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GLOBALLY CONVERGENT HOMOTOPY ALGORITHMS FOR
NONLINEAR SYSTEMS OF EQUATIONS

Layne T. Watson®

Abstract. Probability-one homotopy methods are a class of algorithms for solving nonlinear
systems of equations that are accurate, robust, and converge from an arbitrary starting point almost
surely. These new globally convergent homotopy techniques have been successfully applied to solve
Brouwer fixed point problems, polynomial systems of equations, constrained and unconstrained
optimization problems, discretizations of ponlinear two-point bouundary value problems based on
shooting, finite differences, collocation, and finite clements, and finite difference, collocation, and
Galerkin approximations to nonlinear partial Jdifferential equations. This paper introduces, in 2
tutorial fashion, the theory of globally convergent homotopy algorithms, describes some computer
algorithms and mathematical software, and presents several nontrivial engineering applications.

1. Introduction.

Continuation in various forms has been used for a long time in mathematics and engineering, with
siuch names as parameter continuation, incremental loading, displacement incrementation, imbed-
ding, invariant imbedding, continuous Newton, and homotopy- The state-of-the-art of continuation
methods was thoroughly surveyed in [}, and more recently in [74]. Recent mathematical develop-
ments have led to 2 whole new class of continuation methods known as probability-one homotopy
algorithms, which have been successfully applied to solve Brouwer fixed point problems, polyno-
mial systems of equations, and discretizations of nonlinear two- point boundary value problems and
nonlinear partial differential equations based on shooting, finite differences, collocation, and finite
elements. These new techniques have only recently begun to be applied to real problems, and have
found significant application in solving some engineering analrsis problems.

Homotopy methods are very powerful, robust, accurate, numerically stable, and almost univer-
sally applicable, but also often prohibitively expensive. They are particularly suitable for highly
nonlinear problems for which initial solution estimates are difficult to obtain. Properly imple-
mented they are indeed globally convergent, i.e., cOnVerge to a solution from an arbitrary starting
point. This (costly) global convergence feature is their forte, but also makes them inappropriate
for mildly nonlinear problems or problems for which a good initial ostimate of the solution i easily
obtained.

As models of physical phenomena hecome more ambitions, and supercomputing capability
becomes more widespread, it becomes increasingly necessary 46 use sophisticated pumerical anal-
ysis tools t0 solve the mathematical models efficiently. Gince nonlinear systems of equations are
ubiquitous in engineering analysis, the relevance of homotopy methods is clear. As models become
latger and more complicated, and initial solution estimates harder to obtain, the global convergence
from an arbitrary starting point property of homotopy algor.thms makes them more attractive.
Robustness and global convergence are not without cost, however. This extra cost, which weighs
against homotopy methods on serial computers, becomes an advantage on paraliel (and to a lesser
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extent on vector) computers because there is a large amount of inherent parallelism in homotopy
algorithms.

The purpose of this paper is to introduce the theory of globally convergent homotopy methods
relevant to engineering analysis, to describe some available computer software, and to give some
actual engineering applications. Saction 2 gives an intuitive explanation of what is different about
the new globally convergent homotopy algorithims, and briefly recounts the basic mathematical
theory. Section 3 outlines some numerical algorithms implemented in the mathematical goftware
package HOMPACK. Examples of the globally convergent homcitopy technigues applied to realistic
engineering problems are presented in some detail in Section 4.

2. Survey of basic homotopy theory.

2.1. Continuation versus homotopy: Continuation is @ well known and established procedure
in numerical analysis. The idea is 10 continnously deform a simple (easy) problem into the given
(hard) problem, while solving the family of deformed problems. The solutions to the deformed
problems are related, and can be tracked as the deformation proceeds. The function describing the
deformation is called a homotopy maep- Homotopies are a traditional part of topology, and have
found significant application in nonlinear functional analysis and differential geometry- Similar
ideas, such as incremental loading, are also widely used in engiileering.

These traditional continuation algorithms have serious deficiencies, which have been removed
by modern homotopy algorithms. The differences, however, are subtle and mathematically deep,
and the mathematical proofs of the statements in this article are beyond the scOpe of the pre-
sentation here. To explain the differences between the old and new homotopy techniques, 2 more
detailed discussion 18 required. Suppose the given problem is to find a root of the nonlinear equa-
tion f(2) =0, and that s(z) =0 is a simple version of the given problem with an easily obtainable

unique solution Zo- Then a homotopy map could be, e.g-
H(M\2) = Af(a)+ (1~ A s(z), 0% A<l

The family of problems is H(\, ) = 0,0<A% 1, and the idea would be t0 track the solutions of
7202y =10, starting from (\z) = (0, o), a8 X goes {rom 0.170 1. If everything worked out well,
this would lead to 2 point () = (1,%), where f(@) = 0. The «gtandard” approach is 10 start
from a point {Ais ;) with H(,z) =0 and solve the problem H(N + AMz) = 0 for @, with AA
being a sufficiently small, fixed, positive pumber. The bad things that can happen are:

1) The points (N, @) MBY diverge to infinity as A—L

2) The problem HOu+AM z) = 0 may be singular at its solution, cansing numerical instability.

3} There may be no sotution of H(X; + A),z) = 0 neal ()\i,i.g).

The modern approach to homotopy methods is to construct a homotopy map PalA; z), involv-

ing additional parameters in the vector &, such that 1), 2), and 3) never occut or never cause any
difficulty. This is the essence of modern probability-one homotopy algorithms, and the details of

the construction are given in the next section.



Figure 1. Zero set for pa(k,m) satisfying properties 1) - 4)-

2.2, Basic homotoby theorems. The theoretical foundation of all probability one globally
convergent homotopy methods 18 given in the following differential geomelry theorem:
DEFINITION. Let E™ denote n-dimensional rea] Buclidea SPace, let U C gm oandV C E™ be opert
sets, and let P U x[0,1) «V — E” pe g C* map- P is said to %€ sransversol 10 zero if the Jacobian
matriz Dp hos full rank 07 p~HO)-
PARAMETRIZED GARD’S THEOREM (5] If p(a,)x,w) is sransversal 10 zero, them for almost all
o € U the map -

palPs x} = pla, A )
is also tmnsversal to zeT0; BCo with pmbability one the Jacobiun matris D,oa,()\,m) has full rank on
7t (©):

The import of this theorem™ is that the zer0 set poH(0) consists of smooth, nonmtersect'mg
curves in {05 DxV. These curves are cither closed loops, OF have endpoints 10 {oyxVvVor =V,
or go to infinity. Another important consequence is that these curves have {inite arc length in any
compact subset of 10 1HxV. The recipe for constructing & globally convergent liomotopy algorithim
4o solve the ponlineal system of equations

Fz)="0 (1)

where F : gr — E" 1s a C* map, is as follows: For an opent set'U C E™ construct & C? homotopy
map p:U X [0,1) X g — E” guch thab

1) pla: 2 ) is transversal to €10
2) pall z) = p(a,O,:ﬂ) _ @ is trivial to solve and has & unique solution To»

3 pall,) = F@h

4) paH(0) s bounded.
Then for almost all @ ¢ U there exists a Z€ro curve ¥ Of Pas along which the Jacobian matrix
Dp, has rank 7 emanaling from (O,:co) and yeaching 2 zero T of Fat A= 1. This zer0 curve ¥
does nob intersect itself, 1s disjoint from any other zeros of pas and has finite arc length in every
compact subset of 10, 1) x B Furthermore, i DF(%) 18 ponsingulal, then 7 bas finite arc length.

Gee Figure 1.




The general idea of the algorithm is now apparent: just follow the zero curve Y emanating
from (0, z0) until a zero 7 of F(z) is reached (at A = 1). Of course it is nontrivial to develop 2
viable numerical algorithm based on that idea, but at least conceptually, the algorithm for solving
the ponlinear system of equations F(z)=0 is clear and simple. The homotopy map (usually, but
not always) is

() = AF(@) + (L= W@ =) (@)

which has the same form as$ a standard continuation or embedding mapping. However, there
are two crucial differences. First, in standard continuation, the embedding parameter A increases
monotonically from 0101 as the trivial problem & —@ = 0 is continuously deformed to the problem
F(z) = 0. The present homotopy method permits A t0 both increase and decrease along ¥ with no
adverse effect; that is, turning points present N0 special difficuity. The second important difference
is the use of the extraneous parameter o, whose consegquence is that there are never any “gingular
points” which afflict standard continuation methods. The way in which the zero curve Y of po 18
followed and the full rank of Dpa along ¥ guarantee this.

In order for property 4) above to0 hold for the homotopy map in (2), F(2) and (z — @) must
be “asymptotica]ly similar” (see Lemma 3 helow). This is not the case for every F(z), and 80
frequently other homotopy maps must be used, for example,

pe(My ) = AF(2) +{1 - A G(z;a), (20)

where G(z;a) 18 2 simple version of F(z). For instance, Gz a) might be derived by simplifying
the physical model used to derive F(z). Also the homotopy map need not be a simple convex

" combination between F(z) and G(z; a); examples of homotopy maps nonlinear in \ are in [57] and

[64].
The scheme just described is known a8 & probability-one globally convergent homotopy al-
gorithm. The phrase “probability-one” refers to the almost any choice for a, and the “slobal
convergence” refers to the fact that the gtarting point Zo peed, ot be anywhere near the solution
7. It should be emphasized that the form of the homotopy map palA, 2} in (2) is just 2 special case
used here for clarity of exposition. The more general theory can be found in [66], [70-72], [74], and
practical engineering problems requiring a Po nonlinear in A zre in (57 and [64]. Below are some
typical theorems for various classes of problems.

The computation of Brouwer fixed points represents one of the first successes for both simplicial
(11, (33 and continuous homotopy methods [5], [66]. Brouwer fixed point problems can be very
nasty, and often cause locally convergent iterative methods a great deal of difficulty.

TuworeM [b]. Let B={zcE"] ey = 1} be the closed unit ball, and f: B— B ¢ C? map.

Then for almost oll o € int B there erisls a zero curvey of
Pa.()\, :B) = A(m - f(m)) + (1 - .}\)(.’E - a)':

along which the Jacobian matric Dpa(X,2) has full rank, emanating from (0,a) and reaching @
fized point T of fatA=1. Furthermore, 7 has finite arc length if I — Df(z) is nonsingular.
Typically a mathematical problem (such as partial differential equation) results in a finite
dimensional nonlinear system of equations, and what is desited are copditions on the original
problem, not on the final discretized problem. Thus the results in this section are used to derive,
working backwards, useful conditions on the original problem, whatever it might be. The following
four lemmas, which follow from the results of [5], are used for that purpose.
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LeMMA 1. Let g: EP — EP be a C? map, a € EP, and define po f0,1) x EP — EP by
pa(Ay) = M) + (1 = )y — @)

Then for almost all @ € EP there is a zero curve of p, emanating from (0,a) along which the

Jacobian matriz Dpa(A,y) has full rank.
LeMMA 2. If the zero curve y in Lemma 1 is bounded, it has an accumulation point (1,7), where

g(¥) = 0. Furthermore, if Dy(¥) s nonsingular, then v has finite arc length.
LemMa 3. Let F: EP — EP be a C? map such that for some T > 0, z F(z) > 0 whenever x|l = 7.
Then F has a zero in {x € EF P izl € 73 and for almost all a € EP, ||| < r, there is a zer0
curve v of

Pu()\vm) = AF(m) + (1 - .}\)(3} —a),
along which the Jacobian matric Dpa(A,z) has full rank, emanating from (0, @) and reaching a zere
Fof FatA=1 Furthermore, 7y has finite arc length if DF(&) is nonsingular.

Lemma 3 is a special case of the following more general lemma.

LEMMA 4. Let F: EP — EP be a C? map such that for some 7 > 0 and ¥ > 0, F(z) and z — @ do
not point in opposite directions for ||e|| = 7, llall < F- Then F has a zero in {z € EP | lelt € 7}
and for almost all a € EP, ||all < 7, there is a zero curve ¥ of '

pa()‘aw) = }\F(:JS) + (1 - A)(ﬂ? - d),
along which the Jacobian matriz Dpa(X, x) has full rank, emanating from (0,a) and reaching a zero
gof FatA=1 Furthermore, v has finite arc length if DF(Z) is nonsingular. :

These theoretical algorithms liave been implemented in production quality mathematical soft-
ware packages such as PITCON [32], CONKUB [22], and HOMPACK [47]. The latter, described
in Section 3, is an extensive collection of FORTRAN 77 routines implementing three different
tracking algorithms for problems with both dense and sparse Jacobian matrices, and confaining
high level drivers for special classes of problems.

2.3.1. Two-point boundary value problems: shooting. The next few sections consider
nonlinear two-point boundary value problems of the form

S8 = g(t,y(0),¥' (1), 0stsl (3)

w(0)=0, y(1)=0 (ry(1)=0) (4)
where y = (yl,...,yn), g(t,u,v) satisfies a Lipschitz condition in (u,v) for 0 £1 < 1, and has
continuous second partials with respect to » and v for 0 < t < 1. These technical assumptions vary
slightly from theorem to theorem and method to method; consult the references for complete and
precise statements of the theorems. The intent here is to provide the flavor of applying homotopy
methods to approximations to nonlinear two-point boundary value problems, and not get bogged
down in technical detail. :

Let u(t) be the unique solution of

y'(t) = g(t,y(0, (@), 05tsh

y(0)=0, ¥(0)=7,
and define f : E® — E™ by

floy=u(1) (or (1)) (5)
Observe that the original problem (3)-(4) is equivalent to solving
flo)=0 (6)

for the correct initial condition ¥.
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THEOREM. Suppose there exists ¢ constant M > 0 such that I g(t,z(@), %' (), < M along every
trajectory z(t) for which 2(0) = 0, |2'(0)llc = M. Then for aimost all w € E™ with || wlle < M
there exists a zero curve’y of the homotopy map

pu(X0) = A Fy+ (1= Mv— w),
along which Dpy has full rank, lying in [0,1] X {veE|llvle = MY} and connecting (0,w) to
(1,D), where ¥ is a zero of f. If D f(w) is nonsingular, then ¥ has finite arc length.
2.3.2. Two-point boundary value problems: finite differences. The problem under consid-
eration is (3)-(4). Using standard centered second order accurate finite difference approximations

for ¢ and y" in (3) with the boundary conditions (4) at mesh points 0 =10 < f1 < °° <IN <
tngr =1 results in the finite difference approximation

GY)=AY +R*F(Y) =0, (M
where h = max;(fi+1 — t;) is the mesh size, A is a constant positive definite matrix, and F h(Y) is
the nonlinear part of G(Y) due to g.

TueoREM. Let FMY) be @ 2 mapping, and suppose that
L7

lim sup 2 <09,
¥ f,—ee HYHZ

Then for almost W € EN there 1 a zeT0 Curve of the homotopy map
PW(AaY) = A G(Y) + (1 - )\)(Y - W),
along which the Jacobian matriz Dpw(X,Y) has full rank, em anating from (0, W) and reaching @

wroY of Gat A=1. Furthermore, 7 has finite arc length if DG(Y) is nonsingular.
More general boundary conditions than (4) have the form

By(0) + B'y'(0) + Cy(1) + C'y (1) =1, (8)

where rank (B B' C C') =20, and there are other technical restrictions (see Keller [13]). These
boundary conditions lead to a different nonlinear system of equations

GY)=AY + REFMY) =0, (9)

where A and F* are different from those in (7). _
TrarorREM. Let I’ h(Y) be a C? mapping, and suppose that G from (9) satisfies one of the following:
1) there ezist T > 0 and ¥ > 0 such that Y — W and G(Y) do not point in opposite directions for
Yl = Wl <7 |
9) there exists T > 0 such that Y!G(Y) > 0 for i, = rs
3) A is positive semidefinite, and there exists 7 > 0 such that YtFR(Y) 2 0 for iy =7
Then for almost all \Wli, < 7 there is a zero curve 7 of the homotopy map

PW()\,Y) = A G(Y) + (1 - A)(Y - W)':

along which the Jacobian matriz Dpw(AY) has full rank, emanating from (0, W) and reaching @
vero ¥ of G at A=1. Furthermore, ¥ has finite arc length if DG(’?) is nonsingular.

TrEOREM. The conclusion of the previous theorem holds if A from (9) is positive definite and
g(t,u,v) is @ bounded C* mapping.

TupoREM. The conclusion of the previous sheorem also holds if g(t, ¢, v) isa bounded C* mapping
and the boundary conditions are of the form y(0) = b1, y(1) = ba.
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2.3.3. Two-point boundary value problems: ‘collocation. The idea here is to approxi-
mate y(t) from some convenient, finite dimensional vector space S, with basis ¢1,...,9Pm. These
basis functions could be orthogonal polynomials (a popular approach in chemical engineering)
or B-splines (the numerical analysts’ choice) or something tailored for a specific problem. The

approximations

ye(t) m A(t) = D _akipi(t), k=1,...,m, (10)
=1

are substituted into equations (3)~(4) evaluated at discrete points, the collocation points, in the
interval [0,1]. This results in the nonlinear system of equations

F(Y)=MY +N(Y)=0, (11)

where
_ t
Y = (a11,019, .- .,ozlm,am,...,agm,...,rzm,...,anm) ,

M is a constant matrix, and N(Y) is the nonlinear part due to g. The dimension of the problem
is p=nm.
TusorEM. Let N(Y) in (11) be a C*? mapping, and suppose there ezist constants C and v such
that
N(Y
lim sup ”—(-L,,“gg =, 0<py <. (12)
Whe—eo ¥ llo

For W € EP, define pw : [0,1) X E? — EP by
(A Y) = AF(Y) + (1= N = W),

Then for almost all W € EP there ezists 4 zero curve v of ow, along which the Jacobian ma-
triz Dpw(\,Y) has full rank, emanating from (0,W) and reaching a zero Y of F (at A = 1).
Furthermore, if DF(Y) is nonsingular, then v has finite arc length.

TrEOREM. Let N(Y) in (11) be a C* mapping and the matriz M be such that

Iiﬁll:onﬂ 112?,%(ij (MY); =F >0.

If
: VOO
limsup —=——2 =C <T
W leo—eo ¥ e ’

then the conclusion of the above Theorem holds.

THEOREM. If g(t,u,v) in (3) is C? and bounded, then the conclusion of the above Theorem holds.

THEOREM. Let g{t,u,v) in (3) be e C? mapping, and suppose there exist constants pt and v such

that

gt v, w)lle _

lim sup max =pu, w<w<Ll (13)

e, 0<t<1 Y
oo OSESE Wil
Then the conclusion of the above Theorem holds.
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2.3.4. Two-point boundary value problems: finite elements. The finite element (or
Rayleigh-Ritz-Galerkin) approach is similar to collocation in that an approximation is sought
from a finite dimensional space Sy,. Here the elements of §,, automatically satisfy the boundary
conditions (4), which collocation doesn’t require. Instead of satisfying the differential equation (3)
at discrete points, the finite element method satisfies (3) in an average sense by requiring certain
inner product integrals to be equal. In some contexts the finite element formulation can be viewed
as minimizing some functional over a finite dimensional space, where the minimum over an infinite

dimensional space gives the exact solution (a variational formulation).

Using the approximations (10), the Galerkin approximation to (3)-{4) is

1 1 :
[ t@enteras = [ oile, @) Al nla)
o 0
k=1,...,m, j=1...,n (14)
This is a system of equations of exactly the same form as (11). The convergence theorems are
similar to those for collocation.

TuroREM. Let N(Y) in (11) be a C? mapping, and suppose there exist constants C and v such
that

: N
limsupu—(y—,),u—g=c, 0<r <.
Wihooo 1Yl

For W € E?, define pw : [0,1) x E? — EP by
pwMY)=AFX)+ (1 - MY —-W).

Then for almost all W € E? there exists a zero curve of pw, along which the Jacobian ma-
triz Dpw(\,Y) has full rank, emanating from (0, W) and reaching a zero Y of F (at A = 1).
Furthermore, if DF(}?') is nonsingular, then v has finite arc length.

TrEOREM. Let N(Y) in (11} be a C? mapping and T' > 0 the smallest eigenvalue of M. If

lim sup M =C <T,
I 4 |

then the conclusion of the above Theorem holds.
TeEoREM. If g(t,u,v) in (8) is C? and bounded, then the conclusion of the above Theorem holds.

TugoreM. Let g(t,u,v) in (3) be a C? mapping, and suppose there exist constants [t, £, and v
such that

lg(tsu, o)y < (64 Qully + lIwllp)7)s 0w <1, (15)

forall0<t<1landu,v€ Em™. Then the conclusion of the above Theorem holds.

]



2.4. Basic optimization homotopies. Consider first the unconstrained optimization problem

min f(z). (16)

THrROREM [68]. Let f: E® — E be a C3 conver map with a minimum at &, ||&[], < M. Then for
almost all a, ||all, < M, there ezists a zero curve y of the homotopy map

pa(Az) = AV () + (1 - N)(z — a),

along which the Jacobian matriz Dpa(r, ) has full rank, emenating from (0,a) and reaching a
point (1,&), where & solves (16).

A function is called uniformly convex if it 15 convex and its Iessian’s smallest eigenvalue is
bounded away from zero. Consider next the constrained optiv.ization problem

min f(=). ' (17)

This is more general than it might appear because the general convex quadratic program reduces
to a problem of the form (17).

TurorEM [68). Let f: E* — E bea C3 uniformly convez map. Then there exists § > 0 such that
for almost all a > 0 with |[a]|, < § there exisis a zero curve 7y of the homotopy map

pal02) = A K (@) + (1= Nz - ),

where

3 Ay 3
#(Fal) 4t

Kiz) = - \Qg_g) T dz;

along which the Jacobian matriz Dpa(X,2) has full rank, connecting (0,a) to a point (1,%), where
% solves the constrained optimization problem (17).

Given F : E® — E™, the nonlinear complementa,rify problem is to find a vector T € E™ such

that
£>0, F@&)>0, z'F(z)=0 (18)

At a solution %, # and F(Z) are “complementary” in the sense that if Z; > 0, then F;(&) = 0, and
if F;(z) > 0, then Z; = 0. This problem is difficult because there are linear constraints z > 0,
nonlinear constraints Fz) > 0, and a combinatorial aspect trom the complementarity condition
#tF(z) = 0. It is interesting that homotopy methods can be adapted to deal with nonlinear
constraints and combinatorial conditions.

Define G : E® — E™ by

Gi(z) = —|Fi(2) - z%-|3 + (Fi(z))s 422, i=1,...,m,

and let
pa(A,2) = AG(2) + (1 - Az - -.&).



THEOREM [70]. Let F: E® — E™ be a C* map, and let the Jacobian matriz DG(z) be nonsingular
at every zero of G(z). Suppose there exists v > 0 such that z > 0 and z;, = ||z]|, = T imply
Fi(2) > 0. Then for almost all a > O there exists a zero curve 7 of pa(X,z), along which the
Jacobian matriz Dpg(\, z) has full rank, having finite arc length and connecting (0,a) to (1,%),
where z solves (18).

THEOREM [70]. Let F : E™ — E™ be a C? map, and let the Jacobian matriz DG(z) be nonsingular
at every zero of G{(z). Suppose there exisis r > 0 such that z > 0 and ||z||, 2 r imply 2 Fu(2) > 0
for some index k. Then there exists § > 0 such that for almost all a 2 0 with llafl, < & there
exists a zero curve ¥ of pa(X, 2), along which the Jacobian metriz Dpa(A, 2) has full rank, having
finite arc length and connecting (0, a) to (1,Z), where Z solves (18).

Homotopy algorithms for convex unconstrained optimization are only of theoretical interest,
and are generally not computationally competitive with other approaches, but it is reassuring that
the globally convergent homotopy techniques can theoretically be directly applied. For constrained
optimization the homotopy approach offers some advantages, and, especially for the nonlinear com-
plementarity problem, is competitive with other algorithms. See [48] for an application of homotopy
techniques to the linear complementarity problem. Constrained optimization is addressed in the
next few sections. '

2.5. Expanded Lagrangian Homotopy. The expanded Lagrangian homotopy method of Poore
[30], [31] is applicable to the general nonlinear programming problem

min 6(z)
subject to g(z) <0,
h(z) =0,

where z € E”, 0 is real valued, g is an m-dimensional vector, and h is a p-dimensional vector.
Assume that 8, g, and h are C2. In this general situation the complete formulation and solution
algorithm for the expanded Lagrangian homotopy are rather complicated. The essence of the
method is presented here, referring the reader to [30] and [31] for a discussion of the theoretical
and practical subtleties. The technique has been applied to linear programming [30] and the linear
complementarity problem [48], but is currently primarily of theoretical interest.

The expanded Lagrangian approach may be described as an optimization/continuation ap-
proach and has in its simplest form two main steps.

Step 1. (Optimization phase).
At 7 = 79 > 0 solve the unconstrained minimization problem

min P(z,r)
T

where

P(z,r) = 6(z) + %h(m)th(m) - rZhﬁ(——gi(:c)).

Step 2A. (Switch to expanded system).
A (local) solution of min P must satisly

de=1

10



Introduce the following variables:

hix
)6 = ( )a
T
T
i = 3 i=1,...,m,
—gi(®)

which ultimately represent the Lagrange multipliers. This helps to remove the inevitable ill-
conditioning associated with penalty methods for small r and we thus obtain our equivalent but
expanded system: '

Vé(z) + BVA(2) + p'Vg(2) = 0,
h(ﬂ?) -rB=0,
pigi{z)+r =0, p=1,...,m.
(Remark. As a result of the optimization phase and the initial starting point with ro > 0, the
solution z(®) of min P(z,ro) satisfies g(2(®) < 0. As a consequence, #(® > 0 from the definition
of p. g remains positive until » = 0 where we formally have
Vo(z) + B Vh(z) + p*Vg(z) = 0,
h(z) =0,
g(z) <0,
w20,
f-"igi(:ﬂ):D? i=1,...,m,
which implies that we have solved the problem.)
In practice we do not solve the optimization problem min P fo high accuracy since a highly
accurate solution may have only a digit or two in common with the final answer. However, it is

imperative that VP be reasonably small in magnitude, say less than r¢/10. The expanded system
is converted to a homotopy map by letting = ro(1— A} and modifying the first equation to obtain:

V(z) + BtVA(z) + p'Vy(e) - %VP(:);(O),TG) == 0,
h(z) - B =0, (19)
wigiz) +r =0, i=1,...,m.
Wiite this system of n + p + m equations in then+p+m 4+ 1 variables A, z, 3, p as
T\ z,8,p) = 0.

Step 2B. (Track the zero curve of T from r = 7y to v = 0.)
Starting with arbitrary ro > 0 and feasible interior point z(”) (g(z®) < 0), the rest of the
initial point (O,m(o),ﬁ(o),p(o)) is given by

54O = h(z®)

To
0y . "o -
Hi = “gi(ﬁlf(o)), 1) s M.

11
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This approach requires careful attention to implementation detsils. For example, the linear algebra
and globalization techniques with dynamic scaling are critically important in the optimization

phase. For degenerate problems the path can still be long. One possible resolution is the use of
shifts and weights as developed in the method of multipliers [3], but holding r = 7o fixed. (This
approach is currently under investigation in the context of linear programming [30].) Note that the
optimization phase (Step 1) can be omitted altogether, starting Step 2B with an arbitrary interior
feasible point 2(® (g(z(®) < 0), so that (19) is a true global homotopy. As a practical matter,
however, it is advantageous to get a good starting point by doing Step 1 with a small 7¢.

2.5.1. Application of expanded Lagrangian homotopy to the linear complementarity
problem. As an illustration, the expanded Lagrangian homctopy method will be applied to the
linear complementarity problem:

w— Mz =g,
w>0, 220, wiz =0,
where M is a given real n X n matrix and g € E™ is given; the unknowns are w € E™ and z € E*,
Step 1. (Optimization phase).

At 7 = rg > 0 solve the unconstrained minimization problem

mwlil P(w, z,7)

where

1 K n
Plw,z,r)= §[|w —Mz—q|5+ 51?(11), z)? — ern 2 — rzln w;.
=1 =1 -

Step 2A. (Switch to expanded system).

A (local) solution of min P must satisfy

I V\(w—Mz—q) (z (w, 2} (1 11 1)t
=V P= R B A e Dt TR
O ('wsz) (_Mi) r + 1w i " ’UJl, "w'n,Z], ,2’71

Introduce the following variables:

g= y
T
) (w2)
- ’
T
r .
ﬁt—‘"w—i) i=1, s 12y
T .
= " 1=17 3 Tty
Z3



which ultimately represent the Lagrange multipliers. This helps to remove the inevitable ill-

conditioning associated with penalty methods for small v and we thus obtain our equivalent but

(L) ()-(2)=

w—Mz—g—18=10,

expanded system:

{(w,zy —m0 =0,
piw; —1 =0, P= 1,00,
mzi—r =70, p= 1,0

(Remark. As 2 result of the optimization phase and the initial starting point with 7o > 0, the
solution (w(®,2(®) of min P(w, z,7o) satisfies A0 > 0 and w® > 0. As a consequence, u® >0

and n(ﬂ) > 0 from the definitions of p and 7. They remain positive until r = 0 where we formally

have

() (2)e- (5)=

w—-Mz-g=0,

(w,2) =0,
piw; =0, =10,
iz =0, i=1,0..,m,
w,z,0,4,m20,

which implies that we have solved the problem.)

The expanded system is converted to a homotopy map by letting r = ro(1—A) and modifying

the first equation to obtain:

I 2N, _(rY_ L © A0 ;Y =
(—-Mt)ﬁ_l-(w)e (7?) TOVP(’UJ , 29, rg) =0,

w—Mz—qg—78=0,

(w,zy — 10 =0,
piw; — 7 = 0, i=1,...7,
mzi — T =0, P=T1,...,70

Write this system of 5n + 1 equations in the 5n + 2 variables A, w, 2, 5,0, p, 1 as

Y (M w, z,8,0,0,m) = 0-

Step 2B. (Track the zero curve of T from 7 = To tor=0.)
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Gtarting with arbitrary 7o =~ 0, w® > 0 and 20 = 0, the rest of the initial point
(O,w("’,z““,ﬁ“’),f)o,n("),n‘o’) is given by

ﬁ(ﬂ) =
Ty
(0) (O
o = A ),
T0
@ _ 10 -
Hi "‘wgor i=1,..00
(0) To :
0 = "To)’ i=1,...,1
t zio)

Computational experience with this approach to the LCP is reported in [48].

2.8. Kreisselmeier-Steinhauser envelope function. Sections 2.5 and 4.1 present ways that are
both theoretically 4correct” and computationally “practical” to deal with inequality constraints.
However, there are pUMerous practical difficulties in those approaches, and the implementation and
tuping details become ahsolutely crucial. Tor example, with the expanded Lagrangian formulation,
line searches may generate negative arguments for the In functions, and the homotopy zer0 curve
may diverge if the Step 1 solution is not good enough. For the active set approach in Section 4.1,
the detection and switching criteria for transition points may become extremely cumbersome and
ineficient. This saction suggests an alternate way of dealing with inequality constraints.
Consider inequality constraints of the form

gi(@) <0, i=Lis™ (20)

where each gi : E" = E is C*. For a constant p > 0, the Kreisselmeier-Steinhauser [14] envelope
function for (20) is

m

K(z)= lpln {Z exp(pg;(m'))"k : (21)

=

K(z)isa cumulative measure of the satisfaction or violation of the constraints (20). Let Gmazl®) =
max{g1{2)s---  gm(2)}, and observe that

1 m
K(z)= Grmaz(®) T ~pln {Zexp (p(gi(m) - gmw(m)))l , (22)
i=1
from which it directly follows that
1.
Jmaz(T) S K=z < Gmax(®) T ;m m. (23)

Thus the envelope K (z) follows the maximui constraint, more closely for large p- In pasticular,

(20) could be replaced by
K(z) <0 (24)

with an error of no MOFe than (Inm)/p:
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The choice of o involves a tradeoff between modelling the maximum constraint (large @ PTe
ferred) and avoiding large gradients (small p preferred). 1f the practical criterion for an active
constraint is gl £ 6 then a choice for p which has worked well in practice i

, o (25)

Observe that K(z)is G? and defined everywhere, decided advantage over barrier functions.
Furthermore, (24)is a single nonlinear constraint, which makes any active set strategy very simple.
(24) bas been successfully used in large scale structural optimization [2] and optimal control [14}.

2.7. Probability-one homotopy for Kuhn-Tucker optimality conditions. The approaches
of earlier sections are still not always entirely adequate. The cumulative constraint function (21} is
decidedly unnatural, extremely nonlinear and i1 conditioned fer large p, and does not take advan-

tage of a known solution to 2 related problem. Consider again the general ponlinear programming

problem:
min 6{z)
subject to  g(2) S 0, (26}
r(z)=10,

under the same assumptions mentioned before. The Kuhn-Tucker necessary optimality conditions
for (26) are
CO(x) + BVRG) + V@) =0
h(z) =0,
g(2) <0, (27)
iz 0,
wg(z) =0,

where 3 € E” and p € E™. Following Mangasarian [21] and Watson [70], the complementarity
conditions p = 0, g(z) <0, ptg(z) = 0 are replaced by the equivalent nonlinear system of equations

W, 1) =0 (284}

where ,
Wiz, p) = —|pi t g2 + 4 - (Qé(w))ds- i=1,...m (280)

Thus the optimality conditions (27) take the form
(Vé(a) + 8 VA + pvg(a))
F(z,B.1) = h(x) = 0. (20)
Wz, 1)
Wwith z = (2.8, ), the proposed homotopy map 18

pal X, 2) = AF(z)+(1— Mz - a), (30)
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where a € EPFPY™, Simple conditions on 8, g, and h guaranteeing that the above homotopy map
pa( A7) Will work are unknown, aithough this map has worked very well on some difficult fuel
optimal orbital rendezvous problems [37).

Frequently in practice the functions 4, g, and f involve a parameter vector ¢, and a solution
to (26) is known for some ¢ = A9, Suppose that the problem under consideration has parameter

vector ¢ = 1), Then
ce=(1- Ael® + AclV (31)

parametrizes ¢ by A and ¢ = 8(z;¢) = 8(z;c(A))s 9 = g{z;c(N), h = h(m;c()\)'). The optimality
conditions in (29) become functions of A as well, F(X\z,8, @) =0, and

pehy2) = AF(A2) + (1= 2z — @) (32)

is a highly implicit nonlinear function of A. If F (O,z(o)) = 0. a good choice for a in practice has
been found to be a = 4(0). A natural choice for a homotopy would be simply

F()\z2) =0, (33)

since the solution 2 to F(0,2) = 0 (the problem corresponding to ¢ = A9 is known. However,
for various technical reasons, (32) is much better than (33) [37].

3. Curve tracking algorithms and HOMPACK.

The zero curve vy of the homotopy map pofA,z) (of which (2) is a special case) can be tracked
by many different techniques; refer to the excellent survey [1] and recent work [74], [75]. There
are three primary algorithmic approaches to tracking 7 that have been used in HOMPACK (47,
a software package developed at Sandia National Laboratories, General Motors Research Labora-
tories, Virginia Polytechnic Institute and State University, and The University of Michigan: 1) an
ODE-based algorithm, 2)a predictor-corrector algorithm whose corrector follows the flow normal
to the Davidenko flow (a “normal flow” algorithm); 3) a version of Rheinboldt’s linear predictor,
quasi-Newton corrector algorithm [4], [32], (an “augmented Jacobian matrix” method}.

3.1. Ordinary differential equation-based algorithm. Assuming that F(z) is C? and a is
such that pg is transversal to zero, the zero curve is C1 and can be parametrized by arc length
s. Thus A = A(s), z = 2(s) along 7, and

pa(A(s),2(s)) =0

identically in s. Therefore

d%-pa-(x(sxm(s))=Dpa(A(s),m(s)> Dy =0 (34)
o

ds

= 1. (35)
2

(%)
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With the initial conditions _
Ny =0, (®=% (36)

the zero curve 7 ig the grajectory of the initial value problem (34)~(36). When M3 = 1, the
corresponding z(3) is @ 21O of F(x). Thus all the sophisticated ODE techniques currently available
can be pbrought 10 bear on the problem of tracking ¥ {341, {66}

Typical ODE softwate requires (dA/ ds,dz [ds) explicitlys and (34). (35) only jnplicitly define
the derivative (dA/ ds,dz/ds)- Since the dimension of the kernel of the Jacobialt matrix

Dpa(N(s),2(8)

\s one (this follows from the fact that Dp, has full rank p DY the Paxametrized Sard’s Theorem),
the derivative (dX/ ds,dz/ds) ¢ be calculated from any nonzero vector # € ker Dp,. Note that
he derivative (dA/ ds,dz/ ds) is & anit tangent vector to the ZeT0 curve 7. For computational
officiency i {¢ imperative that the number of derivative evalnations be kept small. Complete
details for solving the ipitia) value problem (34)~(36) and obtaning z(3) are given in [49] and (661
A discussion of the kernel computation {follows. -

The Jacobial matrix Dpa wwpx{p+t 1) with (theoretical) cank p. The crucial observation
ig that the last p columns of Dpas corresponding to Dgpar 02Y pot have rank P and even if
they do, some other p columns may be betier conditioned. The objective is to avoid choosing P

“distinguished” columns, rather 10 treat all columns the same (not possible for sparse matrices).

There are yernel finding algorithms pased on Gaussian elimination and P distinguished columns

(15l Choosing and switching these p colamns is tricky, and based ont ad hoc parameters: Also,
'computational experience has shown that accurate gangent vectors (dA /ds,.d:r:/ ds) are esgential,
and the accuracy of Gaussian climination may not be good enough. A conceptually clegant, a8

well as accurate, algorithm is to compute the QR factorization with column interchanges (74] of

DPO«';
g e F K
QDpuPth:: Pz=10,

0 % *

where @ 18 @ product of Householder reflections and Pisd permutation matTix, and then obtain 2
vector z € ker Dpa bY back gubstitution. getting (P Z)prt = 1is 2 convenient choice. This scheme
provides high accuracy: pumerical stability, and a uniform treatment ofall pt1 cotumns. Finally,

d\ dz z
I dsi =+

where the sign i8 chosen 10 maintain at acute angle with the previous tangent vector on Y - There
is a rigorous mathematical criterion, based on 2 (p+ 1) % (p+ 1) determinant, for choosing the
sign, but thete is NO reason to pelieve that would be more robust than the angle criterion.

Several {eatures which are 2 combination of common gense and computationai experience
should be incorporated into the algorithmm. gince most ordinary differential equation solvers only
control the local erToT, the longer the arc 1ength of the zero curve 7 gets, the farther away the
computed points may be from the treé curve ¥ Therefore when the arc length gets too long, the

pa(-)i,fz) =0 (37)




exactly, and the zero curve of palA z) is followed starting from (A, T)- A rigorous justification for
this strategy was given in [66). I pa has the special form in (2), then trivially

a=(\F@+1- N N).

For more general homotopy maps Pa» this computation of @ may be complicated.

Remember that tracking 7y was merely a means to ant end, namely a zero & of Fz). Since ¥
itgelf is of no interest (usually), one should not waste computational effort following it too closely.
However, since ¥ is the only sure way to Z. losing 7 can be disagtrous. The tradeoff betweanl
computational officiency and reliability is very delicate, and 2 fool-proof strategy appears difficult
to achieve. None of the three primary algorithms alone is superior overall, and each of the three
beats the other W0 (sometimes by an order of magnitude) on particular problems. Gince the
algorithms’ philosophies ate significantly different, 2 hybrid will be hard to develop-

3.2. Normal flow algorithm. As the homotopy parameter vector a varies, ihe corresponding
homotopy Zero curve ~ also varies. This family of zero curves is known as the Davidenko flow. The
normal flow algorithm is O called because the iterates converge to the zero curve y along the flow
normal to the Davidenko flow (in an asymptotic sense).

The pormal flow algorithm has four phases: prediction, correction, step size estimation, and
computation of the solution at A = 1. For the prediction phase, assume that several points
P = (M(s1),2(50))> PR = ()\(sﬂ,a:(sz)) on y with corresponding tangent vectors (dM/ds(31);
dz/ ds(s1))» (dA [ds(s2)s dz [ds(s2)) have been found, and h is an estimate of the optimal step (in
arc length) to take along 7. The prediction of the next point on # is -

7 = p(s2 + h); (38)
where p(8) 18 the Hermite cubic interpolating ()\(s),:c(s)) at 8, and s2. Precisely,
o) = (el o) = (V4 ) dofds(30):
p(se2) = (A(Sz)afﬂ(sz))} p'(s2) = (dk/ds(o‘z),dﬂ?/dé"(sz))a

and each component of p(s) is 2 polynomial in s of degree less than or equal to 3.
Starting at the predicted point 7(9) {he corrector iteration is

.
g1 = 20 — [Dpa(z““))] (200, - k=0Lee (39)

where [D pa,(Z(k))Tr is the Moore-Penrose psendoinverse of the n X (n+ 1) Jacobian matrix Dpa-
Small perturbations of a produce cmall changes in the trajectory 7 » and the family of trajectories
~ for varying ¢ is known as the «Davidenko flow”. Geometrically, the iterates given by (39) return
to the zero curve along the flow normal to the Davidenko oW, hence the name “pormal flow
algorithm”.

A corrector step AZ is the unique minimum BOTm solution of the equation

[DPG]AZ = —fPa- (40)

Fortunately AZ can be calculated ab the same time a8 the kernel of {Dpa], and with just 2
little more work. Normally for dense problems the kernel of [Dpﬁ] is found by computing a QR
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facﬁoxization of [Dpa,] , and then using back substitution. By applying this QR factorization 10
—pq and using back substitution again, 2 particular solution v to (40) can be found. Let © #0be
any vector in the kernel of {D p,l]. Then the minimum norm solution of (40) is

viu

AZ =v~— mu. (41)

Since the kernel of [Dpa] is needed anyway for the tangent yectors, solving (40) only Tequires
another O(n?) operations beyond those for the kernel. The aumber of iterations required for
convergence of (39) should be kept small (say < 4) since QR factorizations of [D pa) ate expensive.
The alternative of using [Dpe (Z(O))] for several iterations, Wl jich results in linear convergence, is
rarely cost effective.

When the iteration (39) converges, the final iterate 70 is accepted as the next point on
~, and the tangent vector to the integral curve through 7(k) 15 used for the tangent-this saves a
Jacobian matrix ovaluation and factorization ab 7(k+3), The step size estimation described next
attempts to balance progress along v with the effort expended on the iteration (39).

Define a contraction factor

7 — ZW||

L= - 201 )

o residual factor

lea(ZON
R= 1O (49)

4 distance factor (Z* = T g oo AR

AR A

ool I (44)
707

and ideal values L, R, D for these three. Let h be the currew.step size (the distance from Z* to

the previous point found on ¥ ) and h the “gptimal” step sine for the next step. The goal 1s 10

achieve

i R_D h?
I®E~D M (49)
for some ¢. This leads to the choice

b= (min{E/L,R/R,D /oYM h, (46)

a2 worst case choice. To prevent chattering and unreasonable values, constants Bpin (minimum
allowed step size), fmax (maximum allowed step size), Bmin’ (.ccmtra,ction factor), and Bmax (€%
pansion factor) atre chosen, and h 18 taken as

h= min {ma*x{hmim Bminh,h}vBmaxha h‘ma.x} . (47)

There are eight parameters in this process: L, R, D, hmin; hmax, Binin, Bmexs € HOMPACK
permits the user to specify nondefault values for any of these. The choice of %, from (47) can be
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refined further. I (39) converged in one iteration, then P should certainly not be smaller than &,

hence set _ B
h := max{h,h} (48)

if (39) only required one iteration.

To prevent divergence from the iteration (39), if (39) has not converged after K iterations,
is halved and a new prediction is computed. Every time £ is halved the old value hoyq is saved.
Thus if (39) has failed to converge in K iterations sometime during this step, the new h should
not be greater than the value hola known to produce failure. ence in this case

h:= miu{hold, E}. (49)

Finally, if {39) required the maximum K iterations, the step size should not increase, so in

this case set
h := min{h,h}. : (50)

The logic in (48)—(50) is rarely invoked, but it does have a stabilizing effect on the algorithm.

The final phase, computation of the solution at A = 1, begins when a point P®) on v is
generated such that Pl(z) > 1. The solution lies somewhere on v between the previous point PO
and P(2). The endgame now consists of iterating until convergence the sequence of steps: inverse
interpolation with the Hermite cubic (38) for 3 such that p(8) = 1; two iterations of (39) starting
with Z(©® = p(s); replacing either PO op P by Z2) such that the solution on 7 is always
bracketed by P() and P(3), A precise statement of the endgame and the convergence criterion is
given in [47]. 7
3.3. Augmented Jacobian matrix algorithm. The augmented Jacobian matrix algorithm has
four major phases: prediction, correction, step size estimation, and computation of the solution
at A = 1. The algorithm here is based on Rheinboldt [32], but with some significant differences:
(1) a Hermite cubic rather than a linear predictor is used; (2) a tangent vector rather than a
standard basis vector is used to augment the Jacobian matrix of the homotopy map; (3) updated
QR factorizations and quasi-Newton updates are used rather than Newton’s method; (4) different
step size control, necessitated by the use of quasi-Newton iterations, is used; (5) a different scheme

for locating the target point at A =11s used which allows the Jacobian matrix of F to be singular -

at the solution # provided rank Dps(1,Z) = n.
The prediction phase is exactly the same as in the normal flow algorithm. Having the points
PO = (A(s1),2(s1)), P = (A(s2), 2(s2)) on 7 with corresponding tangent vectors

dA ' dA

@ = (s1) @ = (52) |

O e R P &
- (s1) —(52)

the prediction Z(© of the next point on ¥ is given by (38).
In order to use this predictor, a means of calculating the tangent vector T at a point P(*)
is required. This is done by solving the system

0

Dp. (P™)) : \
[ T{1)}1 ?= 0 ' (52)
1
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for z, where Dpg is the 7 X (n + 1) Jacobian of po. Normalizing z gives

7(2) = fzﬂ (53)

The last row of (52) insures that the tangent T(*) makes an acute angle with the previous tan-
gent T(1), Tt is the augmentation of the Jacobian matrix with this additional row which motivates
the name “augmented J acobjan matrix algorithm.” The solution to (52) is found by computing a
QR factorization of the matrix, and then using back substitution [4].

Starting with the predicted point 70} the correction is performed by a quasi-Newton iteration

defined by |
AW 17 g (2F)
(k1) — Z(®) _ Pa -
Z =Z [TW)*] ( 0 ) L=0,1,... (54)

where AW is an approximation to the Jacobian matrix Dpe (Z(k)). The last row of the matrix in
(54) insures that the iterates lie in a hyperplane perpendiculai to the tangent vector 7@, (54) is
the quasi-Newton iteration for solving the angmented nonlinear system

Pa(?f) _
(T(m (y- Z(U))> = 0. (55)
A corrector step AZ(*) is the unique solution to the equation
A9y (pe(ZO
[T(z)t] AzZ® = ( 0 ) - (56)

__The matrix on the left side of this equation is produced by successive Broyden rank one updates

[4] of the matrix In (52). Precisely, lﬁtiﬁgﬂ("’l’)f:ﬂjm, AN = Dp, (P, and

AR
k) —

the update formulas are

A1) Dp (P(23) £
-1y _ _ a 2 1
and
Rps - MBIAZHM) A2
(k+1) — pf(R) e — —
MO = M) T A , k=-10,. (38)
where ( (k+1)) ( (L)
ry pa \Z - pa (2
Ap, = .
g ( 0 )

These updates can be done in QR factored form, requiring a total of O(n?) operations for each
iteration in the correction process [4]. When the iteration {53) converges within some tolerance,
the final iterate 7(%) is accepted as the next point on the zero curve .

21



The step size estimation algorithm is an adaptation of a procedure developed by Rheinboldt
[32]. At each point P{*) with tangent 7(%) along 7, the curvature is estimated by the formula

”'w(k)” = 32;:- sin (ar/2)]|, (59)

where

g _ I® -0

(
v Ask ’

O, = arccos (T(’“)tT(‘l‘"U) , Asy = ”P(k) — P(k'l)“ .
Intuitively, a represents the angle between the last two tangent vectors, and the curvature is
approximated by the Euclidean norm of the difference between these two tangents divided by Asy,.

This curvature data can be extrapolated to produce a prediction for the curvature for the next
step

b= o]+ e (o] - -2 ()

Since £, can be negative, use
&k = max(€min, &) for some small  &min > 0, (61)

as the predicted curvature for the next step.

The goal in estimating the optimal step size is to keep the error in the prediction ||Z(® — Z(||
relatively constant, so that the number of iterations required by the corrector will be stable. This
is achieved by choosing the step size as

20,

h= ,
Ex

(62)
where 6 represents the ideal starting error desired for the prediction step. 4y, is chosen as a function
of the tolerance for tracking the curve and is also restricted tc be no larger than half of As.

As with the normal flow algorithm, additional refinements on the optimal step size are made in
order to prevent chattering and unreasonable values. In particular, % is chosen to satisfy equations
(47) and (49). This & is then used as the step size for the next step.

The final phase of the algorithm, computation of the solution at ) = 1, is entered when a
point P(2) ig generated such that P1(2) > 1. P® is the first such point, so the solution must lie
on vy somewhere between P(2) and the previous point P, The algorithm for finding this solution
is a two step process which is repeated until the solution is found. First, starting from a point
P& prediction Z*-2) for the solution is generated such that Zl(k"ﬂ = 1. Second, a single
quasi-Newton iteration is performed to produce a new point P¥F+1) cloge to ~, but not necessarily
on the hyperplane A = 1.

Normally, the prediction Z{¥~2) jg computed by a secant method using the last two points
P*) and pli-1),

. _ p®)
24D = PO 4 (pl=1) _ p(3) (PSQMI)PII;?&)) . (63)
1 B!
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However, this formula can potentially produce a disastrous prediction (e.g., if [Pl(k_l) -~ Pl(k)l <
|1 — p® | ), 50 an additional scheme is added to ensure that this does not happen. In order
to implement this scheme, a point P(°PP) 1yst be saved. This point is chosen as the last point
computed from a quasi-Newton step which is on the opposite side of the hyperplane A = 1 from
P&, Thus, the points P(°7P) and P(¥) pracket the solution. The prediction Z(*-2) may be bad
whenever the inequality

” Z(k=2) _ p(k)“ N ” P& _ plerp) ” (64)

is true. In this case, Z(*~2) ig recomputed from the equation.

oono)
(Pl(ozop) _ Pl(k)) )

702 = p(k) ( plove) _ p(k)) (65)

This chord method, while much safer than the secant method {43), is used only in the special case
(64) because it has a much slower rate of convergence than the secant method,

An exception to these linear prediction schemes occurs with the first step of the final phase.
Since the tangents 71 and 7() at P() apg P@) are available, this information is used to generate
a Hermite cubic polynomial p(s) for calculating the first prediction point Z(®, This is done by
finding the root s of the equation py(s) = 1. Z(9 ig then given by

=pm. g

After the predictor Z(*=2) has been determined, a quasi-Newton step is taken to get the point
PXF) This step is defined by

PUHD = Z(h=2) 4 Ag(h-2), (67)

where AZ%* =2 i5 the solution to (56). Again, the matrix in (56) is produced by the rank one
updates (57) and (58).

The alternating process of computing a prediction and taking a quasi-Newton step is repeated
until the solution is found.

3.4. HOMPACK organizational details. HOMPACK is organized in two different ways: by
algorithm /problem type and by subroutine level, There are three levels of subroutines. The top

range. The lowest subroutine level handles the tumerical linear algebra, and includes some BLAS
routines. All the linear algebra and associated data structure handling are concentrated in these
routines, so a user could incorporate his own data structures by writing his own versions of these
low level routines. Also, by concentrating the linear algebra in subroutines, HOMPACK can be
easily adapted to a vector or parallel computer,
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Table 1. Taxonomy of homotopy subroutines,

z = f(z) , Flz)=0 I pla, Az} =0 a,lgoﬂthm

dense sparse dense sparse dense sparse
FIXPDF | FIXPDS | FIXPDY¥ | FIXPDS FIXPDF | FIXPT:S ordinary differential equation
FIXPNF | FIXPNS | FIXPNF | FIXPNS FIXPNF | FIXPNS | normal flow
FIXPQF | FIXPQS FIXPQF | FIXPQS FIXPQF | FIXPQS angmented Jacobian matrix

The organization of HOMPACK by algorithm /problem type is shown in Table 1, which lists
the driver name for each algorithm and problem type.

D
FIXP { N } { g} ,
. Q |

where D ~ ordinary differential equation algorithm, N ~ normal flow algorithm, Q@ =~ augmented
Jacobian matrix algorithm, F' = dense J acobian matrix, and § a sparse Jacobian matrix.
Using brackets to indicate the three subroutine levels described above, the natural grouping of the
HOMPACK routines is:
[FIXPDF| [FODE, ROOT, SINTRP, STEPS] [DCPOSE]
[FIXPDS] [FODEDS, ROOT, SINTRP, STEPDS] [GMFADS, MFACDS, MULTDS, PCGDS,

QIMUDS, SOLVDS]
[FIXPNF] [ROOTNEF, STEPNF, [TANGNT]] [ROOT]
[FIXPNS] [ROOTNS, STEPNS, TANGNS] [GMFADS, MFACDS, MULTDS, PCGDS, PCGNS,

QIMUDS, ROOT, SOLVDS]
[FIXPQF] [ROOTQF, STEPQF, TANGQF] (QRFAQF, QRSLQF, R1UPQF, UPQRQF]
[FIXPQS] [ROOTQS, STEPQS, TANGQS] [GMTADS, MULTDS, PCGQS, SOLVDS]

The BLAS subroutines used by HOMPACK are DAXPY, DCOPY, DDOT, DNRM2, DSCAL,
DIMACH, IDAMAX.

The user written subroutines, of which exactly two must be supplied depending on the driver
chosen, are F, FJAC, FJACS, RHO, RHOA, RHQJAC, RHOJS.

The special purpose polynomial system solver POLSYS is essentially a high level driver for
HOMPACK. POLSYS requires special versions of RHO and RHOJAC (subroutines normally pro-
vided by the user). These special versions are included in HOMPACK, so for a polynomial system
the user need only call POLSYS, and define the problem directly to POLSYS by specifying the
polynomial coefficients, POLSYS scales and computes partial derivatives on its own. Thus the
user interface to POLSYS and HOMPACK is clean and simpte. The only caveat is that FFUNP
cannot recognize patterns of repeated expressions in the polynomial system, and so may be less
efficient than a hand crafted version. If great efficiency is mquiréd, the user can modify the default
FFUNP; the sections in the code which must be changed are clearly marked. The grouping is:

The naming convention is

[POLSYS] [POLYNF, POLYP, ROOTNF, STEPNF, TANGNF] [DIVP, FFUNP, GFUNP,
HEUNP, HFUN1P, INITP, MULP, OTPUTP, POWP, RHO, RHOJAC, ROOT, SCLGNP,
STRPTP]
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Figure 2. Geometry of half of a 2n-layered symmetric laminate.

4. Engineering applications.

4.1. Optimal composite plate design. Composite materials are ideal for structural applications
-where high strength-to-weight and stiffness-to-weight ratios are required. Design optimization of
composite structures has gained importance in recent years as the engineering applications of fiber-
reinforced materials have increased and weight savings has become an essential design objective,
especially for aircraft and spacecraft structures. The laminates considered here are symmetric
about the middle surface with 2n layers (see Figure 2), so that the bending response is not coupled
to the membrane action. The optimization problem is to maximize the buckling load of a 2n-
layered composite plate (Figure 3) for a given total plate thici-aess. The thickness of each layer is
assumed to be constant over the plate, and for a given stacking sequence of the ply orientations,
each thickness is taken as a design variable.

This is an instance of a general engineering design problem, namely to maximize the lowest
buckling load of a structure for a given amount of resources. The structure is discretized by finite
elements. Expressing the lowest buckling load with Rayleigh’s quotient, the problem is written as

. uTKu
max min -———-—
v “ uTKGu

such that ‘o —0=0 (68)

and Vi min S 0 S Vi max for i = 1,...,M,

where v is a vector of design variables with components »;, u is the displacement vector, X and
Kg (depending on v) are the stiffness matrix and the geometric stiffness matrix, respectively, ¢
is a positive cost vector, and @ is the amount of avajlable resources. The M design variables are
subject to upper and lower bounds, v;,,q, and v min, Pespectively,

A typical optimization method, applied to solve this problem, starts from a given design and
continuously searches for better designs until it finds an optimum design. The trial designs along
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X

Figure 3. Geometry of composite plate under uniform unjaxial in-plane load.

the path are of no value. The proposed method instead proceeds along a path of optimal designs
for increasing amounts of resource . The resource 6 is varied between the minimum Omin required
to satisfy the lower bound constraints and a maximum #,,,; when all variables are at their upper
bounds. ;

The path consists of several smooth segments, each segment being characterized by a set
14 of variables which are at their upper or lower bounds. Along each segment, some inequality
constraints can be treated as equality constraints,

Ui = Vimin O U5 = Ujn,, forje Iy, (69)

so that these variables can be eliminated from the optimization'_. problem, while the other variables
do not have to be constrained. The optimization problem’ along a segment can, therefore, be

written as
. ulK forig 1
MaXmMin —=—— fori ¢ [,
v w wl Kaqu

such that efp -9 =g,

(70)

The solution of the problem consists of three related problems: solving the optimization
problem along a segment, locating the end of the segment where the set 7, changes, and finding
the set 14 for the next segment.

It is common practice to normalize the displacement vector u such that the denominator of
Rayleigh’s quotient is unity and to treat this as an equality constraint. Then, using Lagrange
multipliers 5 and g, the augmented function P* is formed:

P =u"Ku~g[u’Kgu— 1 — e [To— 4] . (71)
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The following stationary conditions are obtained by taking the first derivative of P* with
respect to v;, u, 7, and u, and setting it equal to zero:
i) Optimality conditions

oK oK ; ,
uTa—wu-—nuT avfuwucizﬂ fori & 14, (72)
ii) Stability conditions

Ku—nKgu =0, (73)

iif) Normalization constraint
1~uTKgu=0. (74)

iv) Total resource constraint
6 —cTv=0. (75)

Equations (72)—(75) form a system of nonlinear equations to be solved for v;, u, 5, and p. A
homotopy method is used to find the solutions of these equations as a function of 4.

In certain ranges of structural resources, the optimal solution is known to be bimodal, i.e.,
the lowest buckling load is a repeated eigenvalue. The formulation for bimodal solutions s given
in the appendix of [35]. The existence of bimodal solutions also introduces additional transitions
(bimodal to unimodal and vice versa) along the path of optimum solutions,

The homotopy method as described here earlier is intended to solve a single nonlinear system
of equations, and converge from an arbitrary starting point with probability one. In this context
0 € [0,1], and the zero curve v is bounded and leads to the (single) desired solution at § = 1. The
a vector, viewed as an artificial perturbation of the problem, plays a crucial role. In the version
of the method employed here, 6§ € (60,61), each point along v has physical significance, and ¢ is
fixed at zero (no perturbation). Because ¢ is not random, the claimed properties for + hold only
in subintervals (6,6, ) of [0, o). Detecting and dealing with these subinterval transition points is
the essence of the modification of the homotopy method used ia this section.

Switching from one segment to the next

There are four types of events which end a segment and start a new one:
Type 1: a bound constraint becoming active (i.e., being satisfied as an equality);
Type 2: a bound constraint becoming inactive;

Type 3: transition from a unimodal solution to a bimodal solv.tion;
Type 4: transition from a bimodal solution to a unimodal solution.

To switch from one segment to the next, we first need to locate the transition point. At a
transition point there are a number of solution paths which satisfy the stationary equations, and
we need to choose the optimum path.

Transition points are located by checking the bound constraints and the optimality conditions.
The bound constraints _

Yimin SV < Yman f()l'i:l,...,M (76)

are checked to detect a transition point of type 1.

Optimality of the solution is checked by the Kuhn-Tucker conditions and the second-order
conditions discussed below. The solution satisfies the Kuhn-Tucker conditions when all Lagrange
multipliers are nonnegative. So a transition of type 2 is detected by checking the positivity of the

27




Lagrange multipliers associated with the bound constraints. These multipliers are obtained by
adding the bound constraints to the formulation (70) and replecing the augmented function P* by

P* = uTK'u, -1 [?.!.T_Kg'u, - 1] - 143 [CT?J - 9] - z )\15 [’U@min - 'Di] - Z /\2,; [’!)i — vimm] . (77)
i€ly 1 i€l4
Taking the first derivative of P* with respect to v; gives

oK oK. .
HT%H—WHT%‘?'“—MCVF'\H“AH:O foriec I, (78)
Since Ay; is 0 for v; # ¥imin and Ag; is 0 for v; # Vimae for the above equations, Ay; and Ag;
are given by

—ut pe; for v; = Vimin

dv; Jv;

7
Aa; = 1 %’-u 7uTaKGu for ;=7 "
2i = Fv; 7 3 : HCi Y 0 = Vimoex

A type 2 transition is detected by a Lagrange multiplier becoming nonpositive. Similar equations
for the bimodal case are given in the appendix of [35].

The bimodal formulation replaces 7 by 71 and 7, which are the Lagrange multipliers for the
normalization constraints on the two buckling modes. When one of them becomes negative, the
corresponding mode should be removed for the optimum design, so that we have a transition of
type 4 from bimodal to unimodal design. '

For a transition of type 3, we need to check if there is another buckling mode associated with a
lower buckling load. This can be accomplished by checking the second-order optimality conditions
for the buckling mode variables u given by

rT [V2ZP*]r >0 for every r such that Vo hTr =0 (80)
where )
‘P>
2 px]
[Vipr] = [Busaut]
dh
Vyh =
[Bus]

h=ulKgu—1.

Alternatively we can solve the buckling problem (73) for the current design and check whether
the buckling load obtained from the stationary conditions is truly the lowest one. The transition
of type 3 is detected by checking if :

PEM (81)

where p is the buckling load obtained from the stationary conditions while py is the first buckling
load obtained by solving the stability conditions (73) for the given structure.

Once a transition point is located, we need to choose a path which satisfies the optimality
‘conditions. Choosing an optimum path constitutes finding a set of active bound constraints for
type 1 and 2 transitions and the correct buckling modes for type 3 and 4 transitions. These are
obtained by using the Lagrange multipliers of the previous path and the sensitivity calculation on
the buckling load. The procedure is explained separately for each type of transition.
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A type 1 transition occurs when one of design variables, v;, hits the upper or lower bound.
Then v; is set at v;maz O ¥;min and treated as a constant value. The number of design variables
is reduced by one.

At a type 2 transition, one of the Lagrange multipliers for the bound constraints, Ay; and Ay,
is found to be negative. The bound constraint corresponding to the negative A1; or Ag; is set to be
inactive and the number of design variables is increased by one.

At a transition from a unimodal solution to a bimodal solution (a type 3 tramsition), the
formulation requires two buckling modes, 4y and wuy, for the solution of the upcoming bimodal
path. These modes can be obtained by solving the stability conditions (73) of the previous unimodal
formulation, since the stability conditions give two buckling mcdes at the bimodal transition point.

At a transition from a bimodal to a unimodal solution a type 4 transition), two buckling
modes are given from the bimodal solution. One of the Lagrange multipliers for the normalization
constraints, 7, is known to be negative from the previous transition check, so the buckling mode
corresponding to the positive 5 is chosen.

Some of the above transitions can occur simultaneously. Special treatment is required in
certain cases where the Lagrange multipliers are not available. In gemeral, the optimum design
requires at least one design variable v; for a unimodal case and. two design variables for a bimodal
case. At a type 1 transition, the number of design variables is reduced by one, and at a type 3
transition the bimodal formulation requires one more design variable in case the previous unimodal
path has only one design variable. So some type 1 or type 3 transitions occur simultaneously with a
type 2 transition which allows an additional design variable. In that case, the Lagrange multipliers
Ay; and Ag;, which are used at a type 2 transition to determine a new design variable, are not
available. We then rely on the sensitivity information of p with respect to v. For a unimodal case,
the location of the new design variable v; is determined where dp/d# is maximized. For a bimodal
case, we need to find a combination of ¢ and j which maximizs the value of the bimodal buckling
load for a small increment of the total available resource. Cimsidering the bound constraints in
the formulation, the new design variables are determined by

dp _ Op dv Opy dv;
MAX 0 T Do d8 | Ov; db (82)

such that
Opydv; | Oprdv; _ Opadvi | Opa dvy
dv; d6 ' Ov; d6  Dv; d8  Dv; d

%20 for v; = Vimi .
% <0 for v; = ¥max
% >0 for v; = vjmin
and%ﬁ(} f0r®j=‘(}jm(¥.

where p; and po are the buckling loads corresponding to the buckling modes u; and ug, respectively.

After we obtain the design variables v and the buckling modes u, we need the Lagrange
multipliers g and 5 at the transition point to complete the set of starting values for the next
solution path. These are obtained by solving the stationary conditions for the given u and v. For
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example, in the unimodal case, 7 is obtained from the stability conditions (73) and p is obtained
by solving one of the optimality conditions (72).

Summary

A typical optimization method starts from a given design and continuously searches for better
designs until it finds an optimum design. The trial designs along the path are of no value. Here a
strategy for tracing a path of optimum solutions parameterized by an amount of available resources
was discussed. Equations for the optimum path were obtained using Lagrange multipliers, and were
solved by a homotopy method.

The solution path has several branches due to changes in the active constraint set and transi-
tion from unimodal to bimodal solutions. The Lagrange multipliers and the second-order optimality
conditions were used to detect branching points and to-switch to the optimum solution path.

In [35] this procedure was applied to the design of 2 foundation which supports a column for
maximum buckling load, where the total available foundation was used as a homotopy parameter.
Starting from a minimum foundation which satisfies the lower bound (in this case zero), a set of
optimum foundation designs was obtained for the full range of total foundation stiffness. Numerical
results for the design of composite plates described here, where the total plate thickness is the
resource parameter being varied, are in [36].

4.2. Fuel-optimal orbital rendezvous problem. The problem is to find a minimum fuel
rendezvous trajectory between two bodies, the non-maneuvering target and the interceptor. The
interceptor trajectory consists of Keplerian coasting arcs separated by impulsive thrusting, char-
acterized by a change in velocity (magnitude and direction) A final impulse is applied at the
end of the interceptor trajectory to provide a velocity match with the target. Hence the number
of impulses equals the number of coasting arcs. The maneuser must be completed within some
specified time and the trajectory must avoid passing too near the earth, i.e., the arcs must not
violate a minimum radius constraint. The fuel-optimal problem translates to minimizing the total
change in the velocity (characteristic velocity).
The notation used is:

7 — change in true anomaly,

#(n) - radius vector,

#(p) - unit vector in the radial direction,

u — reciprocal of the magnitude of the radius vector,
#(n) - velocity vector,

h(n) - magnitude of the angular momentum vector,

A(n) - unit vector in the direction of angular momentum.

The variables are the coasting angles on each arc including a possible initial coast, the com-
ponents of the velocity change vector, and the coasting angle of the target. The forward equations
of motion for any subarc are:

u(n) = -ﬁ% + (u([] - %) cos 7 + u'(0) sinn,
#(n) = #(0) cosn + #'(0) sinn,
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with time of flight
"L

The constraints are:

final position match ... ..oveviieiiiiiiiiien, Fr— () = 0,

final velocity match ...oviiviiii ot 75 — Be(ne) = 0,

time of flight constraint .........oooiieiiaininn. Ty — Ty =0,
nonunegativity of the coasting arcs of the interceptor m>0 i=1,...,nim,
nonnegativity of the coasting arc of the target ..... n > U,

time limit for rendezvous . .ouvener v rirairraann Twax ~T7 20,

minimum radius constraint for each coasting arc...
except the initial coast arc of the interceptor.. Up — bjmax 2 0, F=1,...,nim—1,

nonnegativity of the radius constraint ............. Ujmin 20, J=1,...,nim— L

The subscript f refers to the condifions on the interceptor trajectory after the final impulse and
the subscript ¢ refers to conditions on the target. nim is the number of impulses. The value of
1 max iD these constraints is given by the rather awkward and difficult to compute expression

1 { perigee radius, if perigee passage occurs on subarc,

Umax min(?‘mitmg, ’Pf,;nag), otherwise.

The optimization problem, subject to all the above constraints, is
msin V(z),

where

5= {"?t,("?:AU',Ah,@j, Jj= 1,...,m’m},

and
nim

V=3, \/u§+1(0)[h3’+1 — 2hjhjp cos d; + R3] + [Ahjul1(0) + Aujhy]
=t

2

For u, u', and h, the subscript j denotes the conditions at the beginning of the jth subarc, and on
the variables Au/, Ah, and ¢ the subscript j denotes the jth impulse which occurs at the end of
the 7th subarc.

Using the formulation of equations (20) and (32), numerous such rendezvous problems have
been solved, both in-plane and out-of-plane, and with 2, 3, 4, or 5 impulses. See [37] for more
details. '
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X
Figure 4. Elastic rod.

4.3. Elastic rod. Consider a thin incompressible elastic rod clamped at the origin and acted on
by forces @, P and torque M (see Figure 4). The governing nondimensionalized equations are

%:cosﬂ, -Z—i:sin@, %:Qw—.?y—l—M, (83)
2(0) = y(0) = 6(0) = 0, (84)
z(l)=a, y(1)=b, Hl)=c ~ (85)

The cantilever beam problem, which is to find the position (a,b) of the tip of the rod given the
forces ) # 0 and P = 0, has a closed-form solution in terms of elliptic integrals. The inverse
problem, where the a, b, ¢ are specified and ¢}, P, M are to be determined, has no similar closed-
form solution. This inverse problem is ferociously nonlinear and extremely difficult. For large
deformations, ¢ = 67 for example, the rod is wound like a coil spring and its shape is very sensitive

to small perturbations in @, P, or M.
Q .
v=| P (86)
M

Let
and z(s;v), y(s;v), 8(s;v) be the solution (dependent on v) of the initial value problem (83)—(84).
Then an equivalent formulation of the nonlinear two-point boundary value problem (83)—(85) is to

find a vector v such that
2(1;v) — @ _
Fvy= | y(l;v)-b | =0. (87)

(1v)—¢

This particular formulation is based on shooting. Nonlinear systems different from (87) could be
derived based on multiple shooting, finite differences, polynomial or spline collocation, spectral
methods, or Galerkin methods. The best way to approximate the solution to {83)—(85) is not the
issue here. The issue is how to solve the particular given nonlinear system of equations {87).

32




Newton and quasi-Newton methods, even the very best such as HYBRJ from Argonne’s MIN-
PACK package [23], fail dismally when applied to (87). A simple continuation scheme, such as
tracking the zeros of :

pu(A, ) = AF(v) + (1= N)(v - w) (88)

as A is increased from 0 to 1, also fails. The zero curve of py,{X,v) in (88) emanating from (0,w)
diverges to infinity. In fact this divergence also occurs if F(v) in (88) is replaced by DF(v) for
any diagonal orthogonal matrix D. Nonlinear least squares algorithms attempting to minimize
F(v) F(») also quickly fail, since there are too many local minima that are not global minima
(F(%) #0).

Consider the function (known as a homotopy map) p : E® x [0,1) x E? — E3 defined by

2(1;v) - [Ae+ (1 - A)d: ]
p(d, 2, 0) = pa(A,) = | y(Ti0) = Mo+ (1= N)dz] | (89)
0(1;0) — [Ae + (1 — A)ds]

pa is a homotopy (the technical term from topology) because it continuously deforms one function
(in this case pa(0,v) ) to another function (in this case pa(1,v) = F(v) ). Note that p(d, A,v) is
C? and that its Jacobian matrix

Dp(d, A, v) = [=(1 - NI, —(a,b,¢)" + d, D, F(v)] (90)

has full rank (rank = 3) on p~1(0). In differential geometry jargon, p is said to be transversal
to zero. The mathematics then says that for almost all vectors d € E3 (in the sense of Lebesgue
measure), the map pq is also transversal to zero. What this means geometrically is that the zero
set of pg consists of smooth disjoint curves that do not intersect themselves or bifurcate, and have
endpoints only at A = 0 or A = 1 (see Figure 1). In general under suitable conditions (described in
Section 2) there is a zero curve 7y of pa(A,v) stretching from a known solution 29 at A = 0 to the

desired solution ¥ at A = 1.

For the homotopy map (89) such a zero curve v does indeed exist, and a solution 7 to (87) can
be found by tracking « starting from (0,%). vo and d are related by 2(1;v) = dy, y(1;m) = da,
f(1;v0) = ds. Since the theory says that everything works for almost all d, by the implicit function
theorem, everything also works for almost all vp. Thus in practice vy was chosen at random and d

computed from v, rather than vice versa. More details on this example can be found in [57].

4.4. Heavy elastic sheets. The overhang of a semi-infinite elastic sheet over a corner is important
in structural engineering and the textile and paper industries. Figure 5 shows such an elastic sheet
freely resting on a semi-infinite rigid foundation at 2’ > 0. Due to the weight of the overhang, the
sheet is raised and separated from the foundation in the segment from the corner 0 to the point

of contact at 2’ = z,. We assume the corner offers little frictional resistance. The sheet is kept
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Figure 5. Coordinate system and forces for overhanging elastic sheet.

in equilibrium by the horizontal force H ' at @,. This horizontal force may be due to frictional

resistance of the semi-infinite segment of contact &’ > 2.

Let s' be the arc length from 0 and ! be the length of the overhang. The sheet can be divided
into three segments: the overhang from s’ = ~Ito s' = 0, the raised segment from s’ = 0 to s =k,
and a contact segment &' > k' (where 2’ > x). Since the force must be normal to the sheet at the
point 0, the vertical force there (F) is related to # by

t
'f'_aTa
where ¢ is the angle of inclination at 0. If p is the weight per unit length, the vertical force G’ at
the point of contact s’ = &’ is then

tana =

G =(+Ep—-F.
A local balance of momentum (Figure 5) gives, for the overhaag segment,
m 4+ dm =m — p(l+ s')cos f ds’. (91)

Here m is the local moment, and # is the local angle of inclination. If the sheet is thin enough, the
local moment is proportional to the local curvature:

dé
= El~— 92
m I Rk (92)
where EI is the flexural 1igidity. We normalize all lengths by { and drop primes. Equations (91),
(92) become
d*é
ds?
where K = pl®/EI represents the relative importance of density and length to flexural rigidity.
The boundary counditions are

= —K(1+ s)cos8, (93)

o0y =a, O =X (94)
g(—l) =0. (95)
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Similarly, the equation for the raised segment is

d*0 .
—3 = [F— K(1+ s)] cosf + Ftan asinf. (96)

Here all forces have been normalized by EI/1%. The shape of the sheet is given by

x dy .
=g = cos é, ds = sin @ (97)
with the boundary conditions
dd
(0= 9(0)=0, 60)=a, SO)=) (98)
de
y(k) = 9(!@) = E(k) = 0. (99)

Given K, Equations (93)—(99) are to be solved concurrently for the unknowns o, A, ¥, and k.
An asymptotic solution is possible for small K. For gen¢ral K the deflections are no longer
small and numerical integration is necessary. Define

v = (o, F,k) (100)

and let z(s;v), y(s;v), 8(s; v) be the solution to the initial value problem Equations (93), (96), (97)
with the initial conditions (94), (98), (100). Then the original two-point boundary value problem
is equivalent to

f(v) = (y(k;'v), O(k;v), %(k;v), %{--hv)) = 0. (101)

Equation (101) can be solved by a homotopy method similar to that described in Section 2.3.1.
af
o (v).

The algorithm requires the Jacobian matrix Df(v) of f(v), ind the partial derivatives
These are computed as follows:

Set »y = 2,20 =y, 23 =0, 2y = & = db/ds, z = 8z/Fv;, 26 = Oy/Ovi, 27 = 00/0v;,
zg = 80" [dv; and consider the differential equations

Z; = cos z3,
2 = sin 23,
Zy = 24,
2y = —K(1 + s)cos 23 + F(cos z3 + tan a sin z3), (102)
zg = —zvsin z3,
zp = 7 COS 23,
zp = zg,
7 =K(1+8)msinz + T,
where
T= %(F(cos z3 + tan asin 13)) (103)
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has a different form depending on »;. For vy = @, the initial conditions are

2(0) = (0,0,2,1,0,0,1,0); (104)
for va = A

Z(O) = (0,0,0:, /\aOaOa 0, 1); (105)
for va = F ‘

#(0) = (0,0,, A,0,0,0,0); (106)
forvy = k

2(0) = (0,0,&,)\,0,0,0,0). {107)

Thus solving the initial value problem given by Equations (102) and (104) produces, e.g., —g%(k),

which is the (1,1) entry in the Jacobian matrix D f (v). Using the differential equation (102) with
T = 0 and initial conditions {104) or (105) produces the partials of §'(—1), where the initial value
problem is solved backwards from s = 0 to s = —1. Since the differential equation for s <0 does
not depend on F or F,

o6’ a6’
(1) = (-1 =0.

These initial value problems were solved by a variable step, variable order ODE code which is
accurate, efficient, and robust [34], [43], [61], [62]. The combination of a globally convergent
homotopy method and a sophisticated ODE method proves to be very successful on this problem.

4.5. Heavy elastic cylindrical shells. Important construction problems in outer space and
undersea involve heavy elastic cylinders. Depending on the rigidity of the elastic wall material,
the cylinder may collapse under its own weight, There are four distinct cases, governed by a
nondimensional parameter B (see Figure 6). Starting from a perfect cylinder (B = 0), as B
increases the point contact (case 1) widens to a line contact {case 2); then the top sags until it
tonches the bottom for a point-line contact {case 3); then ultimately the top also makes a line
contact with the bottom (case 4). The governing equations for all four cases are

T dy

P = cos f, T =siné,
@-"-A'nﬂ-l-(c Bs)cosé
i si s)cosé.

For case 1, C = B and the boundary conditions are

£(0) = y(0) = 8(0) = 0,
z(1) =0, 8(1) = =.

For case 2, C' = B(1 — a) and the boundary conditions are

2(0) = y(0) = 0(0) = 8'(0) = 9,
z(l — a) = —a, (1 —a)=rm.
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— — ¥ 3 —— - ¥
Case 1: point contact Case 2: line contact
C\/_D —x

Case 4: line-line contact

Figure 6. Heavy elastic cylindrical shells.

For case 3, the boundary conditions are

z(0) = y(0) = 6(0) = 8'(0) = 0,

z(l—a)= —a, yl—a)=0, 81 —a)=mr.

For case 4, the boundary conditions are '

2(0) = y(0) = 0(0) = 6'(0) = 0,

y(&) =0, d'@)=0.
For cases 1 and 2, quasi-Newton methods are adequate and efficient if a good computer code

is used. For cases 3 and 4, where B is large, quasi-Newton methods are feasible but very expensive
because of their small domain of practical application. If the starting point is too far away from

the solution, quasi-Newton codes such as HYBRJ from Argonne’s MINPACK software package fail
to make progress toward the solution and give an error return. The homotopy map

Pa(A,v) = AF(v)+ (1~ v —a),

where v consists of the appropriate initial conditions and parameters (depending on the case) and
F(v} is defined by shooting, works very well for large B [43]. This is an example of a problem on
which quasi-Newton methods do not totally fail, and yet the homotopy algorithm is more efficient.
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4.6, Porous channel flow in a rotating system. Lubrication in rotating machinery and
flow under the polar ice cap are examples of porous-channel flow in a rotating system. The
nondimensional governing equations are:

R(f’f” - fm) - f(d) + I/k’,
R(f’k _ fk’) — g Vf',
R(gf - f¢') = "+ vh + B,
R(gk ~ fh') = h" - vg,
fO)=-1,  f)=-8, f(0):=f(1)=0,
k(0) = k(1) = g(0) = g(1) = h(0) = A(1) = 0.

f, g9, h, and k describe the flow, and v, R, B, 5 are parameters, There are boundary layers at both
0 and 1 as well as internal boundary layers, which makes this problem extremely difficult. For v

and R small, the homotopy map
Pa(/\,v) = /\F(’U) + (1 - /\)(‘U - CI,),

where v consists of the appropriate initial conditions and F(v) is defined by shooting, was adequate
to solve the problem. Newton and quasi-Newton methods were completely inadequate for this
problem. For v, B > 30, 8 < 0, B = 0.5 shooting becomes impossible because of the sensitivity
of the problem, and F(v) defined by a finite difference approximation of the two-point boundary
value problem was used in the above homotopy. This approach was quite successful [67], even
though the resulting F(v) is a high-dimensional nonlinear fun-tion.

4.7. Micropolar flow past porous sheets. Eringen [9], [10] introduced the concept of mi-
cropolar fluids to provide a mathematical model for the behuvior of fluids which exhibit certain
microscopic effects arising from the local structure and micrc motions of the fluid elements, such
as polymeric fluids, liquid crystals and animal blood. Followiag Eringen [9], {10], the basic equa-
tions of motion and continuity for steady two dimensional flow of micrapolar fluids in rectangular
Cartesian coordinates zyz with the velocity vector U = [e(2,y), v(x,y), 0] and the microrotation
vector & = [0, 0, o (z,y)] are

p(ug—:+v-§3)z—g%+(p+k)(g—z§+g;§)+kg§ (108)
p(u%-l—v%)=—%+(M+k}(§i§+%)+kg—z (109)
Jp(ug%+vg—;)=7(%+g%)—2k&+k(g—:ng—;‘) (110)

%‘*%20 | (111)

where p, i, p are the density, viscosity, and pressure, respectivaly. Further v is the microrotational
coupling coefficient, & is the microrotational diffusivity, and J is the square of a length typical
of the microstructure. Eringen [10] showed through thermodynamic arguments that v, & and
g are all non-negative. Equations (108)-(110) reduce to the Navier-Stokes equations for steady
two dimensional flow of incompressible Newtonian fluids when ¥y = & = J = 0. The velocity
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microrotations.

We consider the flow past.a wall coinciding with the plane y = 0, with the flow confined to
¥ > 0, except for injection (or suction) through the wall. Keeping the origin fixed, the wall is
stretched by introducing two equal and opposite forces along the z-axis, With the usual boundary
layer assumptions Equations (108)~(111) reduce to the following form:

du fu % do

— — B —— 2
uam-l-'vay Vé)y?_’_KBy (112)
¢ 80  fo do du
J(u%-+’v§y-)-6'-a?2—~20-—-§§ (113)
du v
—_—t — =90 114
7z T 9y (114)
with v = ,u: k, K= %, G = %, and J = % The boundary conditions are
u=Cz, v=-VvCA4, o=0 at y=0 (115)
U—0, 0—0 a5 y— 00 (116)
where C' >0, A >0 corresponds to suction, and 4 < 0 corresponds to injection.
Using the transformations
u=Cuz fi'(n) _ (117)
v=-VvC fi(n) (118)
o = /T35 z fo(n) (119)
n=+Clry (120)
Equations (112)-(114) reduce to the following form:
W =-fafi"+ (W'Y - (121)
R =G [ f" v 2 — (AR - f'f )C17] (122)
where f; denotes fi(n), f2 denotes S2(n), and the non-dimensional parameters
Cl = -Ii, 02 = g‘g, and Cg = “Jg (123)
v v v
The boundary conditions corresponding to (115) and (116) are
h=4, A'=1, fo=0 for p=0 (124)
_ A0, fi—0  as 7 -— 00. (125)
Define
(i 0))
V= 1 126
(46 (126)
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and let fi (n; V), f2 (7; V) denote the solution of the initial value problem given by (121) and (122)
with the initial conditions (124) and (126). Now note that the original two point boundary value
problem (121)-(125) is numerically equivalent to solving the nonlinear system of equations

F(V)= (ﬁ ggg) =0 (127)

where t is chosen large enough so that A7) = fi(7)} < € and [f2(m)] < efor T < n < 00 and a
given € > Q.

Algorithms for solving the nonlinear system (127) typically require partial derivatives such as
af

Vo These derivatives are calculated by an approach similar to that described in Section 4.4.
k

The nonlinear system of equations (127) can be solved by a, globally convergent homotopy method
using the homotopy map (2). Such methods are necessary for highly nonlinear problems like (127)
since locally convergent methods like Newton’s method diverge unless the starting point is very
close to the solution and quasi-Newton methods frequently converge to spurious solutions. Consid-
erable computational experience with nonlinear systems of equations arising from fluid mechanics
problems indicates that such globally convergent methods are indeed necessary, unless, of course,
one is willing to solve a large number of nonlinear systems valying the parameters slowly,

Quasi-Newton methods, such as those implemented in Argonne National Laboratory’s MIN-
PACK [ 21 ] subroutine package, are robust and usually much more efficient than a globally
convergent homotopy method. However, quasi-Newton methods frequently fail by converging to
spurious solutions of F(V) = 0; that is, there are critical points of F(V)'F(V) which fail to satisfy
F(V) = 0. Hence a reasonable overall strategy is to try an inexpensive quasi-Newton algorithm
first; and, if that fails, then resort to the expensive but guaranteed homotopy algorithm. To obtain
solutions for the fluid flow past a porous stretching sheet with suction parameter A, the homotopy
method was used to solve for 4 = (. These solutions produced close initjal estimates for 4 # 0
as 4 moved in either direction from 0. Thus, since initial starting values were good, the quasi-
Newton algorithm was generally successful for small 7, however; it failed for large (> 10) values of
7 (corresponding to [A] > 2) and therefore required the solution to a number of nonlinear systems
until a sufficiently large r was obtained.

For large r (say 7 > 15) the quasi-Newton method, when it converged, took less than a
minute of CPU time on a VAX 11 /780 to solve (127). The homotopy method for a similar problem
sometimes took over 10 minutes of CPTU time, but never fajled to converge [11].

4.8. Magnetohydrodynamic (MHD) flow and heat transfer. This example concerns the
magnetohydrodynamic flow and heat transfer about a rotating disk with suction and injection
at the disk surface. Some important applications are boundary layer control, cooling of turbine
blades, and cooling the skins of high speed aircraft. Another significant application is to model the
boundary layer on the face of a crystal grown by the Czochralski method with an axial magnetic
field. The goal is to describe the effects of an axial magnetic field and suction (or injection) on the
flow and heat transfer about an insulated rotating disk. When the disk is conducting, adding a
magnetic field promotes the motion of the fluid, whereas if the disk is insulated, adding a magnetic
field decreases the flow velocities. '

Let the disk lie in the plane 7 = 0 and the space z > 0 be occupied by a homogeneous,
incompressible, electrically conducting viscous fluid. Here (r,0,z) are cylindrical coordinates, By is
the externally applied magnetic field in the z direction, w is the angular velocity of the disk, 7, is
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the uniform temperature at the disk surface and T is the ambient fluid temperature. The basic
equations for a nonconducting disk are modified to include the Lorenz force J x B (f being the
current density).

In cylindrical ecordinates (r,4,2), assuming angular symmefry, the equations of motion are

a 3 v? ap " 0
p[(ug—i—wa)u—?—} __—-E‘--}-p(v ’U—T_g)‘“C’UBo, (128)
9 + 'wi v+ 2| = (ng - —?-J-) — ov B2 (129)
I\ ar 0z P 2/ 0
d é _ Op 5
p[u-ég—l-w-é—z] w = —5-;+;;,V w, (130)
and the continuity equation is
7 J
77 (ru) + 5-(rw) =0, (131)

where u, v and w are the velocity components in the r, 4, z divections respectively, p is the density
of the fluid, y is the coefficient of viscosity, p is the pressure, o is the electrical conductivity and

w108 &

T tre taa

Further, equations (128)-(130) assume that the induced electric field is negligible compared with
the imposed magnetic field. This assumption is valid for flov at low magnetic Prandtl number.
The energy equation is

(ua + wg) T=aVeT, (132)

in which 7" is the static temperature and « is the thermal diffusivity. The boundary conditions of
the problem are

=1
U — 0
D= rw
at z =0, 2= 0 as z — oo, (133)
w=—H,
Tr—T
T=T, °°

where H,, > 0 corresponds to suction and H.,, < 0 corresponds to injection.,
Introduce the following relations

u=rel(y),  v=r0Gm),  w= () H(y),
P(p) = f&’ o(y) = —Tj;_—_".%’ 77 _ z(t—:-)llz_ (134)
Also, from equation (131) we have
) = -0, (135)

2
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Substituting equations (134) and (135) into equations (128)-(332) yields

(AW
H'" — FH" _ (fg) +mH + 2G2, (136(3)
G” - HG! . H'G-F mG, (1365)
0" = PrHO’, (137)

where prime denotes differentiation with respect to 7. The Prandtl number Pr and the magnetic

parameter m are given by
oB}
Pr==, m=220 (138)
o pL _
where v = p/p is the kinematic coefficient of viscosity. In terms of the new variables defined in
(134), the new boundary conditions from (133) are

H =0
H -0

H=-4

c at =10, G —0} as 5 — oo, (139)
00

0=

where A is the nondimensional velocity normal to the disk surface. 4 > 0 represents suction while
A < 0 represents injection. Observe that (137) decouples from (136a) and (136b), and that once
H(n) has been determined, ©(5) can be computed by solving a relatively easy one-dimensional
two-point boundary value problem. '

In practice the infinite boundary conditions in (139) are replaced by

H(ry=G(r)=6(r) =0 (139a)
for some r sufficiently large such that
[ () = H() +1G)] +18(n)| = 0 for 7 < 5 < o0

Let S, be the finite dimensional vector space with basis {Bj,k,t (z) };,L___l, where B; ;. +(z) is the
Jth B-spline of order k (degree < k — 1) defined on the knot sequence t = (#y,%3,...,¢n4%). When
there is no ambiguity B 1(z) is simply written as B 7(z). For this problem the knot sequence t
is based on the breakpoint sequence

= = (0,.25,.50, .75, 1.0,1.25,1.50, 1.75, 2.0, 2.25, 2.50, 2.75,
3.0,3.5,4.0,4.5,5.0,5.5,6.0,7.0,8.0,9.0,11.0,13.0, 15.0,
18.0,21.0, 24.0, 28.0, 32.0, 36.0, 41.0, 46.0, 51.0, 60.0,
70.0,80.0,90.0,100.0),

following the convention

tI:tZZ"':tk and tn+1:tn,+2:"':tn+k

42




used by deBoor [6]. These repeated knots essentially mean th:t the spline is free at the endpoints
of the approximation interval [t,, tn+1]. Note the distinction between knots and breakpoints. The
rest of the knots are simple, i.e., £; < Lirp for i = k,... n. The fanctions (1) and G(n) have
boundary layers (large derivatives) near 7 =0, and then asymptotically approach g constant ag

Some error tolerance) at thejr asymptotic value. Short of dynamically adapting the knot sequence
(which, as deBoor [6] points out, is rarely cost effective), a reasonable strategy is to space the knots
farther apart as 7 increases, Depending on the values of n and k, only an initia] subsequence of
the breakpoint sequence = above is used,

The approximations are

N+2 .
Hn) = 3" a;B;(n), (140)
i=1
a1 = —A, a5 = %?(IO-L)Q, ANy = _a'};;j?:igrh), (141)
N+42
G(n) =" 8;B;(n), (142)
j=1
Bi=1, By, =0. (143)

The boundary conditions (139) force the equations (141) and ( 143). The Galerkin approximation
is the nonlinear system of equations

(—"2" + B H"_ HY 24+ mHE + 202, Bi)=0, = 3 N +1,
(144)
<_G"+Hc;’_H'G+mG, B;} =0, i=2,...,N+1,

where

()= [ wayetn) dn

LetY = (a3,a4,...,aN+1,ﬂ2,ﬂ3,...,ﬁN+1)t and F(Y) = 0 be given by the p=92¥§ _ 1 = 2n—5
equations (144).

Table 2 shows some numerical results obtained by applying subroutine FIXPNF (normal flow
algorithm) of HOMPACK to (144). The normal flow algorithm was the most efficient of the
three algorithms in HOMPACK for this problem. While predicting the best algorithm for a given
problem is risky, some general rules of thumb are: the ODE-tased algorithm is the most robust
but the most expensive; if the zero curve ¥ has very sharp turns (it doesn’t for this problem) then
the ODE-based algorithm is the best; if the Jacobian Inatrices are very expensive to evaluate (they
aren’t for this problem) then the quasi-Newton augmented Jacobian scheme s best; otherwise the
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TABLE 2

A m k| N+2 ~H(T) ~f(c0) | NFE | CPU time | ac length
-1.0 1.0 6 12 ~-.80700 —.43166 29 13:28 1.309
-1.0 2.0 6 12 —-.88173 ~.78156 29 13:28 1.387
~1.0 4.0 6 12 -.94477 —.93015 30 14:37 1.518

0.0 1.0 6 12 11991 25331 25 11:13 1.067

0.0 2.0 6 12 07372 .10858 25 11:24 1.103

0.0 4.0 6 12 .03558 04078 20 9:07 1.198

1.0 1.0 6 12 1.06079 1.0898 21 9:38 1.141

1.0 2.0 6 12 1.03959 1.0481 20 8:57 1.187

1.0 4.0 6 12 1.02103 1.0225 15 6:42 1.272

2.0 1.0 6 12 2.02744 2.0318 18 8:00 1.257

2.0 2.0 6 12 2.01968 2.0213 24 10:38 1.296

2.0 4.0 6 12 2.01193 2.0123 15 6:37 1.365

4.0 1.0 6 12 4.00625 4.0064 18 7:58 _ 1.471

4.0 2.0 6 12 4,00530 4.0054 18 7:58 1.491

4.0 4.0 6 12 4.00402 4.0041 15 6:38 1.530
~1.0 1.0 6 24 —.43877 —.43166 32 1:09:37 1.916
-1.0 2.0 6 24 —.78196 —.78156 27 38:20 1.604
-1.0 4.0 6 24 —.93019 —.93015 24 51:32 1.953

0.0 1.0 6 24 25286 25331 26 55:45 1.986

0.0 2.0 6 24 .10852 10858 21 44:53 1.804

0.0 4.0 6 24 .04073 .04078 25 53:27 1.903
-1.0 1.0 6 32 —.43165 —.43166 33 2:15:48 2.765

=10 2.0 6 32 —.78158 —.78156 34 2:20:28 2.334
—1.0 4.0 6 32 —.93018 —.93015 27 1:52:50 2.752
~1.0 1.0 4 24 —.42854 —.43166 41 55:37 2.196
-1.0 2.0 4 24 —.78043 —.78156 . 38 51:12 1.810

| —10 | 40 | 4 24 | —93062 | —.93015 | * 29 39:06 2.128

normal flow algorithm is best. The values H(oco) are from [16], and 7 can be inferred from n, £,
and the breakpoint sequence Z listed above. The integrals in (144) were computed by 10-point
Gaussian quadrature over cach subinterval, and are thus essentially exact. NFE is the number of
Jacobian matrix evaluations, and the format of the CPU time {on a VAX 11/780) is hh:mm:ss.
The local curve tracking tolerance was 10—4 and the final accuracy (the end game tolerance) was
1078,

The problem gets easier (weaker boundary layers, asymptotic value reached sooner) as either
A or m increases. For example, with n = N 4+ 2 = |2 and spline order £ = 6, T =113 = t3 = 1.75,
and as the plots in [16] show, this 7 is clearly not large enough for 4 = 7, m = 1.0, but it is
about right for 4 = m = 4, Taking n = 24, &k = ¢ gives T = 7.0, which produces better results
for the case 4 = =1, m = 1.0, and finally n = 32, k = ¢ gives 7 = 24.0 and the theoretically best
possible results ( O(AS) = O((1/4)8) = O(107%) yfor A= -1, m = 1.0, The lower order spline
(k = 4) produces the expected O(h*) accuracy at the right 7 for A = -1, m = 4.0, but not for
A=—-1,m=1.0 because 7 is too small for this case.

There are three concluding observations. First, although the theory in §2 is not directly
applicable to this MID problem, these numerical resufts suggest that the homotopy algorithm is
more widely applicable than the theory indicates. Second, the accuracy is exactly what would
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be expected of a Galerkin approximation given the spline order and knot spacing. Third, all the
solutions for Table 2 were obtained on the first computer tun by HOMPACK with no tweaking of
initial points or error tolerances whatsoever.
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