The UAN: A User-Oriented Representation for
Direct Manipulation Interface Designs

H. Rex Hartson
Antonio C. Siochi
Deborah Hix

TR 90-16

The UAN: A User-Oriented Representation
for Direct Manipulation Interface Designs

H. REX HARTSON, ANTONIO C. SIOCHI, and DEBORAH Hix
Virginia Tech

Many existing inrerface replesentation techniques, especially those associated with UIMS. are
constructiona) and focused on interface implemenzation, and therefore do not adequately support a
user-centered focus. But it is in the beavioral domain of the user that incerfaee designers and

and the actions a user performs 10 accomplish those ta
introduction o use of the User Action Netation (GAN), a task- and user-oriented notation (or
Sehavioral representation of asynchronous, direct manipulation interface designs. [nterfaces are
specified in UAN as a quasihierarchy of asynchronous tasks. At the lower leveis, uger actions are
associated with feedback and system state changes. The notation makes use of visually onomatopoeic

symbols anc is simple enough to read with little instruction. UAN is being used Hv growing numbers

Categories and Subject Descriptors: D.2.1 [Soitware Engineering|: Requirements/Specifications—
lenguages: D22 [Software Engineering): Tools and Techniques—user intersgees; D.2.10 Soft-
ware Engineering): Design—representation

Generai Terms: Design, Human Factors. Languages ‘

Additional Kevwords and Phrases: Behaviora) design. constructionai design, human-computer incer-
face, representating of interfaces, task analysis, user interface

1. INTRCDUCTION

The past few years have seen an increase in the variety of software tools to
support development of interactive computer systems. One common theme that
has emerged is applying software engineering to the production of user interfaces.
However, it has been realized that software engineering methods still do not
necessarily produce user interfaces with high usability. Because of the difficuity
of speeifving and building user interfaces, the view of the user has been difficult
to maintain. Developers know better how to construct a system than how to
specify what it is to accomplish and how it is to interact witk the user. The

Authors’ addresses: H. Rex Hartson and Deborah Hix, Department of Computer Science, Virginia
Tech, Blacksburg, VA 24061; Antonio C. Siochi, Department of Physics and Computer Science,
Christopher Newport College_, Newporz News, VA 23606,
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the titla of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission,
T 1990 ACM 1046-8188/90/0700-0181 301.59

ACM Transactions on Information Systems, Vol. 8, No, 3, July 1990, Pages 181203,

182+ H.R. Martsonets |

In particular, this paper is a practical, rather than theoretical, introduction to
the User Action Notation (UAN) [28], a task. and user-oriented notation for
behavioraf representation of asynchronous, direct manipulation interface designs.
UAN was initially intended as a communication mechanism between interface

{1) move the cursor to the file icon;
(2) depress and immediately release the mouse button.

The user action portion of the UAN description for this task is as follows:

(1) ~[file__icon]
(2) Mva

(2) with the button held down, move the cursor. An outline of the icon follows
the cursor ag you move it around.

{3} release the mouse button. The display of the icon is now moved to where you
released the button.

ACM Transactiong on Information Systems, Vol 8, No. 3, July 1990,

The UAN: A User-Orienteq Representation . 183

The user action portion of the corresponding UAN description is shown below-

(1) ~{file_icon] Mv
(2) ~[x, y]s ~[x", y']
(3) Ma

Reading this task description, we again note moving the cursor into the conrext
of the icon and depressing the mouse button. In the second line, ~{x, ¥] indicares
movement of the cursor to an arbitrary point x, y on.the screen. The s (Kleene
star for expressing iterative closure in regular expressions) means to perform,
ZET0 Oor more times, the task to which it is attached. Thus, ~|x, Yl ~[x', v
means 1o move the cursor to a suceession of Zero or more arbitrary points about
the screen, ending at the point x”, v, Finally, in the third line the mouse button

1s released.

3. MOTIVATION FOR BEHAVIORAL DESIGN HEPF{ESENTATION‘

Historically, and as a practical matter, many user interfaces have been designed
by software engineers and programmers as part of the software of an interactive
system. The result has been interfaces of varying quality and usabilityv. Much
work in the field of human-computer interaction has been direcred toward new
approaches to user interface development in hopes of improving quality and
usability. Among these new concepts is the notion that design of software to
construct a user interface is different from design of the interface itself. and that
interface design has special requirements not shared by software design. A major
distinction is that, while software design is properly system-centered, good
interface design must be user-centered. Being user-centered means focusing on
the behavior of the user and what the user perceives while performing tasks with
the computer. To underscore this distinction we use the terms behavioral domain
and constructional domain to refer, respectively, to the working worlds of the
people who design and develop user interfaces and the people who design and
develop the software to tmplement those interfaces,

In the behavioral domain one gets away from the software issues of interface
design into the processes that precede, and are Inputs to, software design. These
processes include task analysis, functional analysis, task allocation, and user

related; design is a creative, mental, problem-solving process and representation
is the physical Process of capturing or recording the design,

It follows that each domain ought to have representation techniques tailored
to its perspective and needs, As Richards, Boies, and Gould (25] state about tools
for mocking up user interface prototypes, “few of these provide an interface

ACM Transactions on Information Systems, Vol 8, No. 3. July 1999,

184 . H. R. Hartson et al.

specification language directly usable by behavioral specialists.” Many existing
interface representation techniques, especially those associated with UIMS, are
constructional. But it is in the behavioral domain of the user that interrace
designers and evaluators do their work. Thus, there is a need for behavioral
representation techniques coupled with supporting interactive tools to give a
user-centered focus to the interface development process.

Behavioral descriptions can be thought of as procedures executed by the user.
Behavioral design and representation involve physical and cognitive user actions
and interface feedback, that is, the behavior both of the user and of the Interface
as they interact with each other. Each behavioral design ‘must be translated into
a constructional design that is the computer system view of how the behavior is
to be supported. Because UAN supports task description, which is important in
many of the early interface development activities, it is suitable for use by
behavioral specialists. UAN is used to describe how a user pertorms a task, bur
not how the system is implemented to interpret user behavior. Because [TAN is
in the behavioral domain, it should not be confused with, for example, specifi-
cation languages for program hehavior. Interface designs represented in UAN
must still be translated, manually or automatically (see Section 11.3}, into the
constructional domain. Therefore, UAN is not a replacement for constructional
representation techniques: it serves in a different domain.

One behavioral technique that has long been used both formally and intuitivels
is scenarios {or story-boarding) of interface designs. While this technique is
effective for revealing a verv early picture of interface appearance, because a
scenario is an example (extension) of the interface, it cannot represent the
complete design (intension). Scenarios can show much ahout screen lavout. bur
do not adequately or efficiently show the user's behavior while interacting with
the computer,

UAN is a task-oriented notation that describes behavior of the user and the
interface during their cooperative performance of a task. The primary abstraction
of UAN is a task. A user interface is represented as a quasihierarchical structure
of tasks that are asynchronous, that is, sequencing within each task is indepen-
dent of that in the others. User actions, corresponding interface feedback, and

state information are represented at the lowest level. Levels of abstraction are
used to hide these details and represent the entire interface. At all levels, user
actions and tasks are combined with temporal relations such as sequencing.
interleaving, and concurrency to describe allowable temporal user behavior. IJAN
is used to supplement scenarios, indicating precisely how the user interacts with
screen objects shown in a scenario. The need for detailed scenarios and task
descriptions is articulated by Gould and Lewis [9]: “Another method is to
construct detailed scenarios showing exactly how key tasks would be performed
with the new system. It is extremely difficult for anybody, even its own designers.
to understand an interface proposal, without this level of description.”

4. RELATED WORK

Techniques for representing user interface designs can generaily be divided into
the categories of behavioral or constructional, as described in Section 3 above.

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990.

The UAN: A User-Oriented Represantation . 185

The behavioral techniques describe interaction from the user’s view and are
generally task-oriented. These include the GOMS model [3), the Command
Language Grammar {CLG}) (18], the kevstroke-leve] model [2], the Task Action
Grammar (TAG) [23], and the work by Reisper [24] and Kieras and Polson
[17]. Design of interactive systems, as with most kinds of design, involves an
alternation of analysis and synthesis activities [13]. Most of the models Jjust
mentioned were originally oriented toward analysis; they were not intended to

an existing design with the purpose of predicting user performance for evaluating
usability. Synthesis includes the activities that support the creative mental act
of problem solving (creating new interface designs) and the physical act of
capturing a representation of {documenting) the design. It is this kind of design

support synthesis as well, but typically do not represent the direct association of
feedback and state with user actions, Also, many of these models, GOMS, CLG.
and keystroke in particular, are models of expert error-free tagk performance in
contiguous time (without interruption, interleaving of tasks, and without consid-
ering the interrelationships of concurrent tasks), not suitable assumptions for
the svnthesis-oriented aspects of interface design,

The GOMS model is very important to task analysis for interface design. The
amount of detail generated in a GOMS description of an interface allows for
thorough analysis but can be an enormous undertaking to produce. GOMS and
UAN have similarities, especially at higher levels of abstraction where tasks are
described in terms of sequences of subtasks. The kevstroke-level model includes
actions other than. keystrokes, but at the same level of time granularity (i.e..
single simple physical user actions). CLG formalism offers a thorough and bread
framework for describing many aspects of a user interface, Description at each
level (task, semantic, syntactic, and interaction) contains procedures, written in
a language much like a high-level programming language. The work of Reisner
with the ROBART graphics system interface uses an action language grammar
and applies metries to predict user performance to make comparisons of alter-
native designs and to identify design choices that could cause users to make
mistakes. TAG is a formal, production rule-based description technique for
representing mental models of users in task performance. Similarly, the work by
Kieras and Polson is used to model user tasks and apply metrics to obtain
mmeasures of complexity of user knowledge required in performing specific tasks.

Among the earliest representation techniques for dialogue contro! flow (se-
quencing) are those based on formal, machine-processable production rule gram-
mars represented in, for example, Backus—Naur Form (BNF) (e.g, Syngraph
[22]). Grammatical representations tend to be behavioral because they describe
expressions that come from the user, but they are difficult to write and read and
are not used much now. Multiparty grammars [27] are an interesting extension
to the production rule-baged techniques. By representing the compurer system
as one of the interacting parties, the rultiparty grammar allows direct association

ACM Transactions on Information Systems, Vol. 8. No. 3, July 1990.

186 . H. R. Hartson et a1,

of interface feedback to user inputs. The multiparty Srammar, however, is not
easily adapted to the variety of user actions found in a direct manipulation
interface. ’

State transition diagrams (STDs) and their variations {15, 30, 31] are similar
in expressive power to BNF, but show control flow explicitly in a graphical form.
STDs are constructional because they are a representation that executes directly
on the system (e.g., the system is in state X if user inpur A is sensed, then the
System makes a transition to state B). BNF and STDs are used to represent
mainly state change information, but not interface feedback OT screen appearance.

Event handlers {10, 14] are used to Tepresent events that result from user
actions. Because event handlers represent the system view of an interface (e.g.,
cause computational procedures to be invoked in Tésponse to an event), they are
constructional. Event handlers offer an object orientation and have more expres-
sive power than BNF or STDs {11]. Concurrent Programming coneepts have also
been used to specify or implement the interface [4, 7] : :

Other work has involved specifying interfaces by demonstration {e.g., Peridot

producing rapid prototypes. An interface can also he generated from a set of
application functions (21). Thisis a quick constructional method of producing a
default interface and is also useful for prototyping. Another technique combines
two constructiona] techniques, state diagrams and object orientation [16]. In this
case a mutually asynchronous ser of state diagrams represents the interface,
avoiding the complexity of a single large diagram. Another approach (UIDE [8])
involves building a knowledge base consisting of objects, attributes, actions, and
pre- and post-conditions on actions that form a declarative description of an

interface, from which interfaces are generated.

5. MORE ON THE UAN
5.1 Interface Feedback

(1) move the cursor to the icon.
(2) Click the mouse button and the icon will be highlighted.

ACM Transactions on Information Systems, Vol, 8, No. 3, Juily 1990,

The UAN: A User-Oriented Representation . 187

TASK: move 3 file icon
USER ACTIONS INTERFACE FEEDBACK

~ifile_icon] My “file _iconi

~lx i ~fx' '] outline of file_icon foilows cyrsor

M~A display file_icon ar Xy

Fig.1. Uaxn deseription of the task “move a file icon” with inter-
face feedback in Tesponse to user actions.

TASK: select an icon :
USER ACTIONS | INTERFACE FEEDBACK
~fliconi Mya ! icon!

Fig.2. UaN description of the task “select an icon.”

[TASK: select an icon

L USER ACTIONS f INTERFACE FEEDBACK
|~ficon] My | icon!
MA '

Fig.3. UAN description of the task “select an icon” showing,
more preciseiy, relationship of feedback Lo user actions,

The corresponding UAN task description is shown in Figure 2. In the
Macintosh® interface?, however, highlighting occurs when the mouse button is
depressed (rather than when it is clicked—depressed and released). Figure 3
shows how UAN can be used to Tepresent, more precisely than in Figure 2, this

highii_ghting action is applied to the icon (icon!) only if the icon is not already
highlighted: highiighting'depends upon the condition icon-!, which means the
Icon is not highlighted. The feedback in Figure 4 has been extended to include
these two notions, where ¥ means “for aj]” and a colon is used between the
condition and corresponding feedback. ‘

If the designer feels that added information ahout dehighlighting other icons
clutters the feedback description for an icon, abstraction can be used to hide
those details, For example, the definition of highlighting () can contain the
unhighlighting (-!) behavior for all other icons in the same mutually exclusjve

set.

® Macintosh is a registered trademark of Macintosh Laboratories,

'UAN is nat Iimited to the Macintosh nor is it oriented toward any one specific graphical direct
manipulation interface style. However, we have taken advantage of the popularity of the Macintosh
desk top to illustrate yse of the UAN.

ACM Transactions on Information Systems, Vol, 8, No, 3, July 1990,

188 . H.'A. Hartson et al.

INTERFACE FEEDBACK
icon-!: con!,

Yicon™: icon'-!

Fig. 1. uan description of the task “select ap icon” showing,
more precisely, complete feedback.

TASK: move a file icon
~[file icon) My

{file_ file_icon.1. file_icon?,
! Yfile_icon't: file_icon'-1
outline: tile_icon) » -

Fig.5. yaN description of the rask “move a fije icon” with 5
more precise feedback description.

fiie_icon!'.
Yfile_icon't- file icon'.!

: , the Symbology X > Is used
to denote object X following the cursor. The exaet behavior of the outline ag j;
follows the Cursor in the second line and displa_ving the file icon in the rhird iine
can be encapsulated a5 feedback funetions, defined brecisely in 5 single place.

- The UAN: A User-Criented Representation - 189

TASK: move 3 file icon
USER INTERFACE
ACTIONS FEEDBACK
file_icon.!: fiie_icon!,
Yfile_icon't: file icon'-t |
outlinei file_ican) > |

@x'y' r J tocationfile_icon)
. disn!ng(ﬁlc_icon) = xy

Fig. 7. UAN description of the task “meove a file icon™ with ¢Onnection to
omputationa)l sémantics, .

select a file icon

INTERFACE FEEDR INTERFACE STATE
file_icon-!: file_ican!, ,sc!ec:ed = file
Yiils icon'l: file icon'.f

INTERFACE
STATE
selected = fifg

CONNECTION TO
Com PUTATION

TASK:

~(file_icon] My

Fig.8. UaN description of the task “select 3 fija icon,”

L _select a file icon
USER ACTIONS
file_icon-1:

(-[ﬁIc_iconj Mv file_jcon!, selected = file
Yiile_icon't: file_icon'-!

ACK | INTERFACE STATE

INTERFACE FEEDDR

{

i

Fig.9. UaANn description of the task “select 4 file icon™ with condition of viability
{i.e., file icon js not already higblighted).

If the Iocation of the icon is significant to the computariona] (semantic or
noninterface) component of the application, the computationa] fomponent mysr
be informed, as shown in the lower right hand ce]] of F igure 7,

€ use of a condition of viability, which is similar to the con-
rlier to the feedhack, except here it ig 5 condition applied
t0 a user action op possibly an entire task. In Figure 9 the condition of viability
15 file_jcon-!: The scope of the condition of viability is indicated with Parentheses,
A condition of viability acts as 4 Precondition, or guard condition, that must
be true in order for user actions within jts Scope to be performed as part of thig
task. A condition of viability with 4 false value doeg not mean that 4 yger cannot
perform the corresponding action(s); it Just means that the action(s) will not be
PArt of this particujar task. The same action, however, might be part of another
task in the overall set of asynchronous tasks that comprige an interface, Note

ACM Transactions on Information Systems, Vol 8, No.3, 4 uly 1980,

180 * H.R. Hartson et af,

E FEEDBACK INT‘ERFACE STATE
sefected = file

file_icon'-1

Fig.10. Uan description of the task “seface a file icon” wigp alternarive (buii:.
in binding; form for condition of viability,

NNECTION TO

CO
CoOMpy

i filc_icon.f, selected =
file_icon’t: ﬁ]e__icun'-!

outline(ﬁle_icon) > ~

erasc(file_,icun),
frash_icont!

Fig. 11, UAN deseription of the rask “delete 3 file.”

that the use of this condition a5 4 condition of viability for the user action
removes the need for its yse with the feedbacl;.

tion of viability ig bound g the same term in
USer actions withjp 1ts scope, Jike a bound variable in firs; order predieare logie,
In Figure 19 the condition of viability (ﬁle_icon-!) from Figure 9 Is writren as a
built-in binding (-[ﬁle_icon-!]), which is more concise and £asier 1o reaq. In this
form, conditiong quite Raturally provide specific mstructions for user behavior,
that is, move the cursor ¢4 an unhighlighted file icon, '

5.4 Another Example

The task description in Figure 17 ties together many of the Previous concepts: ¢
Iepresents opa Version of the task of deleting 3 fiJe from the Macintosh desk top
by dragging its icon to the trash can icopn.

6. FURTHER Discussion OF THE UAN
8.1 Actiong Applied to Devices

boards are comprised of keys, individua] keys are abstracted out of the description
because the significant feature is the character string. An example of UAN for
such devices g K“abe,” the description of the user action of typing the literal
string abc, and K { user_id), the description of the user action of typing a vajye
for a string variable named user_id, In addition, a regular expression can be used
inside the parentheses to specify the lexical definition of the variable to he
entered by the user, for example, K (user_id = [A-Z]jA-Z 0-9]+),

6.2 Cursor Movement

The mouse is composed of two or more devices, a cursor position controller and
One or more buttons. The buttons are switch-like devices, described above, Unless
it is important to address the derails of how the user physically and cognitively
INteracts with the cursor controlling device, UAN Tepresents user actions that
cause cursor movement in terms of where the cursor is moved. At thig level of
abstraction (the level addressed in this paper), the cursor controlling devices
have the same behavior in the sense that the notation ~[X] specifies, in a

an eye tracker.
At a lower leve] of abstraction, Pragmatic differences between devices cannot

as easily be represented. It may be possible to produce detajled UAN descriptions

device pragmatics.

6.3 Context of Objects

The UAN symbology ~{X] describes the user task of moving the CUrsor into the
context of the interface object X, Moving out of the Same context is denoted by
[X]~. The context of an object is that “handle” by which the object is manipuy-
lated, such as the object itself. Other handles may include a rectangle circum-
scribed about the object or a sma]] grab handle (e.g., of the kind used to
manipulate lines and corners in MacDraw®), The context is modal in that jt
remains unti] explicitly changed. For e€xampile, in the expression ~[X] Mv, it is
assumed that the pressing of the mouse button occurs within the context of X,

—_— .
® MacDrawis a registered trademark of Claus, Inc.
ACM Transactions on Information Systems, Vol. 8, No. 3. July 1990,

- 182 . H. R. Martson at al.

6.4 Feedback)

UAN symbology describing feedback includes X! for describing the highlighting
of object X and X-! for its dehighlighting. X" is used to indicate a different tvpe
of highlighting. X!-! means to blink the highlight: (X!-')® means to blink three
times. The effect of X! {or X-!) is null if it is already the case that X! {or X-').
Also. of course, there are functions for displaying and erasing objects in the
feedback. Dragging an object is indicated by X > ~, and rubberbanding an object
as it follows the cursor is shown bv X 3 ~. The difference between these last
two is illustrated by the difference in moving a box on the screen and resizing
that box by rubberbanding one of its handles.

6.5 Temporal Relations

In addition to the need for a behavioral view, another problem arises from nesv
styles of interaction involving direct manipulation of graphical objects and icons.
These interaction styles are more difficult to represent than the older styles or
command languages and menus. User actions in these interfaces are asynchron-
ous. having rather more complex temporal behavior than those of earlier inter-
faces that were largely constrained to predefined sequences. A brief introduction
to these concepts is given in this section; Hartson and Gray [12] give a more
detailed discussion of temporal aspects of UAN.
The most basic temporal relationships we have identified are

—sequenced with,

-—are order independent,
—interruptible by,
—interleavable with,
—can be concurrent with,

and are listed in decreasing order of temporal constraint. Sequencing is the most
constrained temporal relation; the first action must be performed completely,
then the next, and so on, until all actions are completed. In many sequential
interface designs, this constraint is arbitrary and even opposed to the cognitive
and task needs of the user. For example, initiation of a second task in the middle
of a first task may be required to get information necessary to the completion of
the first task. It is very desirable that the second task can be interleaved with
the first, so it will not destroy the context of the first task.

With order independence, all actions must be performed and each one com-
pleted before another is begun. But the constraint on specific ordering among
actions is. removed. An example of order independence at a very low task level is
seen in the task of entering a “command-X” in a Macintosh application, a
combination of the € and X keys. Since the & key must be depressed before
the X key, but the order of their release does not matter, the task is defined in
UAN as
' Task: command-X
€y Xv (da & Xa)

ACM Transactions on Information Systemns, Vol. 8, No. 3, July 1990.

‘The UAN: A User-Oriented Representarion * 193

Precisely ip UAN. Note that waiting g ¢ertain amount of time, that is, not doing
any action for thagp interval, is itself a yser action. The UAN task descriprion for

doubje clicking is

UAN 1o express thege relations gives a designer 5 Powerful meang of specifving
such interfaces,

6.6 Design Aspects of UAN Symbois

The UAN $ymbols were chosen with specific Tequirements ipn mind:

T-Usage separate from deﬁnition, ,

—typable from 5 standard kevboard, and
“~Mnemonically meaningfy],

The first Tequirement Drovides g locality of definition similar to that in program.-

194 - HR. Hartson et al,

Table . Summary of Some Usefy UAN Symbols

Action - Meaning
~ mave the cursgr
{X) the context of object X, the “handle” by which X ig manipuiared
~[X] move cursor into context of ohject X
~{xz, v] mmove the cursor tg {arbitrary) pojne T ¥ outside any object

~(z, v in A move the cursor tg {arbitrary) Point within object A '
~[Xin Y] move to object X within object v (e.g., [OK__icon in diafogue__box}')

Xj~ Tmove cursor oyg of context of object X

v depress :

A release .

Xv depress button, key, or switch called X

Xa release button, key, or switch X

Xav . idiom for clicking burton, kev, or switch X

X ape™ enter litera] String, ahe, via device X

X (zyz) BILer vaiue for variabla *¥2 via device X

{) grouping mechanism .

- iterative closure, rask ig performed zerp op more times

+ task is Performed one o more times

il enclosed task ig Optional (performed Z8T0 Or one time)

AB $equence; perfory A. then B (same ifAand B ara On separate, by adjacent, [ipes;

OR disjunction, choice of rasks (used to show alternarjve Ways to perform a rask;

& order independence: connected tasks muge ail be Performed, by Telarive orger i
immareria}

= Interleavabiligy, Performance of connected tasks cap be interleaved in time

undefined, j.e., a5 though the user Never performed the Previous actipng,
v _ for al]
: Separator between condition and action or feedback
Feedback - Meaning
! highlight object

-! dehighlight object
n Same as !, but use an alternative highlighy

11 blink highiight

(-h= blink highlight times

@x,y atpoint x, y

®&X at object X

display (X) display object X

erase (X} erase object X

X>~ object X follows (is dragged hy) ctirsor

X» object X is Tubber-banded zq it3 follows cursor
outline (X) outline of object X

For mnemonijc Purposes the symbols were chosen to be visually onomatopoetie.
For example, ~ carrieg the impression of movement and (Xj conveys the jdeg of
a box around X Similarly, 1 attracts attention ag highlighting and > reflects the
notion of following, whig > is following byt stretching out (rubberbanding).

ACM Transactions ap Information Systems, Vol 8, No. 3, July 1900,

The UAN:-A User-On‘ented Hepresentaﬂon ' 195

—The physica] actions on devices described sq far are tagks. Examples include
all actions sueh as ~{X], Mva and 5o on.

—IfAisa task, 5o are (A), Ax, ang 1A}

~IfAandR are tasks, so are 4 B,AORB, 4 &B A B, and 4 i B.

notation ig 5 compact high leve] description of the use of 5 meny,.
l ACM Transactiong on Information Systems, Vaol, 8 No. 3, July 1990,

195 . H. R, Hartson at al.

CONNECTION TO
COMPUTATI’ON

-[ﬁle‘icon.'I
ly
~Tx.v]*

ou:ﬁnct'icons!) >~
outline(icons!') > -
Irash_icons

erase(icons!),
rash_icopts

CONN ECTION
Com PUTATION

USER INTERFACE INTERFACE TO
ACTIONS FEEDBACK STATE
seiec:_muur’olc_ﬁ!es ' \
\

Fig. 13, Uax description of the tagk “delete multipje’
abstraction '

fles” g 4 higher levef of

The use of tagk Dames gg abstractions—-—for modularity, consistency, and
reusability.__;g il'iustrared in the foHowing example, using the task of deleting
multiple fijeg from the Macintosh desk top. To begin, Figure 19 shows the task
description without yge of abstraction. Note that S denotes the shig key.

his task of deleting multiple fileg can be decomposed into twg tasks:
(1) select files (the top block in Figure 12)

(2) delete selected fileg {the other three blocks in Figure 12).

ACM Transac:ions on Informarion Systems, Vol. 8, No. 3, July 1590,

The UAN: A User-Oriented Represemation o o. 197

XY is fixad comer
of

fectangie

selected = all
intcrscc:cd items

Fig, 15, UAN description of the tag “drag box mujtiple select,” wirh reference
0 a scenarig figure,

The task of selecting multiple fileg ¢an be done in (at least) tWo ways: using
the shift key, as described in the first block of Figure 12, or by dragging our a
selection Tectangle with the ouse, as descripeq in Figure 15 Figure 14 i a
higher Jeve] task description, Stated ag 5 disjunetjon of the names of these twq

VErsions of the task.

8.2 Task Transition Diagrams

The asynchronoyg nature of direet Manipulation interfaceg inherently demands
Consideration of user intention shifts during the Performance of 4 task. Main.
taining 4 focus on the Primary function of a task whijla accommodating user
intention shifts jg difficult for interface designers when both these aspects are
Tepresented a¢ the same design leve], UAN contains 3 mechanism for Specifying
points jn 4 task where user intention shifts may occur, A Complementary
technique, task transition diagrams, jg used tg specify tagks that users can
Derform tg nterrupt their current task. The task transition diagram js 5 notation
*hat allowsg 5 designer to ap out the set of tasks and intentiong of 2 user withoyt

188 - . H. R. Hartson et al.

By
b

{ pulldawn tasis P“"‘h"’“-"{!ﬂ pulldawn uang, t

hiMenu. tasics '\Hmu.uano,;l B’ Button tasics
. §iMen_tazks

Fig. 16. " Scenario figure called “selection rectangle.”

8.3 Discussion Sheets

Because the design document is a working documeng as well as the means for
Communicatipn among developer roles, designers are encouraged to include, as
part of the design representation, thejr tomments aboyt tradeoffs faced, and
reasons behipd design decisions, These Comments appear on discussion sheets
that augment UAN task descriptions, Scenarios, and stare diagrams as gz more

9. EXPERIENCE WITH UAN

UAN was created within the Dialogue Management Project at Virginia Tech 1o
TePresent the design of 5 user interface management system cajled DMS 3.0. The
interface designers simply grew tired of Struggling with the Imprecision and
verbosity of prose descriptions of how the DMS interface should behave, and the
DMS Implementers grew tired of reading and trving to understand them. Out of
this need, the DMS interface designers produced UAN as a notation for helping
to alleviate thig problem. Thus, UAN Was originally devised t0 communicate
- behaviora] descriptions of interface designs to implementers for construction and
to evaluators for 5 Pre-prototype view of the design. It wag useful in thig capacity,
We used UAN to conduct walk-throughs of the DMS interface design and to
check implementation against the design. We estimated that approximately
80 percent of the design was implemented exactly as specifieq, Of the 20 per-
cent that did net conform to design, 10 Percent was due to misinterpretation of
- the UAN by the implementers, and 10 percent was due to their simply not

The UAN: 4 User-Orienteg Representation < 199

describe what happens during a compley scrolling-in-a~window task for a pew
design. In the United States, designers at DEC are using UAN for the interface
of a graphjcaj editor. A dars flow configuration S¥stem has heep designed with
UAN at the Jet Propulsion Laboratory. This diversity of uses of UAN indicares

~Cognitive and Perceptual actions—-—seeing feedback ang actingon it in 4 closed
feedback loop mode, decision making [5, 26];
ACM Transacl:irms on Infurma:jon Syscems_ Vol. 8, No. 3, July 1999,

200 - yng Hartson et a,

—Semantic connections {to invok;- computational functions, for semantic feed-
back, especially for mterreferential 1/0);

-—user goals and intentions, that 18, Norman's theory of action [20]; and

—task numbering for Cross referencing of task Invocations in large interface
design structures,

s
researched include tools for analytic evaluation of interface usabih'ty_, rapid
Prototyping, code generation and translation, anpd seneration of end-user

In conjunetion with the tools mentioned above, there are many other rich research
issues involving UAN, some of which involve difficult problems. A few examples

are discussed briefly in this section.

usability. Some types of analyric evaluation use direct user performance predic.-
tion metrics that predict elapsed :imes to perform user actiong such as mouse
movement (e.g,, Fitts' Law (61) and keystrokes {e.g., keystroke model [2]),

identifying inconsistencies and ambiguities in ap interface, determining equiva-
lency of tasks, and analyzing information fiow among tasks {24). We plan 1o
apply analytic evaluation to UAN interface descriptions, A Prerequisite is the
inclusion of columns in UAN task descriptions for cognitive, memory, perceptuaj,

ACM Transactiong on Information Systems, Vol, 3, No. 3, July 1890,

The UAN: A User-Orienteg Hepresentaﬁon . 201

11.3 Code Generation and Transiation to Constructionaj Domain
Both Prototyping and seheration of executabje code from UAN task descriptions

o

Tequire transiatipn of design TePresentations from the behaviora) domain 1o the
constructiona]. This kind of translation is rot a trivial problem, becayse it is

counterparts, evengs in the constructional domain. The translation Process wi]]
involve identification of objects, classes, and- methods from UAN descriptions.

11.4 End.yser Documentation Generator
Because UsN describes how 4 User performs each task, the basie ingredients for

integrity between the User manual apd the implemented System is a common

feedback and System changes are WTitten in separate columns and in line-wise
Correspondence tq actions. Because UAN uses a text-based Tepresentation, ana.
Iytic evaluation of interfaces s Dossible,

Real—woﬂd users of UAN report it to be highly readabje and writable with little
training becayse of its simplicity and natura] mnemonicity. Use within interface
design and implementation Projects has shown UAN to be thoropgh, concise,

202 * K. R. Hartson et al.

ACKNOWLEDGMENTS ,
The Dialogue Management Project has received funding from the Office of Naval
Research, the National Science F oundation, the Virginia Center for Innovative
Technology, IBM Corporation, the Software Productivity Consortium. and Con-
tel Technology Center. We also thank the UAN users who have given us valuable
feedback on their experiences with its use, and the anonymous reviewers for their
thoughtful and helpful comments.

REFERENCES
1. Buxton, W. There’s more & interaction than meets the eve: Some issyes in manual input. In
User Centered System Design. D. A. Norman and 5. Draper, Zds. Lawrence Sribaym, Hillsdale,

.- Cagp, 5, K., aND Moran, T, P. The keystroke-level mode] for user performance time with
interactive systems. Commun. ACM 23 (1980), 396-110. -

3. CarD,S. K., MoRraN, T. P., aND N EWELL, A, The Psychoiogy of Human-Computer Intergetion.

Lawrence Erlbaum, Hillsdale, N.J., 1983.

4. CamrDELLL, L., AND PiIKE, R. Squeak: A language for communicating with mice, Compur. Groph.
19, 3 11985), 199-204, .

- DRAPER, S. Personal communication, 1989,

6. FrTrs, P. M. The information capacity of the human motor svstem in controiling the amplitude

of movement, J, Exper, Psvch. 47 (1954), 381-391.

. FLECCHIA, M., aND BERGERON, R. D. Specifying complex dialogs in ALGAFE. In Proceedings of
CHI + GI Conference on Human Factors in Computing Systems (Toronto, Apr. 5-9, 1987). ACM.
New York, 1987, 209234, :

8. FoLey, J., Gimps, C., Kim, W, anD Kovacevic, §. A, Knowledge-based user interface man-
agement system. In Proceedings of CHY Conference on Human Factors in Compuring Svstems
(Washington, D.C, May 15-19, 1988), ACM, New York, 1988, pp. 67-72.

8. GouLp,J. D, anp Lewrs, C. Designing for usability: Key principles and whar designers think.
Commun. ACM 28 3 (1985), 300-311.

10. GREEN, M. The University of Alberta user interface management system. Comput. Graph. 19,
3 (1985, 205-213,

11. GREEN, M. A Survey of three dialog models. ACM Trans. Graph. 5, 3 (July 1988}, 244-273.

12. Hartsown, H. R., anp GraY, P. Temporal aspects of tasks in the user action notation. To
appear in Human-Computer Interaction, 1990,

13. HarTson, H.R., anp Hix, D. Toward empiricaily derived methodologies and tools for human-
computer interface development. [nt. o/, Man-Mach. Stud, 31 (1989), 477194,

14. HiLr, R. Event-response systems—A technique for specifying multi-threadeqd dialogues. In
Proceedings of CHI + Gr Conference on Human Factors in Computing Svstems (Toronto,
Apr. 5-9, 1987). ACM, New York. 1987, 241-248,

15. Jacom, R. J.K. An executable specification technique for describing human-computer inrerac.

tion. In Advences in Human-Computer Interaction, H. R. Hartson, Ed. Abjex. Norwood, N.J.,,

1985,
16, Jacos, R. J.K. A specification language for direct manipulation user interfaces. ACH Trans.

f)

[

=]

17. KiERaS, D, AND PoLson, P.G. An approach to the formal analysis of user complexity. Int. J,
Man-Mach, Stud. 29 (1985), 365394,

18. MORAN, T. P. The cemmand language grammar A fepresentation for the user interface of
interactive computer systems. Int. J. Man-Mackh, Stud. 15 (1981), 3-51.

19. MvERs, B, Creating dynamic interaction techniques by demonstration. In Proceedings of CHI
+ GI Conference on Human Factors in Computing Systems {Torento, Apr, 5-9, 1987). ACM, New
York, 1987, 271-278.

20. NorMan, D. A, Cognitive engineering. In User Centered System Destgn. D. A. Norman and
S. Draper, Eds. Lawrence Erlbaum, Hillsdale, N.J., 1988, '

21. Ousen, D. R MIKE: The menu interaction kontrol environment, ACM Trans Graph. 5, 4
(1986}, 318-344. '

ACM Transactions on Information Systems. Vol. 8, No. 3, Juiy 1990,

30.

3L

The UAN: A User-Oriented Representation - 203 .

. OLSEN, D. R., JR., AND Dewpsey, E.P. Syngraph: Agraphtcal user interface generator. Comput.

Graph. 17, 3 (1983}, 43-30.

. PAYNE, S.J., AND GREEN, T.R. G. Task-action grammars: A model of rhe mental representation

of rask languages. In Human-Camputer [nteraction. Lawrence Ertbaum. Hillsdale, N.J., 1986. .

24, REISNER, P. Formal grammar and human factors design of an interactive graphics system.

[EEE Trans. Softw. Eng. SE-7 (1981), 229-240.

. RicHARDS, J. T, BomEs, S. J., aND GouLb, J. D. Rapid prototyping and system developmer't

Examination of an interface toolki for voice and telephony appiications. In Proceedings af CHI
Conjerence on Human Factors in Computing Systems (Boston, April 13-17, 1886). ACM. New

York. 1986, 216-220.

26. SHARRATT, B. Personal communication, 1983.
7. SHNEIDERMAN, B. Multi-party grammars and related features for designing interactive systems.

[EEE Trans. Syst. Man Cybern. 12, 2 (Mar.-Apr. 1982}, 143-154.

S1ocHI, A. C., AND HarTsoN, H. R. Task-oriented representation of asynchronous user intér-
faces. In Proceedings of CHI'89 Conference on Human Factors in Computing Systems (Austin,
Tex, April 30-May 4, 1989}. ACM, New York, 1989, 183-138.

SiocH1, A. C., HarTson, H. R., anp Hix, D. Notational techniques for accommodating user
intention shifts. TR 90-18, Dept. of Computer Science, Virginia Polytechmc Institute and State
Univ., 1990.

WassErRMaN, A. L, AND SHEwMAKE, D. T. The role of prototypes in the user software
engineering methodology. In Advances in Human-Computer Interaction. H. R. Hartson. Ed.
Ablex. Norwood, N.J., 1985.

YUNTEN, T., anp HarTsow, H. R. A SUPERvisory me:hodology and notation (SUPERMAN}
for human-computer system development. In Advances in Human-Computer [nteraction. H. R.
Hartson, Ed. Ablex, Norwood, N.J.. 1985,

-

ACM Transactions on [nformation Systems. Voi. 8, No. 3, July 1990.

