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The ability to detect and predict poor software quality is of major importance to software
engineers, managers, and quality assurance organizations. Poor software quality leads to
increased development costs and expensive maintenance. With so much attention on
exacerbated budgetary constraints, a viable alternative is necessary. Software quality
metrics are designed for this purpose. Metrics measure certain aspects of code or PDL
representations, and can be collected and used throughout the life cycle.[JRAMCS5]

Automated software quality measures are necessary for easy integration into the software
development process. This research reports on two metrics: Interface Metrics and
Dynamic Metrics. Interface metrics provide the capability to measure the complexity of
communicating modules. Dynamic metrics provide a measurement of the software system
quality as it is executed during the validation and verification life cycle phases.
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Introduction

As fast as computer science solves one problem, another comes up. Yet, through this en-
tire process the 'art’ of managing software development is still vague. One prime aspect of
the development process that must be controlled is the cost. Many horror stories exist
about development fiascos, but there are some methods and tools that can help alleviate

these problems.

One such method involves the use of software quality metrics throughout the lifecycle.
Software quality metrics are measurements that are derived from designs or source code.
These measurements help decide the flow of projects, and thus can have a great impact on
the cost. These measurements can aid in the decision among designs, locate overly com-
plex designs or code that will lead to costly debugging or maintenance, and reflect an

overall reliability.

Calculating these metrics by hand is a long and tedious process which is not cost effective.
Therfore we must automate the collection of software quality metrics. A tool exists which
collects the necessary information to calculate these metrics for a software project .

Background

There has been a great deal of interest about SQA metrics in the literature, with many dif-
ferent proposed measurements. These metrics gather information in order to quantify cer-
tain aspects, and because these are generated over non-executing code they are classified as
static. To date the proposed static SQA merics have fallen into one of three categories:

code metrics, structure metrics, and hybrid metrics.

Code metrics are generated from token counts from a parse of the source language. This
source language can be computer programming language: e.g., FORTRAN, Pascal, C,
Ada. Or, this source language can be a programming design language, either textual or
graphical. The most common metric of this category is source lines of code (SLOC, or
1000 SLOC = KSLOC). This measurement has been around for as long programs have
been written. Other measurements include: Halstead's Software Science, and McCabe's
Cyclomatic Complexity. [HALM77]1 [MCCT76] These are by no means the totality of
static SQA metrics, however, these are used in this study.



Structure metrics measure the interconnections of the source code elements. Simply, these
are measurements of control flow through communicating source code elements. One such
measurement is information flow as defined by [HENS§1]. This measurement, INFQ, is a
function of the number of calls into and out of an element, giving an indication as to the

elements usage.

Hybrid metrics are the best of both code and structure SQA metrics. Using aspects of both
code and structure metrics these measurements capture more information about the element
under scrutiny. These, however, are very costly to generate for a given source code ele-

ment or design.

The reader is directed to the Appendix for an introduction to the static SQA metrics dis-

cussed within this section.

A program is a dynamic entity. During execution it has the effects of calls, return from
calls, variables set, loops executed and dynamic data structures developed. Static metrics
can not be expected to take into account the effects of this dynamic execution. In order to
measure this it is necessary to have a set of dynamic metrics. These metrics provide an
indication of the coverage of the program along with being useful for reliability modeling.

Interface Metrics

While the selection of established metrics does offer several meaningful measurements, the
quantification of element communication has eluded researchers. Static SQA metTics were
designed by this research to meet this need. Interface complexity metrics, ICM as they are
known as, attempt to capture a meaningful quantification of the communication interface

between two elements.

Element, or module, cbmmunicaﬁon has been addressed within the literature. Stevens de-
fined coupling and cohesion levels to help classify the interfaces between communicating
elements [STEW74]. In order to achieve the loosely coupled and highly cohesive system
structure that is ideal, the use of low complexity interfaces between elements is necessary.
The interface complexiry metrics allow a measurement of each interface between all com-

municating elements.



The previous metrics have fallen short of this goal. However, aspects of the established
metrics are considered within the interface complexity metric. For instance, the INFO met-
ric captures complexity associated with dataflow, however, this metric ignores the inherent
complexities associated with differences in the data structures or size. McClure, in
[MCCC78], examines the communicational environment classifying according to nesting
within either selection or repetition control clauses, but ignores the varying degrees within

each of these clauses.

The interface complexity metric measures both the environment and the data used in the

commmunication,

Interface Metric Definition

As stated before, the interface compliexity metric measures both the environment and the
data associated with each communication between elements. In order to measure these
aspects, many underlying measurements were defined and used in the definition of the in-

terface complexity metric.

Data Complexity

First lets consider the data being used in the communication. Whar features of data makes
one data object more or less complex than another? The data type is the most apparent dif-
ferentiation of data objects that exists. Clearly, passing an integer is far less complex to
comprehend than passing a linked-list of records. Hence, a quantification scheme for data
types was created. A rype complexity is therefore associated with each variable within the

- communication,

‘The data that is passed between two communicating elements, however, might not be a
simple data object. The other alternative is to pass an expression, e.g., X + 3, Y * 2, etc.
Therefore this expression must be analyzed and quantified as to its complexity, i.e. an ex-
pression complexity must be calculated. This expression complexity is a function of both
the type complexity and the complexity associated with each operator, which is known as

the operator complexity.

With the type and expression complexity the data complexity within the interface can be
measured. As a side bar this research also used the extent of modification on each variable
within the interface, however, this showed to be statisticly non-different.



Environmen: Complexity

The environment complexity is calculated by associating weights to the different selection
or repetition structures found in the source code. This association of weights generates the
flow-control complexity. Each of the different selection (IF-THEN, IF-THEN-ELSE,
CASE, etc) or repetition structures (Test-Before, Test-After, Infinite, etc.) is given a
weight. This gives a measurement at each line within the source code, which is used to
calculate the environment complexity at the point of communication.

Relationship Among Complexities

Figure 1 demonstrates the wa
gur Y ( Interface Complexity )

the measures combine into
other measures. As mentioned
before, the interface complexity
measure contains both the data
and environment measures.

Contributing Directior see—gm-—

The data complexity is built up
from the type and operator
complexities. If the data is a

. . '
stmple variable, and not an Figure 1: Complexity Relationships

expression, then the operator
complexity drops out of the
function. The environment complexity is built up from the expression and flow-control

complexities.

All these complexities are contingent upon a pre-defined set of weights that the manager or
software engineer creates. This gives the ability to change/modify the weights to meet their
specific needs. Obviously users examining a real-time system are concerned with different
aspects verses users examining a life critical system (i.e., speed verses software safety).

Interface Metric Tool

The process of generating the interface complexity metric is automated. In fact, if this pro-
cess was not automated than the calculation of interface complexities even for short and
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engineer the algorithms or data
structures. Therefore, a translation from a program source to relation language will
generate a representation that can be useful for metric calculation, but useless for reverse

engineering.

The metric analyzer, as this tool is known as, is a three phase process. The first phase is
the only langnage dependant pass of the system. Therefore, it is possible for the first phase
to be executed away from Virginia Tech, thus insuring the security of proprietary code. In
other words, the analysis of the code beyond phase 1 of the tool does not require the source
code. The first phase takes in the source code and pre-defined type and operator weights
and generates the code metrics and a relational language representation of the source. Code
metrics are generated in this phase because they are source dependant.

The second phase converts the relational language representation into a set of relations that
maintain flow information. These relation will be used in the third phase. The second
phase also calculates all the interface complexity information. This information includes
metrics for all communicating elements (both environmental and parameter measurements),
a breakdown of variable usage, and a user document. While the third phase is used for




viewing the data, the user document is generated to view the "nuts-and-bolts” of the system
and the measurements. This document shows all variables, their type complexities, their
usage (local, global, parameter), and all the separate interface costs between elements. This
is very useful when fine tuning the weights to a specific need.

The third phase of this tool generates structure and hybrid metrics. This phase is also de-
signed to display the information in a meaningful manner, With a relatively complex sys-
tem the number of modules/elements could prohibit the cost effectiveness of examining
each individually. This phase facilitates the grouping of elements into a module level.

Interface Metrics Results

The metric analyzer was used to analyze an 85 KSLOC Ada program. This program was
developed by Software Productivity Solutions (SPS) of Melbourne, Florida. This system
was sufficiently large and complex enough to test the interface complexity measurements.

The results are very promising, and they are discussed in [CHABS0]. In summary, these

metrics can be used from the design phase on, and can indicate possible areas of poor code

quality.

Dynamic Metrics

Static metrics are derived from an analysis of non-¢xecuting code. Dynamic metrics are
derived from an analysis of the code while it is executing. They provide an indication of
~ what calls are actually taking place, the number of statements executed, and what paths are

being executed.

Dynamic Metric History

There are several different methods for performiﬁg analysis of an executing program, Most
of these methods are used to do performance analysis to determine what parts of a program
can be speeded up to decrease overall execution speed. These same methods work for
gathering dynamic information about a program. These techniques include profilers
[GRAS83] [BISM87], execution monitors [PLAB81], run time langauages [COHI77],
instruction counts [MCDG82), traces of execution [SHRAS4], and program slicing



[WEIM84]. These techniques can be implemented by preprocessing the source code,
postprocessing the assembly code, or having separately executing monitor prograrms.

Dynamic Metric Definition

Dynamic metrics include both complexity measures and measures useful in reliability
modeling. Dynamic metric values are dependent on the input or test data with which the
software system is run. This could provide different values when different test suites are _
run against the software system but will yield a consistent measure if the same test suite is

run multiple times.

Dynamic metrics and the reliability model associated with them are useful in certifying a
product as ready for release in terms of reliability. They could also provide information
about the complexity and the reliability of a prototypes of a product to help determine
further directions which should be taken concernin g the prototype.

The first dynamic metric is Frequency which is the number of executions of a module.
This measure is used for reliability purposes. Module execution without error indicates
less likelihood of an error in this module while an error indicates less reliability. Duration,
the time required to execute a section of code can be used similarly in a reliability model.

Parameter reference count and variable reference count are the number of times the
parameters to a module and the variables within 2 module are referenced. In a static sense,
the more times these are referenced in module the more is known about the parameter or
variable similar to Woodfield's Review Complexity [WOOS82]. However, dynamically
there may be many references where there are few static references. Many references
would increase complexity due to the increased interactions between the variables and

parameters.

Loop Executions is similar to frequency but counts the number of iterations of a loop.

Static structure metrics weight all possible paths equally. By doing a dynamic analysis of
branch selections a Branch Selection Percentage can be calculated and used for weighting
of static structure metric values which count all branches equal.



Call Nesting Depth measures the depth of calls made to get 1o current module. This
measures how much must be kept track of to know what is going on in the current module.
Knowledge of the environment when the current module is called is necessary when
considering the effects of this module. The deeper the nesting level, the more things must
be taken into account and thus a more complex environment must be considered.

Called function count is similar but counts the number of modules which are called from
this one. It is an indication of how many other modules are affecting this one. Higher
complexity is expected when there are more modules called.

Statements executed is the dynamic equivalent to lines of code. It is a basic measure of
complexity based on how big the software systern is in dynamic terms.

Dynamic Metric Tool

A static metric analyzer already exists at Virginia Tech which determines metric values from
analysis of the source code. This analyzer can be adapted to handle dynamic metrics.

A preprocessor would modify source code by adding some profiling commands. These
commands would be inserted code which would perform counts and other forms of
dynamic analysis. The new code would be executed when the program is run and the
results could then be analyzed with the use of the existing metric analyzer or a slightly

adapted version of the analyzer.

Conclusions

This paper discusses two different realms of metrics: static and dynamic. While each one
is interesting, it is best to view both classes of metrics when analyzing a system. Static
metrics characterize system attributes from design through maintanence, and dynamic
metrics from coding through maintanence. The SQA interface complexity metric has been
shown to view the communicational cost of software. Various dynamic metrics are

proposed here, and they look hopeful at best.

It is important to note that these metrics should be viewed on a whole by a software
engineer or manager. We believe that these metrics should be used as part of a complete
management scheme or methodology tailored to the particular development environment.



This scheme would cover the entire software development life cycle, not concentrating on
the coding phase alone. This provides for collection of the metrics from the beginning of
the life cycle. In other words, a design is automatically analyzed, and provides a basis for
choosing among several alternate designs for a single product. This helps reduce costs,
and hopefully decrease maintenance activity.

Designs, in proper and readable formats, can be analyzed, thus these measurements can
span the lifecycle from design to maintenance.
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Appendix Static SQA Metrics
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This Appendix contains brief descriptions of the metrics that are discussed within this pa-
per. These metrics fall into one of three categories: code, structure, or hybrid.

This appendix defines the metrics that are used within this research:

LOC: Lines of Code

N, V,E: Halstead's Software Science Indicators
CC: McCabe's Cyclomatic Complexity
WOCD: Woodfield's Review Complexity

INFO: Henry-Kafura's Information Flow Metric

Lines of Code (LOC)

This metric, most probably the oldest, is an enumeration of the lines of code. Simple, but
indicative of the complexity. There is, however, some debate what constitutes a line of
code from one language to the next.

Halstead's Software Science (N, V, E)

Halstead introduced a series of measures based on the countable aspects of source code.
Software Science [HALM?77], measures are based on-



n = The number of unique operators
nz = The number of unique operands
N1 = The total number of operators
N3 = The total number of operands

I =01 + 0y = Size of Vocabulary
N=N;+N; = Length of the Program

From the manipulation of these four countable measures, Halstead created software science
indicators (among others) for: Volume (V), Program Level (L), Difficulty(D), and Effort
(E).

The volume of a program is defined, by Halstead, to be a function of the length (N) and the
vocabulary size. The volume represents the storage requirements of the program, and is
defined as:

V=N * Log,(n)

The loga(n) component of the equation represents the storage requirements of the vocabu-

lary symbols.
The volume measure can change depending upon the size of the algorithm chosen for the

task. If there are n different algorithms (and thus 7 different volumes) it can be shown that
there is a minimum volume over these code sections. This minimum volume, or potential
volume of the most concise algorithm (V™) is defined but can never be calculated due to its
theoretical nature. With this, Halstead defines the program level to be:

\'
L= \'
Because V* can never be calculated an estimator must be attained:
© (2%ny
L=—r—<2
(n;*Ny)

The difficulty of an algorithm is defined in terms of elementary mental discriminations
(EMD). EMD represents the number of comparisons required to implement the algorithm
with respect to the given language. Therefore, Halstead defined it as the reciprocal of the
program level estimator:

"y -
Halstead's effort measure is a function of the difficulty and the volume. It represents the
mental effort required to design the algorithm from conception to implementation. Effort

(E) is:
VZ

E=V*D=v*L =L
A
Effort, Difficulty, Program Level, and Volume are the measures that compose the Halstead
Software Science indicators.

McCabe's Cyclomatic Complexity (CC)

McCabe's cyclomatic complexity metric is built upon the selection and repetition structure
of the code. [MCCT76] In the model, code is represented by a strongly connected graph
G. The nodes represent the code and the arcs represent the control flow. If the code is a
selection statement, then several arcs may extend from that node. This graph maintains the
path or flow information of the algorithm and has a unique entry and exit point, The graph
is strongly connected since there is an arc from the exit to the entry. With this framework,

McCabe defined:



Y(G) =E - N + 2 = Cyclomatic Complexity, where:

E = Number of Edges in graph G
N = Number of Nodes in graph G

V{(G) represents the number of control paths in the algorithm. McCabe suggested an upper
limit of V(G)=10, stating that this bound would curtail program complexity [MCCT76]. It
should be noted that in this calculation, V(G), is the Cyclomatic number found within clas-
sical graph theory, and it is the maximum number of linearly independent circuits or paths
within G.

The calculation of this metric may seem, at first, to be complex. Yet, the generation of this
MetTic reverts to the enumeration of the decisions within the code plus one [WOOM79].
These decisions include the selection and repetition constructs. Also, the total complexity
of the set of modules (the program) is equal to the sum of all module V(G)'s.

Henry-Kafura's (INFO)

Fan-in The number of local flows into the procedure plus the
number of data structures from which the procedure
retrieves information.

Fan-Out  The number of local flows from the procedure plus the
number of data structures that the procedure updates.

With the above definitions defining the flow relationship, the complexity of procedure p
was defined to be:
Cp = (Fan-in, * Fan-outy)2,
Fan-in, = Fan-in for procedure P
Fan-out, = Fan-out for procedure p

Where (Fan-in, * F an-outy,) represents the number of all possible data paths into and out of
procedure p, and it is squared because the cornplexity relationship is not linear. This com-
plexity points out areas (procedures) with very high information correspondence, and thus
a location for errors and error propagation.

The information flow metric was introduced within the scope of the structure metrics; how-
ever, this metric scheme also can be modified to be of 4 hybrid type. In this case the metric

is defined as:
Cp = Cip * (Fan-in, * Fan-outp)?, where:

Cip = Internal complexity of p
Fan-in, and Fan-outy are defined as before.

The hybrid form of the Henry-Kafura metric is used within this study as INFO.



Woodfield's Review (WOOD)

A=.B Control Connection: Module A invokes module B

A=4B Data Connection: Module A modifies some variable
that is used within module B

A={B Implicit Connection: Assumptions made within
module A are used within module B, _

If any of these three types of connections hold, then there is a connection from module A to
module B. These connections form:

Fan-in;  The number of times that a module needs to be reviewed. This is
made up from a combination of the connections for module i.

It should be noted that the idea of Fan-in here differs from the Henry and Kafura model by
including the aspect of implicit connections.

With these definitions in mind, Woodfield continued on to build a rating called the Review
Factor:

Fan-ini

RF;= Y RCY!
k=1

RC=

(ST ]

Where RC is the review constant that has been used by Halstead [HALM77).



