A Controlled Experiment to Evaluate
Maintainability of Object-Oriented Software

By Sallie M. Henry and Matthew Humphrey

TR 90-39



A Controlled Experiment to Evaluate
Maintainability of Object-Oriented Software

Sallie M. Henry

Matthew Humphrey

Department of Computer Science
Virginia Polytechnic Institute
Blacksburg, Virginia 24061-0106
Internet: henry@vtodie.cs.vt.edu

Abstract

New software tools and methodologies make claims that

managers often believe intuitively without evidence.
Many unsupported claims have been made about object-
oriented programming. However, without scientific
evidence, it is impossible 1o accept these claims as
valid. Although experimentation has been done in the
past, most of the research is very recent and the most
relevant research has serious drawbacks. This paper
describes an experiment which compares the
maintainability of two Junctionally equivalent Systems,
in order to explore the claim that systems developed
with object-oriented languages are more easily
maintained than those programmed with procedural
languages. We found supporting evidence that
programmers produce more maintainable code with an
object oriented language than with a standard procedural
language.

Introduction

New software tools and methodologies make claims that
managers often want to hear, “Language X cuts design
time” or “This Computer Aided Software Engineering
Package improves maintainability.” Most professionals
recognize hype when they see it and treat it accordingly.
Many managers and software engineers have only an
intuitive feeling for the accuracy of these claims because
there is no hard scientific evidence, only “warm, fuzzy
feelings.” More scientific evidence is needed.

Structured design divides a system into modules such
that each module has a high binding strength, while the
coupling dependencies between modules is low [18]1[19]
[171 [15] [971 {207 [10] {21]. Structured design is often
used directly with top-down decomposition and stepwise
refinement. “The benefits of structured design result
from the independence of the modules” [19]. Typically,

modules are defined that have the highest binding
possible first, and then the resulting system structure is
arranged (0 minimize the coupling. For most modern
programming languages, a module is synonymous with
a procedure or function. With object-oriented
programming, it means a “method,” an operation on an
object. Binding is the relationship among the items
within a module. Coupling is the relationship among
modules in a system.

Object-oriented design is a new technique that nses the
good aspects of top-down design and of abstract data
types combined with the modularization and separation
of structured design. In object-oriented design, “the
decomposition of a system is based on the concept of an
object. An object is an entity whose behavior is
characterized by the actions that it suffers and that it
requires of other objects™ [4]. Object-oriented design
has several definable characteristics. Object-oriented
programming directly supports these characteristics.
The four attributes are encapsulation, messaging,
inheritance, and polymorphism.

Object-oriented methodologies and object-oriented
languages have put forth many unsupported claims.
Here are a few examples: an object-oriented approach
cuts development time [5), makes software “resist both
accidental and malicious corruption attempts” [4], is
more maintainable [4] [14], more understandable [41,
has greater clarity of expression [5], supports the buy
versus build software trend [5][8], is easier to enhance
[71 [8] [16], enables better prototyping and iterative
development [1] [7], and reduces value-type errors
because of uniformity of objects [13] {71 [81 [16].

While these claims have a qualitative “righiness,” there
are little supporting quantitative data. Bochm-Davis
claims that object-oriented designs are the hardest to



modify, but a procedural language was used in their
experiment {3). Gannon claims that dynamically typed
operands (polymorphism) result in more €rrors, but in
that experiment, programmers were required to keep
track of the structure of the data themselves, which
violates the principle of information hiding [11]. The
programmer should not have to care how the object is
represented. Holt found that object-oriented programs
are most difficult for subjects 10 recognize and
understand, but again a procedural language was used
with an object-oriented design [12].

There are other problems with experimentation in
software engineering. Many experiments that have been
done were conducted on trivial programs which were
only a dozen statements long [11]. Other experiments
using student subjects made unreasonable conclusions
about professional programmers.

This experiment supports the claim that systems
developed with object-oriented languages are more
maintainable than those developed with procedural
langnages. In this empirical study, stodent subjects
determined the maintainability of systems developed
with two languages by performing maintenance tasks
on two functionally identical large programs, one
WIItien in an object-oriented language, and the other
written in a procedural language. Maintenance times,
Crror counts, change counts, and programmers'
impressions were collected, The analysis of the data
from this single experiment showed that systems using
object-oriented languages are indeed more maintainable
than those built with procedural languages.

However, this conclusion is only one aspect of the
many sides to software engineering. The goal of
software engineering is to produce better software
systems. One method of testing this goal is by
controlled expetiment and analysis. This experiment is
another piece in the software engineering “mosaic.”
Software engineering strives to reduce software cost,
increase reliability, and increase robusiness, among
other things. The goal of this experiment is to expand
the foundations of software engineering so that those
who work with software can make intelligent choices
when building and maintaining systems.,

Experimental Methods
One goal of this research was to support the claims that
object-oriented design and implementation yield more
maintainable systems. This was achieved in a
controlled experiment where subjects performed
enhancement maintenance on two functionally identical

programs, one designed with structured design
techniques using a procedural language (C), and the
other designed with object-oriented design techniques
using an object-oriented language (Objective C).
Measuring various dependent variables when the
subjects performed the task gave insight into the
usefulness of object-oriented programming over
structured procedural programming,

The hypothesis of this study is that systems designed
and implemented in an object-oriented manner are easier
to maintain than those designed and implemented using
Structured design techniques. "Easier to maintain,” in
this context, means the programmers take less time to
perform a maintenance task, or that the task required
fewer changes to the code. It also means that
programmers perceived the change as conceptually easier
or that they encountered fewer errors during the
maintenance task. Maintenance is defined in terms of
the variables used to measure the subjects’ performance.

This experiment was a “within subjects” test with three
independent variables. The variables were the
programming language, the subject group, and the task.
The subjects were randomly divided into two groups:
Group A and Group B. Every subject was required to
perform a modification task 1o both programs. Group
A subjects modified the C program and then modified
the Objective-C program before proceeding to the next
task. Group B subjects did the reverse: they modified
the Objective-C program first and then modified the C
program. This counterbalancing attempted to eliminate
any effect of using one language for a task before using
the other for the task,

All subjects performed two tasks. Each task was
performed once on each of the two programs. Al
subjects performed the tasks in the same otder. The
tasks were of a very similar nature and were not selected
to exhibit any particular attribute. As a "warm up”
exercise, all subjects performed an initial task that was
not included in the data analysis. This task was
equivalent to the others in difficulty, and the subjects
were not told that data would not be collected.

Procedure

This study was presented through a college senior-level
course in software engineering entitled “Object-Oriented
Software Engineering,” which has the course
“Introduction to Software Engineering” as its
prerequisite. The object-oriented software engineering
course was divided into two phases of eleven weeks
each, a teaching phase and an experimental phase, such



that a phase was one academic quarter. The first phase
involved teaching the students software engineering
techniques and the languages to be used in the study.
No experimental data were collected during this
segment. The second phase was the actual experiment,
in which the students of the course were the subjects;
they performed the tasks and data were collected. All
students were enrolled in the course for both quarters.

The teaching phase encompassed three segments:
software engineering, structured programming, and
object-oriented programming. During the first segment,
general principles of sofiware engineering applicable to
all methodologies were presented, including motivation
for software engineering and the need for control in
development studies and experiments. During the next
section, the students were taught the C language and
familiarized themselves with the VAX/VMS operating
system, on which all their assignmenis and the
experiment were given. Their programming
assignments for this segment involved designing,
coding, and integrating their code with other students'
code.

The last segment involved teaching object-oriented
design and programming. They were taught the
necessity of encapsulation, messaging, and inheritance
for accomplishing the design and implementation task.
Also, during this time, students were taught the
Objective-C language which was available on the same
machine as the C language, The programming
assignments again included designing, coding, and
Integrating new code with other students’ code,

The eleven weeks of the experiment phase followed.
For the start of the experiment, students were asked to
complete a questionnaire on their programming
experience. This questionnaire assessed the abilities of
the subjects. The background questionnaire measured the
students overall Grade Point Average, their Computer
Science G.P.A., the number of months experience
programming in C, Pascai, Objective-C, and
SmaliTalk, the number of months experience in
integrating code with other programimers’ code, and the
number of months experience in testing software. They
were then given a packet containing information about
the rules of participation in the experiment and the two
programs to be maintained. The rules of the experiment
were also explained in detail in class, emphasizing that
the students performance in the experiment in no way
would affect their grade. Accuracy in collecting data
was stressed as more important than “good” data or
“bad” data.

After the subjects completed the background
questionnaire, and read and understood the tules for the
experiment, the first task was distributed. They were
told that each task had to be completed before they
would receive the following task. They were then
allowed to work on the task, (out of class), during the
following week. While no deadline was assigned to any
of the tasks, the subjects were told that it was
imperative that they complete all of the tasks in the
specified order, and that only exceeding the eleven week
limit would endanger their grade,

After the subjects completed all tasks, they were asked
to fill out a post-experiment questionnaire that assessed
their feelings of their involvement in the experiment,
They were asked to rate the productiveness of their
experiences on an anchored 1 through 9 scale, and then
to give their opinions of the experiment, and short
descriptions of their involvement.

Subjects

There were 24 students enrolled in the “Object-Oriented
Software Engineering” course. Two students were
selected as “graders” to collect and record data from the
subjects. Two other students were selected ag pretesters
to make sure the tasks were of reasonable complexity,
had no undue complications and were of comparable
magnitude. Both Groups A and B had ten subjects each.

Students were used in this experiment primarily due to
their availability over the twenty-two week period. The
elficacy of the use of students as subjects is supported
for within subjects experiments by Brocks [6] and
supported with empirical evidence by Boehm-Davis [2].

Tasks

There were two modification tasks that generated the
actual data used in this study. A modification task was
a simulated request from users to make a functional
change to the system. The change was specified in
terms of observable system behavior and not in terms of
the implementation code. This was to simulate a real
user's request for change, and 1o isolate the task
specification from the implementation language.

Both systems to which the changes were made were
coded from identical specifications and user interface
information. They were functionally identical so that
when running, it was impossible to distinguish the
programs or to identify the implementation language.
This was the criterion for both systems to be considered



identical, The specifications were independent of the
implementation language,

In general, the purpose of the programs was to be a sort
of “laundry-list” handler, The system was not
graphical, but used cursor control to maintain a
formatted screen that looked like a scrap of paper with
ten slots for notes. A note in the list was either a line
of text, the name of a sub-list, or the name of an
account ledger. The line of text was simply a string,
and a sub-list was defined recursively through the
definition of a list. An account ledger was a different
data item; it was a list of purchase items and
annotations. A purchase item was either a direct
purchase, with a name, a category, and a dollar value, or
it was a sub-ledger, which yields a name and a dollar
value. An annotation was 3 line of text with no
numeric content. The user was allowed to view and
edit the lists and ledgers, descending ag many levels as
desired,

This program was chosen as the basis for the
experiment because it seemed to encompass a broad
range of programming techniques. It had a formaited
user interface; used complex and nested data structures;
was interactive; had varions control constructs; and used
a sizable number of procedures, functions, and modules,
The program was intended 1o be representative of typical
systems,

Neither C nor Objective-C had any built-in facilities
that made building this program casier. Both systems
were programmed starting with the design
specifications. Further details on the system are given
further below in the “materials” section. As a note,
both systems used 15 fileg {modules) each, comprising
a total of approximately 4000 lines of code for each
system. The original systems were developed by a
graduate student experienced with both C and Objective
C.

Each task consisted of two parts. For Group A
subjects, the first part was o perform the task using
the C system and the second part was to perform the
task using the Objective-C system. For group B
subjects, the first part was to perform the task using the
Objective-C system and the second part was to perform
the task using the C System. ‘Therefore, subjects
actually performed each task twice, once using each of
the systems. Performing each part of the task had to
be completed before proceeding to the next task.
Subjects were allowed to work only on one part of a
task at a time, (e.g., subjects were asked not to think

about how to code the Objective-C portion of task two
before completing the C portion). This attempts 1o
prevent information exchange between tasks.
Additionally, subjects were not provided with the
specification for a new task until both parts of the
preceding task were completed.

Each task required that each modification be made to an
original copy of the System, as if the request was
received with no knowledge of the other requests. Since
the subjects did not change modified code, the tasks do
not cumulatively interfere with each other. I also
provides a basis of comparison for all tasks: the
original copy. There was no control group for this
¢xperiment, since an “optimal” or “ideal”
implementation of the task does not exist. This is why
the subjects’ modifications are compared to the unaltered
version. It is only possible (o measure the difference
between the original and the modified versions to
determine the amount of work done,

Tasks were developed by having experienced computer
programmers run the program and make comments
about what new features would be handy or clever to add
to the system. All tasks added new functionality to the
system. Two tasks were selected to be used in the
cxperiment. These tasks were selected because they
represented a broad range of programming constructs,
and yet were all of the same level of difficulty. They
were chosen because they seemed 1o be independent of
the programming languages.

A task was defined to be complete when it successfully
ran with four special input data files, only one of which
was available to the subject for testing. If the program
did not generate a run time error, it was accepted as
complete. If it did generate an error, the subject was
asked to continue the task. Only two subjects on two
different tasks submitted non-working programs, which
they corrected.

Materials

Subjects were given the following information;

* Complete documented source code for the C system

* Complete documented source code for the Objective-C
system

* The software specifications from which both systems
were built

* Running copy of the original C system

* Running copy of the original Objective-C per task

* One file of test data per task



Data Collection

This experiment collected two sets of data. The first set
described the subjects and was used 1o show
homogeneity among subjects and between groups. The
second set was the actual experimental task data. These
data were generated by the questionnaires the subjects
completed for each task they performed. The student
data were used to show that the experiment was free of
bias in the subjects. The task data was used to support
claims about the abilities of the C and Objective-C
languages.

There are four independent variables:

* SUBJECT, the student identifier (1 through 10),

* GROUP, the group to which the subject belonged
(Group A or Group B),

* LANGUAGE, the language used in performing a task
(C or OBIC), and

* TASK, the task identifier (1or2).

Student Data

Background data were collected on the subjects to show
that the two groups of students were similar and that the
random assignment of students to groups produced a fair
mixture. Al background data were collected using a
three page questionnaire that subjects were given one
week to complete.

The following variables are from the background
questionnaire, except for two subjective questions which
are from the post-experiment questionnaire. The two

subjective questions are SUBJTASK, how difficult the
subject thought the tasks were in general, and
SUBJQUES, how difficult the subject thought the
questionnaires were,

Task Data

Two methods were used to collect the data associated
with each task: questionnaires and an automatic data
collection facility. Prior to the beginning of the
project, the students filled out a questionnaire which
supplied the dependent variables of the student data.
Table 1 summarizes those variables. While students
worked on the task, they each filled out a questionnaire
that recorded the amount of time they spent on the task
as well as the number of errors they made. Once the
subjects completed a task, they filled out the subjective
portions of the questionnaire and turned in the
completed forms. The computer then antomatically
tested their programs using four sets of test data. For
all the programs that passed the tests, the computer
compared the subjects source code to the original
program and recorded the differences using the VMS
“DIFFERENCE” facility. It also recorded the
differences in sizes. After all of this was recorded in a
file, the students continued to the next task.

Table 2 gives an overview of the dependent variables
used in the task data. The “Variable” column lists the
formal name of the variable. 1t is followed by a brief
definition of the purpose of the variable, an indication
as to how cach variable was collected and the means and
standard error values for the task data,

Table 1. Summary of Student Data Dependent Variables

Variable Synopsis Measured Mean A Mean B
GPA Subject’s overall GPA before 3.101 2.860
CS5GPA Computer Science GPA before 3.482 3.090
CURRIC Subject’s curriculum before

C Months of C experience before 4.700 5.000
PASCAL Months of Pascal experience before 27.800 33.200
OBIC Months of Objective-C experience before 3.000 3.000
SMALLT Months of SmallTalk-80 experience before 0.000 0.100
INTEGR Months experience integrating code before 5.100 8.100
TESTX Months experience testing code before 49.200 50.900
LEVEL Academic level before 3.800 3.900
COURSES Number of Computer Science courses before 6.700 7.900
SUBJTASK Task difficulty, subjective after 1.950 2400
SUBJQUES Questionnaire difficulty, subjective after 1.150 1.200



Table 2. Task Data Dependent Variables

Variable Synopsis
MODULES  Number of files changed
SECTIONS  Number of sections changed
LINES Number of lines different
TOTLINES  Difference in file sizes
CERR Number of failed compilations
TC Number of compilation errorg
LE Number of linking errors
RE Number of program crashes
LGE Number of program logic errors
TOTERR CERR+TC+LE+RE+LGE
STHIN Thinking difficulty
SMOD Modifying difficulty
STEST Testing difficulty
SALL Task difficulty
TTHIN Minutes thinking

~ PTHIN Percent atfention thinking
TMOD Minutes modifying
PMOD Percent attention modifying
TTEST Minutes testing
PTEST Percent attention testing
TASKTIME TTHIN+TMOD+TTEST

Results

The statistical analysis of the student data is described
first, followed by the analysis of the task data,

Significant Values for Student Data

An analysis of variance (ANOVA}) test was performed
on each of the variables using subject identifier and
group as discriminating classifications, The design
provides that subject is nested within group. This
yields a between subjects design over the group
classification,

Significant Values for Task Data

An analysis of variance test was performed on each of
the variables using subject identifier, group, language,
and task. The design provides that subject is nested
within group, which is crossed with language and task,
This yields a two by two by three design with ten
observations per entry. The statistical significance of
each variable is presented in Table 3.

Automatically mean A  mean B
Collected
Yes 221 1.95
Yes 6.95 6.93
Yes 69.23 6740
Yes 46.67 48.51
No 2.50 241
No 10.02 7.02
No 0.18 0.25
No 0.90 141
No 1.80 1.37
1540 1247
No 2.53 3.77
No 2.97 4.51
No 2.64 395
No 2,78 3.95
No 31.90 35.70
No
No 77.00 67.90
No
No 46.50 40.90
No
155.40 144.50

Table 3 also shows the variables over which
statistically significant differences were found,

Conclusions
In order to reach meaningful conclusions, the data must
first be shown to be free of any bias. First, the student
data showed that there are no significant differences
between the two groups of students. Table 3 presents a
synopsis of the conclusions for each variable,

Supporting the Hypothesis

Even though this is a single experiment which used
students inexperienced in object oriented programming,
we feel that some interesting observations resulted from
this work. This experiment supports the hypothesis
that subjects produce more maintainable code with an
object-oriented language than with 2 procedure-oriented
language. For source code variables, Objective-C
produces code that requires fewer modules to be edited,
fewer sections to be edited, fewer lines of code to be
changed, and fewer new lines to be added, This leads to



the conclusion that Objective-
that are more localized tha
Additionally, C is never better
varigble used in this study.

While subjects had no Previous fraining
oriented languages or in Objective-
significant training in Pascal

programming. This gives even more support to the
-C over C since the data yielded good
as from the subjects

power of Objective
results even thoug
toward the procedural paradigm,

h there wag a bi

Table 3. Summary of Task Data Variables

Variable Synopsis
MODULES number of changed modules
SECTIONS number of changed sections
LINES number of different lines
TOTLINES number of new lines
CERR number of failed compilations
TC total of compiler errorg
LE number of linking errors
RE number of run-time errors
LGE number of logic errors
TOTERR total error count
STHIN subjective thinking difficulty
SMOD subjective modifying difficulty
STEST subjective testing difficulty

. SALL total subjective difficulty
TTHINK minutes spent thinking
TMOD minutes modifying
TTEST minutes spent testing
TASKTIME total time on tagk

C produces fewer changes
n procedural languages.
than Objective-C for any

in either object-
C, they did have
and structured

Finally, it is important that three of the four subjective
variables showed that Group B subjects perceived the
tasks to be more difficult than Group A subjects did.
When implementing the tasks, Group B always used the
Objective-C language first and then used the C
language, Group A did the reverse. In general, subjects
using Objective-C for a task before vsing C found the
task to be more difficult. A possible explanation for
this is that since Objective-C is 3 super-set of C there
are more options available, Objective-C containg
additional mechanisms that aliow the object-oriented
treatment of code, such as messaging, encapsulation,
and inheritance, that C does not have. These additiong

Means
Objective-C requires changing fewer modules

Objective-C requires changing fewer lines
Objective-C requires adding fewer lines

Task 3 produces more logic errors

Group B finds thinking about task more difficult

Group B finds modifying task more difficult
Subjects found task 3 more difficult to modify

Group B finds tasks more difficult overai]

Subjects and task interacted to increase testing time

to the language may require more thought and more
decisions from the subject.

References

(1] Basili, v, Turner, A., “Tierative Enhancement: A
Practical Technique for Software Development,”
IEEE Transactions of Software Engincering, Vol
SE-1, No. 4, 1975, pp. 390-396.

2] Boehm-Davis, D., Ross, L., “Approaches to
Structuring the Software Development Process,”
Technical Report GEC/DIS/TR-84-B1V-1,
Software Management Resecarch Pata &
Information Systems, General Eleciric Co.,
Arlington, VA, Oct. 1984,

[3!  Boehm-Davis, D., Holt, R., Schultz, A., Stanley,
P., “The Role of Program Structure in Software
Maintenance,” Technical Report TR-86-GMU-
P01, Psychology Department, George Mason
University, Fairfax, VA 22030, May 1986.

[4]  Booch, G., “Object-Oriented Development,” IEEE
1986.

[51 Brooks, F., “No Siiver Bullet: Essence and
Accidents of Software Engineering,” Information
Processing 86, H.J. Kugler, ed., Elsevier Science
Publishers B.V. {North-Holland) (C) IFIP 1986.



(6]

7

(8]

%]

[10]

(11]

(12]

[13]

Brooks, R., “Studying Programmer Behavior
Experimentally: The Problems of Proper
Methodology,” Communications of the ACM,
1980, Vol. 23, No. 4, pp. 207-213,

Cox, B., “Message/Object Programming: An
Evolutionary Change 1in Programming
Technology,” IEEE Software, Vol. 1,No. 1, Jan.
1984,

Cox, B., Object-Oriented Programming: An
Evolutionary Approach, Addison-Wesley
Publishing Co., Reading, MA., 1986,

Fairley, R., Software Engineering Concepts,
McGraw-Hill Book Co., New York, NY, 1985,
Gane, C., Sarson, T., Structured Systems
Analysis: Tools and Techniques, Improved
System Technologies, Inc., 1977.

Gannon, J, “An Experimental Evaluation of Data
Type Conventions,” Communications of the
ACM, Vol. 20, No. 8, pp. 584-595, Aug. 1977,

Holt, R., Boehm-Davis, D., Schaltz, A., “Mental
Representations of Programs for Student and
Professional Programmers,” Psychology
Department, George Mason University, Fairfax,
VA, 1987.

MacLennan, B., “Values and Objects in
Programming Languages,” SIGPLAN Notices,
Vol. 17, No.12, p. 70, Dec. 1982,

[14]

f15]

[16]

17]

[18]

(191

(201

21]

Meyer, B., “Towards a Two-dimensional
Programming Environtnent,” Readings in Al
Palo Alto, CA, Tioga, 1981, p.178.

Privitera, Dr. J.P., “Ada Design Language for the
Structured Design Methodology,” Proceedings of
the AdaTEC Conference, Oct, 1982, pp. 76-90.
Rentsch, T., “Object Oriented Programming,”
SIGPLAN Notices, Vol. 17, No. 9, p. 51, Sept.
1982,

Stay, J.F.,“HIPO and Integrated Program Design,”
IBM Systems Journal, IBM Corp, Vol. 15, No. 2,
1976, pp. 143-154,

Stevens, W.P,, Myers, G.J., Constantine, L.L.,
“Structured Design,” IBM Systems Journal, IBM
Corp., 1974,

Stevens, W., Using Structured Design: How to
Make Programs Simple, Changeable, Flexible,
and Reusable, John Wiley & Sons, New York,
NY, 1981.

Swann, G.H., Top-down Structured Design
Techniques, PRI Inc., New York, NY 1978,
Yourdon, E., Managing the System Life Cycle:
A Software Development Methodology Overview,
Yourdon Press, New York, NY, 1982,





