abstractions in ACT 4+,

References

[Agha 1986] Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems, MIT Press, 1986.

[America 1987] Pierre America. “Inheritance and subtyping in a parallel object-oriented
language,” ECOOP’87 Proceedings, pp. 234-242, Springer-Verlag, 1987,

(Bershad 1988] Brian N, Bershad, Edward D. Lazowska, and Henry M. Levy. “PRESTO: a
systenl} for object-oriented parallel programming,” Software Practice and Experi-
ence, 1988.

16

[Briot 1990] Jean-Pierre Briot and Akinori Yonezawa. “Inheritance and synchronization in
object-oriented concurrent programming,” in ABCL: An Ob ject-Oriented Concur-
rent System, (ed. A. Yonezawa), MIT Press, 1090.

(Ellis 1990] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Man-
ual, Addison-Wesley, 1990.

[Joshi 1990] Nandan Joshi, A Distributed Implementation of ACT++, M.S. Thesis (in
preparation), Department of Computer Science, Virginia Tech, Blacksburg, Vir-
ginta, 1990,

[Kafura 1989] Dennis G. Kafura and Keung Hae Lee. “Inheritance in actor based concur-
rent object-oriented langnages,” ECOOP89 Proceedings, pp. 131-145, Cambridge
University Press, 1989,

[Kafara 1990] Dennis Kafura and Keung Hae Lee. “ACT-4+: building a concurrent C++
with actors,” Journal of Object-Oriented Programing, Vol. 3, No. 1, pp. 25-37,
May/June 1990.

(Leddy 1989] Biil Leddy and Kim Smith. “The Design of the Experimental Systems Kernel,”
Proceedings of the Conference on H ypercube and Concurrent Computer Applica-
tions, Monterey, CA, 1989

[Lee 1990] Keung Hae Lee. Designing a Statically Typed Actor-Based Concurrent Object-
Oriented Programming Language, Ph.D. Dissertation, Department, of Computer
Science, Virginia Tecelr, June 1990.

[Matsuoka 1990] Satoshi Matsucka, Ken Wakita, and Akinori Yonezawa. “Analysis of in-
heritance anomaly in concurrent object-oriented languages,” extended abstract
presented at the ECOOP/OOPSLA’00 Workshop on Object-based Concurrency,
October 1990, to appear in SIGPLAN Notices.

[Milner 1989] Robin Milner. Communication and Concurrency, Prentice-Hall, 1989.

[Nierstrasy 1987] Oscar Nierstrasz. “Active objects in hybrid,” OOPSLA 87 Proceedings,
pp. 243-253, 1987.

[Nierstrasz 1990] Oscar Nierstrasz and Michael Papathomas. “Towards a type theory for
active objects,” in Object Management, pp. 295-304, (ed. D. Tsichritzis), Centre
Universitaire D’Informatique, Université De Geneva, 1990,

[Papathomas 1989] M. Papathomas. “Concurrency issues in object-oriented languages,” in
Object Oriented Development, pp. 207-245, (ed. D. Tsichritzis), Centre Universi-
taire D’Informatique, Université De Geneva, 1989.

[Tomlinson 1989] Chris Tomlinson and Vineet Singh. “Inheritance and synchronization with
enabled-sets,” OOPSLA 89 Proceedings, pp. 103-112, 1989.

[Wegner 1990a] Peter Wegner. “Concepis and paradigms of object-oriented programming,”
OOPS Messenger, Vol. I, No. 1, pp. 7-87, August 1990.

[Wegner 1990b} Peter Wegner. Discussion Panel on Issues in Object-based Concurrency,
held in conjunction with ECOOP/O0OPSLA90, October, 1990.

17

