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1. INTRODUCTION

The classical resource allocation problem is an optimization problem with a single
equality constraint: Given a fixed total amount of a resource, one seeks to determine
its partitioning and allocation to a given number of recipient activities in such a way
that an appropriately defined objective function is optimized. It is a special case of the
nonlinear programming problem and is encountered in various application areas such
as load distribution, computer scheduling, production planning, among many other
settings. It also arises as a subproblem of more complex problems. Research on the
solution of the basic problem and its variants, which has been going on in various
application fields over the last three decades, has produced a number of interesting
theoretical criteria as well as numerous computational algorithms [7].

The mathematical formulation of the resource allocation problem may be stated

as follows:
Optimize g(X1,Xp5.0X,) (1)
Subject to oix; = L (2)
o < x; < B (3)

where x; is the apportionment of the total resource L allocated to the i-th activity, g
is a real-valued objective function of the allocation vector x=(x,x,,...x;) to be
maximized or minimized, and ¢; and B, are specified lower and upper bounds on x;
imposed by conditions or requirements dictated by the i-th activity. If the nature of
the resource is such that it is divisible down to magnitudes that are smaller than the
accepted resolution level of its measurement, the resource quantity x, is mathematically
modelled as a continuous variable over the specified interval [¢;,8;]. If these values are
integers, one has an integer programming problem. The problem is further categorized

into classes according to the nature or type of the objective function g(x), for which



specific solutions in the form of theoretical criteria or computational algorithms are
developed. Typical forms of the objective function have been extensively investigated
in the literature because of their occurrence in certain important classes of applica-
tions. One such form is the "separable” objective function g(x) = 2f(x,), where each f;
is a function of the single variable x;,. Another important class is the problem whose
objective function has one of the two forms:
g(x)=max;f;(x)=F(x) or g(x)=minf,(x;)=f(x) (4)
which traditionally has been known as the "minimax” or "maximin” problem respectively,
because the minimization of the first form and maximization of the second are the
more common occurrences of optimization of the objective functions encountered in
practice. Maximization of F(x) or minimization of f(x) is, in most cases, much easier
to solve, and in some cases is trivial.
The mathematical formulation for the minimax/maximin resource allocation

problem (REMAXMIN) becomes

REMAXMIN: Optimize F(x)=maxf;(x;) , or f(x)=min,f(x,) (5)
Subject to oix; = L (6)
a% <x < B (7

One important application area in computer scheduling and performance analysis,
which under certain conditions can be modelled by these relationships, is the
optimization of the execution-time of a given workload partitioned and allocated to run
on a parallel or distributed computer system with multiple processing elements [5]. In
this case L represents the total workload, x, the subload or task assigned to processor
P;, fi(x;) the execution time of processor P;, and F(x) the completion time of the
longest-running processor which marks the total job completion time. The specified

upper bound B; may represent a limitation on the load handling capacity of processor



P, such as its maximum main memory allocation. The lower bound «; may reflect a
deliberate scheduling policy of assigning at least a load a; to processor P, if it is to be
allowed to participate in the total job execution.

This paper addresses the solution of REMAXMIN stated in (5), (6), and (7). This
problem has been investigated in the literature, and there are analytical criteria as well
as numerical algorithms for its solution [7]. All of the available results, however, suffer
from two principal drawbacks [2], [3], [7]:

1. Monotonicity of fj(x;): The functions fi(x,) are restricted to be either all monotone
nondecreasing or all monotone nonincreasing.
2. Sufficiency but not necessity: The results present sufficient, not necessary,
conditions for optimality.
These "deficiencies" may, in certain situations, seriously hamper the applicability and
limit the usefulness of the available results. The criteria fail to provide any
information when any of the functions fi(x;) is nonmonotone or when its monotonicity
is opposite to that of any other function f(x;)). A case in point of such situations is to
be found in the multiprocessing/distributed load allocation application mentioned
above: When the individual tasks x; assigned to different processors communicate
among themselves by exchanging messages or accessing shared memory, the execution-
time function f;(x,) of processor P; may exhibit increasing and decreasing behavior over
different intervals of its domain x; []. The fact that the available results are only
sufficient, not necessary, conditions means they embody incomplete information about
optimality: If no point x satisfying the sufficient conditions could be found. the results
would fail to solve the optimization problem at hand; and if an optimal point could be
found, there could be other optimal points that do not satisfy the conditions which

therefore would remain undiscovered.



The results of this paper overcome both of the aforementioned deficiencies in the
existing criteria. The new theorems presented here do not stipulate any restrictions of
differentiability, monotonicity, convexity, or unimodality on the functions f,(x;). We
only require f(x,) to be continuous over [;,B,] and to have the mild property of "lacal
monomodality” (to be defined later) which always exists in real-world situations. Thus
fi(x;) may exhibit any number of local maxima and minima over its domain of definition.
Figure 1 shows an example of a function fi(x;) admissible under the analysis and for
which the results of this paper may be applied. Furthermore, the results we derive are
necessary as well as sufficient conditions of optimality. As such, they provide complete
information which may be used reliably to determine all the optimal solutions of

REMAXMIN, i.e., the conditions are equivalent to the concept of optimality.
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FIG. 1. Tllustrating a nondifferentiable, nonmonotone, nonconvex, multimodal function
f;(x;) admissible in the analysis.



The approach we shall take in solving REMAXMIN, as stated in (5)-(7), is first
to find the set of all local minimum points (Iminp) and all local maximum points
(Imaxp) of the objective function F(x) or f(x):

Xw = {X: x is a Iminp of F(x)}
Xn = {Xx: x is a Imaxp of F(x)} .
Then we find the set of all global maximum points. (gmaxp) and all global minimum

points (gminp)

X, = {x:x is a gminp of F(x)} = {x: F(x) = minF(x) = min, .y, F(x)}

]
It

Xg = {x:x is a gmaxp of F(x)} = {x: F(x) = maxF(x) = maxy,F(x)} .
The last equalities indicate how knowledge of the sets X, and x,, of local minima and
maxima can be used to find the sets X, and X, of global minima and maxima
respectively.

It should be emphasized here that our interest in determining all the local minima
and maxima is not necessarily only for the purpose of determining the global extrema
of the objective function F(x). Knowledge of all local extremum points of F(x)
constitutes an important problem in its own right which may have significant relevance
to the underlying practical problem modelled by REMAXMIN. Recall that the
objective function of any optimization proble'rn is a "performance index" whose behavior
and variation is the focus of attention of the practical problem under consideration.
Finding the global extremum values is only one aspect of determining the behavior of
F(x), while finding all local as well as global extrema is tantamount to charting a
comprehensive picture of the "topography" of F(x) and illuminating its behavior over
the entire domain of the feasible set. One practical situation where knowledge of all

local extrema might prove to be quite useful is when the selection of a resource

allocation solution x is guided not only by the value it imparts to the objective function



F(x) but also by some additional or secondary criterion of desirability. In such cases
one may opt to choose a local optimal solution that is suboptimal with respect to the
primary objective function but is optimal with respect to the secondary objective
function. To illustrate, consider again the parallel processing application with
n=4,L=8, and suppose we find the set X to be comprised of the following three local
minima of the execution-time function F(x):
F(8,0,0,0) = 100 , F(42,1,1) = 110 , F(2,2,2,2) = 101 .

Evidently, the allocation x=(8,0,0,0) is the global minimum solution. But we might
choose instead the local minimum x=(2,2,2,2) as the preferred "optimal" solution,
trading off a one percent increase in execution-time for a far better balancing of load
allocation among the four processors, assuming load balancing is our secondary
objective function.

To recapitulate, there are t'hree significant new features offered by the approach
and results of this paper in comparison with previous investigations of REMAXMIN:
1. Relaxation of the monotonicity restriction on f,(x,), allowing the functions to be

nonmonotone, nonconvex, nondifferentiable, and multimodal.

2. Determining the conditions for local as well as global minima and maxima, thus
charting a comprehensive picture of the objective function behavior.

3. Providing complete information about optimality in the form of necessary as well
as sufficient conditions for optimality.

The analytical significance of these new features may be further appreciated if one

looks beyond the realm of the REMAXMIN problem at hand into the wider discipline

of nonlinear mathematical programming, where the vast majority of theoretical and

algorithmic results for general classes of problems are found to deal only with global

extrema, are either necessary or sufficient conditions, and almost invariably impose

some form of convexity/concavity restriction on the objective function [1].
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2. DEFINITIONS AND PRELIMINARY ANALYSIS

2.1 Problem Formulation

Given the set of n functions {f;(x,)} where each fi(x;) is a real-valued function of
the real variable x;, defined and continuous at every point in the nonnegative interval
[a;,b;]. Consider the real-valued objective function F(x) of the n variables x = (X1:Xg00. %)
defined as F(x) = maxfi(x;). The domain of F(x) is restricted to the constraint set
C(L,a,B) representing the collection of n-dimensional points x satisfying the following
constraints

C(LeB) = {x: Six; = L , x € o8]} (8)
where a={e;} and 8={B;}. We are interested in studying the behavior of the objective
function F(x) over the domain C and determining all its local and global minimum and
maximum points in C. We shall require the following relationship to hold among L,
{2;}, and {B;}:

Tio < L < 18, )
for otherwise C as defined in (8) would be empty if L < Ze;orif L > 28, and C would
degenerate into a single point if L=Za, or if L=£8,, in which case the problem becomes
trivial.  The constraint set C(L,e,B) represents a subset of the hyperplane

Xg+Xp+...+x,=L in n-dimensional space and is also referred to as the feasible set.

2.2 Attainable Feasible-Set Bounds

The parameters «; and B, are a priori specified lower and upper bounds on the
variables x;, which may be dictated by practical considerations or physical limitations
of the resource allocation problem. If, for instance, X; represents the portion of the
total load L allocated to processor P, in a multiprocessor system, then B; may be set by

the need to restrict the loading of P, from getting too close to the saturation point of



some of its local resources such as main memory, while a; may reflect a deliberate
policy of not engaging processor P, unless its loading is above a certain minimum level
justifying its participation in job execution. Define

8 = MileomanX + by T MaXyecq,omX; - (10)
Note that C is a compact set since it is the intersection of the compact n-cell
{x: x{€[«;,8;]} and the closed hyperplane {x: Ex;=L} [9]. Therefore the extremum
values a; and b, of the continuous function x; are attainable for some values of xeC 9]
Thus

a;=x; , b=x} |, somexlxtecC.
Since xje[a;,b;] and x3€[a,b;], (10) implies that

32, b8, [apb] e8], (11)
Letting a=(ay,a,,...,a,) and b=(by,b,,...,b,), we now show that the set C(L,a,B) remains
unchanged if ,8 are replaced by a,b respectively, i.e.,

C(L,a,b) = C(L,q,B) . (12)
If xeC(L,a,b), then x;€[a;b]cfe;,B;], hence xeC(L,a,B8). If xeC(L,a,B), then (10)
implies x;> a;, x;<b; and x;€[a;,b;]; hence xeC(L,a,b). We shall refer to [;B,] as the
specified interval constraint on X; and to [a,b,] as the attainable interval constraint. In
the remainder of this paper we shall always assume that, for any given REMAXMIN
problem, the specified interval constraints are replaced by the corresponding attainable
intervals as defined in (10) with the problem remaining invariant under this replace-
ment. Note that the problem of determining a; and b,, as indicated in (10), constitutes
a linear programming problem with upper and lower bounds on the variables x,, which
can be solved by known techniques such as the modified simplex method [4],[8]. Recent
results by Haddad [6] have provided more efficient methods for determining the

attainable bounds a; and b, from the specified bounds «; and B,



23 Neighborhoods and Increments
For a given xeC and §>0, we define N(x,5) as the §-neighborhood in C(L,a,b)

of point x

Nc(x,8) = {(x+ax) € C: [Ax| < 6} (11)
where AX=(AX,,AX,,...,AX,} and | Ax] is the Euclidean norm of Ax:

[ ax] = (31 (axpH? < 5 . (12)
From (12) one has

[ax;| < &  for all i, whenever (x+Ax) € Ng(x,5) .
Define Afi(x;,Ax;) as the increment in f; due to the increment Ax; in x;:

Afi(xpAx;) = £i(x;+AX,) - £(x,) . (13)
For convenience, we shall let the dependence of Af; on x; and Ax; be understood, and
write Af; = Afi(x,,AX;). Similarly, we define AF(x,Ax) as the increment in F(x) due to the

increment AX in X

AF(x,Ax) = F(x+Ax) - F(x) . (14)

Again, we write AF

11

AF(x,AX%).

2.4 The Subsets X and X

Consider any point (X;,X,,...,X,)€C. For convenience we shall use the symbol x to
denote the unordered set of components x,, i.e., we let x = {x;}. We now partition the
set x={x;} into two subsets X and X defined as follows:

X = {x; e x: fi(x;) = F(x) = max;fi(x)} #¢ (15)
X = {x;ex:f(x) < FR)} . (16)

Note that while X is always a nonempty set, X may be empty and that

x = X+X

10




where the "+" operator is used to denote the union operator for sets. We shall refer
to X as the peak subset of x because f;(x;) assumes the peak value F(x) of {f;} whenever
x€X. The subsets X and X will be used later in the statement of the main results of
this paper. As an example, let x=(X,,X,,X3,%X4,X;) and {£;(x,)} = (1,4,2,3,4); then X = {x,,x5}
snf X = {x1,X3,%4}. If, as a second example, {f;}=(3,3,3,3,3), then X=x and )_(=¢. Define
the sets of integers P and Q as follows

P={j:xe€X} (17)

Q={j:x¢eX}. (18)
Note that P+Q={1,2,...,n} and that

f;(x;) = F(x) foralljeP (19)

fi(x;) < F(x) foralljeqQ. (20)
For the first example above, we have P={2,5} and Q={1,3,4}; for the second example,

P={1,2,3,4,5} and Q={4}.

2.5 Continuity of F(x)

We now present a lemma that establishes the continuity of the objective function
F(x) and states that, for sufficiently small values of Ax, the value of F(x+Ax) =
max;f;(x;+ Ax;) can be determined by considering only the values of fi(x;+Ax,) forie P
rather than for i € (P+Q).
LEMMA

If £, are continuous, then for any xeC

(i) there exists a §; > 0 such that

AF(x,Ax) = maxgpAfi(x;,Ax;))  forall |ax| < s, . (21)

(ii) F(x) is continuous.

11



PROOF
If Q=4, the result in (21) follows immediately since
F(x+AX) = max;ep, fi(X;+ Ax;) = max;pf,(x;+Ax,)
= maxiep{fi(x;) + Af;} = F(x)+max,pAf; (22)

where the last step in (22) follows from F(x)=f(x;) for ieP in (19). If on the other
hand Q#, let d=mino{F(x)-f;(x;)} >0. The positiveness of d follows from (20).
Evidently one has

F(x) -fi(x) >d >0 forallieQ. (23)
Since the functions f; are continuous, we can choose, for any given i, a sufficiently small
§;>0 such that

|fi(x;+ A%) - fi(x;)] < d/2  forall [Ax;| < §;, anyi. (24)
Applying (24) specifically for jeP and keQ, one obtains, respectively,

-d/2 < fi(x;+Ax) - F(x) <d/2 forall |ax| <§;,jeP

-d/2 < fi(x+ax) - fi(x)) < d/2  forall |ax, | <6, ,ke Q. (25)
From the first of these relationships, we obtain

fi(x;+Ax)) > F(x) - d/2  for all {Ax| < §,jeP. (26)
Combining (25) with (23) we obtain

f(xe+ Axy) < fi(x)+d/2 < F(x)-d/2  for all |ax, | < §,,keQ. (27)
From (26) and (27) we deduce

fiep(X;+ 4x)) > fieq(xp+Ax)  forall |ax) < 55, |ax,] < § . (28)
We now can choose §, = min {4;}, and by letting || Ax| < 5, one has |Ax| < | ax| <
&y < 6;, and

F(x+Ax) = maxgep,qfi(X+Ax) = maxpfi(x;+Ax,), for all |ax] < 5,

the last statement being a direct consequence of (28). Using the fact that fi(x;) =F(x)

for i€P, the required result follows

12



F(x+Ax) = max;p{fi(x,)+Af;} = F(x)+max;pAf,

F(x+Ax) - F(x) = maxgpAf; = AF  for all |Ax] < &, . (29)
The continuity of F(x) follows directly from the result just proven. Given any >0, the
continuity of f; ensures that we can choose a sufficiently small s, such that |af;] <e

for all i€P, and (29) implies |AF| <e.

2.6 Locally Monomodal Fupctions

So far the only condition imposed on the functions f,(x;) is that of continuity. We
now introduce a further condition on f; which relates to the behavior that the function
exhibits in a small neighborhood of a point x;, The condition is formalized in the
following definition. The phrase "locally monomodal® is coined to describe the subject
property.

DEFINTTION: A continuous function f; over {a,b;] is said to be locally monomodal
at point x; € [a;,b;] if

(i) there exists a §(x;)>0 such that f, is strictly increasing or strictly decreasing

or constant on [x;,X,+6] and strictly increasing or strictly decreasing or
constant on [x;-§,x;] whenever x,€(a,,b;)

(ii) there exists a §(x;}>0 such that f; is strictly increasing or strictly decreasing

or constant on [x;,x;+§] if x;=a,

(iii) there exists a §(x;) >0 such that f; is strictly increasing or strictly decreasing

or constant on [x;~§,x;] if x;=b,
The above definition describes a local characteristic of the function f; in the sense
that if the condition is satisfied for a certain §,(x,), it is also satisfied for every
§3(X;) <6,(x;), and therefore one should examine a sufficiently small neighborhood to

verify local monomodality at point x;. Figure 2 shows an exhaustive compilation of the
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Mode 1 2 3 4 5
Graph of f; over _/; RN :\/E S
[x;x+5] and/or S S A IR R oo :
[x;~6.:x;] JURY S S W SETN S N N A o
§ X 5§ x & 5§ x5 & 5§ X 46 X=a,
Sign of Af]
§>Ax>0 0 + 0 + 0
Sign of Af;

-6 <Ax;<0 0 0 + + NA
Mode 6 7 8 9 10
Graph of f; over /: f\ /

»X+6] and/or P, ,' ! ! ' / ! 1 |
[x,,x[XiE“l]/ 1§ ;o L RS Nl
Sign of Af;
5> Ax;>0 + NA NA 0 +
Sign of Af;
~§< A%, <0 NA 0 + - -
Mode 11 12 13 14 15
Graph of f; over | |
[x;x+6] and/or : , ' ! i H
" o] AN NS LN
o X 6 X; & o X 6 X=a, LT
Sign of Af]
§>Ax%,>0 NA - - - -
Sign of Af;
-6 <Ax;<0 - 0 + NA -

FI1G. 2. The 15 possible variation modes of a locally monomeodal f; at x;s[a,;b;]
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15 possible modes of variational change that might be exhibited by a locally monomodal
fi(x;) at x;. Each distinct mode represents a possible combination of strictly monotone
or constant behavior on each side of the given point x; if it is an internal point of
[a;b;], or a possible behavior on one side if X; is an end-point. Modes 1,2,3,4,9,10,12,
13,15 for internal x; correspond to condition (i) of the definition, while modes 5,6,14
for x;=a; and 7,8,11 for x;=b; correspond respectively to conditions (ii) and (iii) of the
definition. The figure tabulates for each mode the algebraic sign of the incremental
change Af; in f; for positive and negative incremental changes Ax, in x;, When x, is an
end-point of the interval [a,b;], the change Ax, can be either positive or negative but
not both. This is indicated by "NA" in the figure for the modes where the specified
change Ax; is not feasible.

It should be noted that the condition of local monomodality is a fairly mild
restriction of little practical consequence since it is always satisfied in "real-world"
situations. It excludes certain types of analytically pathological behavior, such as that
exhibited by the function f;(x,) =x;sin(1/x,), which is continuous but not monomodal at
the point x=0. This function exhibits an infinite number of local minima and maxima
clustered on each side of x;=0. Its behavior at x;=0 cannot be identified as one of the
15 modes in Figure 2.

It can be shown that the local property of mdnomodality of the function fi(x;)
defined for a point x; € [a;,b;] is equivalent to a global property of f(x;) over the entire
interval [a;,b;]. One can show that f(x;) is locally monomodal at every point x, € [a;by]
if and only if the function f; exhibits at most a finite number of local strict extrema and
a finite number of intervals over which f; is constant in the interval [a,b;]. This
equivalent global property may, in some cases, be easier to recognize and verify for a

given f; than testing the function f; for monomodality at every x;€[a,b;]. Note how this

15



equivalence is exemplified by the function f(x)=x sin(1/x) which is not locally
monomodal on any interval containing x=0 and exhibits an infinite number of local
strict extrema over such intervals. We shall not concern ourselves here with the
presentation of a formal proof for this equivalence between the two properties, since
in this paper we shall refer only to the basic properties of locally monomodality as

expressed in its definition stated above.

2.7 Modal Composition

In all the subsequent analysis of this paper, we shall assume that each given
function fi(x;) is locally monomodal over [a,b;]. This means that for any given x; €
[a;,b;] the function f;(x;) must exhibit one of the 15 distinct modes of variation tabulated
in Figure 2. We introduce the notation x,(m) to denote that the function f; exhibits
mode number m at point x;

x;(m) & f; exhibits mode m at x; .
Furthermore, we examine the elements x; of the sets x = {x;}, X, and )—(, defined above
in (15) and (16), and use the same notation to denote the variation modes exhibited
by the functions f; at x;. Let x(m) represent the subset of x whose elements exhibit
mode m
x(m) = {x;(m) € x} .
Note that x(m) may be empty signifying that x has no elements x; of mode m, or may
have any number of elements up to n. Extending the notation further, we write
x(my,my) = x(m;}+x(m,) = {x(m,) € x, x(m;) € x}
where "+" denotes the union operator for sets. This means x(m,,m,) is the subset of
x comprising all x; of modes m; or m,. Evidently one has the identity

X =x(1,2,..,15) = x(1)+x(2)+...+x(15)

16



where some of the subsets x(m) may be empty. For example we may have
x = x(1,3,10) = x(1)+x(3)+x(10)
which implies that x comprises only elements x; of modes 1, 3, and 10 and x(m)=4¢ for
m# 1,3,10. Semantically we say the "modal compaosition” of x is (1,3,10). The same
notation can be used in the same way to represent the modal composition of the sets
X and X. This can be illustrated by reference to Figure 3 which depicts ten monomodal
functions and a given allocation X=(Xy,X3,...Xy9). The graphs of the functions are
plotted only in the neighborhood of the points x; to avoid undue cluttering of the
figure. Comparing Figure 3 to Figure 2, we determine the modes of x; as follows:
x1(14), x5(13), %3(2), x4(9), x5(10), x¢(15), x,(13), X3(4), %5(1), x44(8) .
The mode is shown in the figure below each x,. The modal compositions of x, X, X are

x = x(1,2,4,8,9,10,13,14,15) , X = X(4,8,9,10,13,14,15) , X = X(1,2,13).
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FIG. 3. Illustrating the modal composition of x, X, and X
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3.  MAIN RESULTS

We now present the main results as four theorems stating the necessary and
sufficient conditions for the local and global minimum and maximum points of the
objective function F(x) =max;f;(x;). We then show how these results are extendable in

a straightforward fashion to the objective function f(x) =min,f(x,).

3.1 Local Minima
THEOREM 1
4 point xeC(L,a,b) is a local minimum point of F(x) if and only if one of the
following mutually exclusive conditions is satisfied:
(Cy) X(1,2,3,4,5,6,7,8) is nonempty
(C)  X=X(9,10,11) and X=X(7,8,11)
(Cy)  X=X(12,13,14) and X=X (5,6,14) .
PROOF
Sufficiency: Given a point xeC(L,a,b) for which one of the conditions C,or G,
or C, is satisfied, we prove x is & local minimum point of F(x) by demonstrating the
existence of a neighborhood Ne(x,6) such that
F(x+Ax) > F(x)  whenever (x+Ax) € Ng(x,5)
AF(x,Ax) > 0 whenever (x+Ax) € No(x,6) . (30)
We shall choose a sufficiently small N.(x,5), i.e., a sufficiently small §>0, such that
the conditions of the Lemma are satisfied. This can be done by choosing <5, where
8y is the value whose existence is guaranteed by the Lemma. From the Lemma, the
statement in (30) is equivalent to

max;epAfi(x,Ax) > 0 whenever (x+Ax) € Ne(x,6) (31)
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Since each function f; is monomodal at x;, there exists a 6, such that f; exhibits one of
the 15 modes of variation shown in Figure 2 whenever AX; <5, (see definitioh of locally
monomodal function). Again we choose Ng(x,6) sufficiently small by choosing
§<min{§;} such that all the functions f; exhibit the modes of variation in Figure 2
whenever (x+Ax)eN(x,5). We shall now show that the term max, pAf;, in (31) is
nonnegative if C; or C, or C, is satisfied. To show that max;-pAf; is nonnegative, we

have to demonstrate that there is at least one jeP for which Af;>0. If C, is satisfied,

there is at least one jeP such that f; exhibits one of the modes 1 through 8 for which

Af;> 0 (see Figure 2), and the required result follows.
From the definitions of N¢(x,6) and C in (11) and (8), one has for all (x+Ax) e
Ne(x,8):
L = Zie@sr@(Xit2%) = LicpagXit Dics A% = L+ EieprqdX;
Dier+ A% = DigpAX;+ BiegdX; = 0 for all (x+Ax) € Ng(x,8) . (32)
If condition C, is satisfied, X = )—((7,8,11) and therefore Ax;<0 for all ieQ (see modes
7, 8, and 11 in Figure 2). Thus Lieqdx;20 and (32) implies I,.pAx,> 0 which implies
Ax;> 0 for some jeP, and since X=X(9,10,11) one has af;>0 and the required result
follows. If condition C; is satisfied, )-(=)_((5,6,14) and therefore Ax;>0 for all ieQ.
Thus B;cqAx;> 0 and (32) implies Z;cpAX;< 0 which implies A%;< 0 for some jeP, and
since X=X(12,13,14) one has Af;>0 and the required result follows. Finally, we should
note that if Q is empty, then (32) reduces to E,cpAx;=0, which implies Ax; >0 and Axy <
0 for some j,keP, and the same conclusions under C, and C, still hold.
Necessity: Given point xe€C is a local minimum point of F(x), we prove that one
of the conditions C, or C, or C; must be true, i.e., we prove that C, must be true:
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where the "+" operator represents the logical OR. Note that each of C; and C, is the

logical AND of two conditions. Let Cipo Cpa Cyy, Cy, represent these conditions:

Ca e X = X(91011) , Cpe X = X(7,8,11) (33)

Cy & X = X(12,13,14) , Cp e X = X(56,14) (34)

Co = Ci+CpCt+CyiCyy -
To prove the truth of C, by the method of contradiction, we assume Cy is not true and
arrive at a contradiction to the postulate that x is a local minimum point of F(x).
Equivalently we assume NOT C, is true and arrive at the contradiction. By the familiar
manipulation of Boolean algebra, NOT Cpq can be expressed as the logical OR of four
alternative conditions.

Cy = ClCpCs7 CyrCyy = C1(C;C)CyyCyy) = C1(Cy+ C3p)(Cyy+ Cyy)
Co = C1C3iCyy+ C1Cy,Cyp+ C1C23Cs1+C;CpyCsy . (35)

Our objective is to show that if any of the four alternative conditions of (_30 in (35) is
true, a contradiction arises to the given fact that x is a local minimum point of F(x),
i.e., given any §"-neighborhood Nc(x,6%) of x we can find a point (x+Ax) € N.(x,5%)
such that

F(x+Ax) < F(x) for some (x+Ax) € Ne(x,6)

AF(x,Ax) < 0 for some (x+Ax) € Nc(x,6%) . (36)
Consider a sufficiently small positive value 5§<s°* and the corresponding neighborhood
Nc(x,6)cN¢(x,6%) such that the conditions of the Lemma and Figure 2 are both
satisfied. This is always possible siﬂce the functions f; are monomodal at X;. We shall
show that we can specify a point (x+Ax)eN(x,6)cNc(x,6°) for which.(36) is satisfied.
From the Lemma the condition in (36) is equivalent to

maxiepAfi(x;+Ax;) < 0 for some (x+Ax) € Nc(x,6) .
Thus, for (36) to be satisfied we should choose the point x+ Ax such that

Af; <0 forallieP. 37
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This is satisfied if we choose each Ax; such that the corresponding increment Af; is
negative for all i € P. The algebraic sign of Af; for a given Ax; depends on the mode
of f; at x;. Examine the modal composition of X:

X = X(1,2, ... ,15) = X(1,2, ... ,8)+X(9,10,11)+X(12,13,14) + X(15).  (38)
Each of the four alternative conditions in (35) includes the condition 61 which means
X(1,2,...,8) = ¢, and (38) reduces to

X = X(9,10,11) +X(12,13,14) + X(15) . (39)
Examining the modes 9 through 15 in Figure 2, it is evident that (37) and (39) imply
that the values of Ax; should be chosen as follows:

Ax;<0 for x;€X(9,10,11); Ax;>0 for x;,£X(12,13,14); Ax,# 0 for x,eX(15). (40)
What remains to be shown is that the values of Ax;, chosen to satisfy (40), can also be
made to satisfy the constraint £, Ax; = 0 which guarantees that (x+Ax) € N(x,8) as
indicated by (32). Thus we should have

0 = I, Ax; = Dy, gAX; = Bx0,10,10A%+ Ex 1z, 13,14 A%+ Sg 15 AX; + EgAX;. (41)
According to the condition Ax;#0 for x,eX(15) in (40), each of the values of Ax, in the
third summation on the right hand side of (41) may be chosen to be either positive or
negative. Accordingly the set X(15) may be expressed as the union of two subsets
X(15) = X*(15)+X715) where X*(15) comprises the elements x; for which Ax; is
chosen to be positive and X{15) comprises the elements x; for which Ax; is chosen
negative. The requirement in (41) may therefore be rewritten as:

Ex0,10108%1* Dx(12,13,10 8% Ex+ (15 A% + Dx- 15y AX;+EgAx; = 0 (42)
For convenience, we choose | Ax;| to have the same value within each of the first four
summations in (42) which may then be expressed as:
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where ny, n,, n;, n, represent the number of elements in the respective sets X(9,10,11),
X(12,13,14), X*(15), and XT15), and dy, dy, d3, dy are the common values of |Ax;]|
within each summation. The signs of the terms in (43) reflect the conditions on Ax; in
(40). It should be noted that in (43) the values ny, n, and the number of elements in
X(15), denoted by | X(15)| =ny+n,, are fixed parameters determined by the given point
X, while d;, d,, d;, d; and Ax; (in the summation) can be considered as variables
(arbitrarily small) whose values are chosen so that (43) is satisfied. Note also that the
values of n; and n, can be arbitrarily chosen subject to condition n3;+n,= | X(15)].
We shall now show that if any of the four alternative conditions in (35) is true,
it is always possible to satisfy the requirement in (43) by appropriate selection of the
values of nonfixed parameters.
(A) Assume the first alternative condition 61621631 in (35) is true. From (33) and
(34) we obtain |
X(1,2,....8) =¢ , X #X(9,10,11) , X #X(12,13,14) . (44)
Recall the identity
X = X(1,2, ... ,15) = X(1,2, ... ,8)+X(9,10,11)+ X(12,13,14) + X(15).  (45)
Combining (44) and (45) we obtain
X(12,13,14)+X(15) #¢ , X(9,10,11)+X(15) #¢ . (46)
The statement in (46) is equivalent to either
(A1)  X(15) #¢ |
(A2)  X(9,10,11) #¢ and X(12,13,14) #¢ .
If (A1) is true then |X(15)| =n;+n,#0, in which case we rewrite the requirement
in (43) as
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(B)

which can always be satisfied as follows: if the right hand side is positive, choose
ny=0 and ny=|X(15)} #0; if negative, choose ny=0 and ng=|X(15)[ #0. The right
hand side can be zero for a specific choice of the values d;, dy, and Ax,, in which
case decrement any one of these parameters by an arbitrarily small amount to
make the right hand side positive or negative and proceed as before. On the
other hand, the right hand side may be identically equal to zero if n,=n,=|X|=0,
in which case x=X=X(15) and |X(15)] = x| =n>2. This means we can choose
n3>1 and n,>1 and then choose dy and d, such that nydy -ngd,=0.
If (A2) is true, then n;#0 and n,#0 and the requirement in {43) may be rewritten
as:

nyd; - n,d, = nydy ~ nyd,+ TzAx, (48)
which can always be satisfied by choosing (d,/d,) > (ny/n,) if the right hand side
is positive, (d,/d,) < (n,/n,) if the right hand side is negative, and (d,/d,) =
(n,/ny) if the right hand side is zero.
Assume the second alternative condition 61621(—332 in (35) is true. From (33) and
(34) we obtain

X(12,...,8) = ¢ , X #X(9,10,11) , X #X(5,6,14) . (49)
Combining (45) and (49) we obtain

X(12,13,14) + X(15) #¢ .
Hence either of the following two conditions (B1) or (B2) must be true
(B1) X(15)#¢, which is identical to (A1) above and the proof is the same, or
(B2) X(12,13,14)+# ¢, which means n,#0, in which case we rewrite the require-

ment in (43) as

nydy = n,d;+n,d, - nyd, - Tz Ax; > 0. (50)
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This can always be satisfied as follows: if either ny#0 or {X(15)| #0, choose ny=0
and Ax;=0; but if both n;=0 and | X(15)| =0, then n3=n,=0 and.(50) reduces to

n,d, = - T3 Ax; > 0. (31)
We now examine the last condition in (49), namely X # }_((5,6,14), which implies
that there is at least one value xjei such that X;#a;. Otherwise we would have
X= )—{(5,6,14), as can be verified from Figure 2. To satisfy (51), choose Ax;=0 for
all i#j and Ax;<0 which is possible since x;#a;. (Note that the condition X#
X(5,6,14) implies X # ¢, for if X=¢ then X(5,6,14)=¢ and X=X(5,6,14) is always
satisfied.)

(C) Assume the third alternative condition 61(_3‘22631 in (35) is true. The proof is
analogous to the proof in (B) with n, replacing the role of n, and b, replacing the
role of a,.

(D) Finally, assume the fourth alternative condition 61622632 in (35) is true. From
(33) and (34) we obtain

X(1,2,....8) = ¢ , X £X(7,8,11) , X #X(5,6,14) . (52)
The second condition in (52) implies that there is at least one xjei;( such that
X;#2;, and the third condition implies that there is at least one xke}-( such that
X #by. The requirement in (43) is now rewritten as

Iz Ax; = n,d; - n,d, ~ nydy+n,d,
which can always be satisfied as follows: if the right hand side is positive, choose
Ax;=0 for all i#k and Ax, >0 which is feasible since X #by; if the right hand side
is negative, choose Ax;=0 for all i#j and AX;<0 which is feasible since x;#a;; if the
right hand side is zero, choose Ax;=0 for all x, € X.
We have proven that if EJ,, in (35) is true, we can produce a point (x+ Ax)

satisfying (36), which means (x+Ax) € N(x,6) and F(x+ Ax) <F(x), which contradicts
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the starting assumption that x is a local minimum point of F(x). Hence Eo is not true,
i.e.,, Cy=C;+C,+C; is true, and one of the conditions C, or C, or C; must be satisfied.

This completes the necessity part, and the entire proof, of Theorem 1.

3.2 Local Maxima
THEOREM 2
A given xeC(L,a,b) is a local maximum point of F(x) if and only if
X = X(1,5,7,9,11,12,14,15) . (53)
PROOF
Sufficiency: Given a point x € C(L,a,b) for which the condition (53) is satisfied,
we prove x is a local maximum point of F(x) by demonstrating the existence of a
neighborhood N(x,6) such that
F(x+ax) < F(x) for all (x+Ax) € N(x,8)
AF(x,Ax) < 0 for all (x+Ax) € No(x,6) . (54)
We choose a sufficiently small N(x,6) such that the conditions of the Lemma and
Figure 2 are satisfied. From the Lemma, the requirement in (54) is equivalent to
max;epAfi(x;+Ax) <0 forall |x| <5
afy(x;+4x) <0 forallie P
which is evidently true from Figure 2, since Af; <0 for x,&X exhibiting modes 1,5,7,9,11,
12,14,15.
Necessity: Given xeC is a local maximum point of F(x), we prove that (53) must
be true. We shall assume, to the contrary, that (53) is not true and arrive at a
contradiction:
X #X(1,5,7,9,11,12,14,15) . (55)
The assumption in (55) implies that

X(2,3,4,6,8,10,13) # ¢ . (56)
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We shall show that (56) leads to a contradiction to the stipulation of x being a local
maximum point, by demonstrating that for any neighborhood N(x,6%) of x we can find
a point (x+Ax)EN(x,5%) such that

F(x+Ax) > F(x) for some (x+Ax)eN((x,5%) (57)

AF(x,Ax) > 0 for some (x+ Ax)eNL(x,5") . (58)
Consider a sufficiently small value §<5* and the corresponding neighborhood N¢(x,s)
C N¢(x,6%) such that the conditions of the Lemma and Figure 2 are both satisfied, We
shall prove that we can specify a point (x+Ax)eN(x,6)cN(x,6") such that (58) is
satisfied. By the Lemma, (58) becomes

max;epAfi(x;,Ax;) > 0 for some (x+ Ax)eN((x,5") . (59)
Thus, for (59) to be satisfied we should choose the x+ Ax such that

Afy(x,Ax) > 0 for some j € P . ' (60)
Since jeP means x;€X, the last requirement in (60) becomes

Afi(x;,Ax;)) > 0 for some X; € X and some AX; . (61}
In choosing the required point x+Ax, we shall, for the sake of simplicity, restrict the
increment vector AxX to have only two nonzero elements: Ax; corresponding to X; and Ax,
corresponding to some other X, to be specified later; thus

AX = (0,0,...,ij,0,...,Axk,O,...,O) .
Since T,Ax;=0, we should have

Axy = -Ax;.
The assumption (56) can be written as

X(2,4,6,10) + X(3,8,13) #¢
which implies either x(2,4,6,10)# ¢ or X(3,8,13)# 4.
(1) Tf X(2,4,6,10)# ¢, then choose x;€X(2,4,6,10) and Ax;>0, which makes Afj>0, as

shown in Figure 2, and (61) is satisfied. This means we must choose Ax, <0, which
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(2)

is always feasible if we choose

X, #3, somek #j. (62)
We contend that under the present conditions such an x,, as indicated in (62),
does exist, because if otherwise Xy =ay for all k#j, then we would have

=L -Zx=L- I 1Y
which means X; = b; (since X; cannot have any value larger than L - Zy#;2x), which
is a contradiction to xjeX(2,4,6,10).
If X(3,8,13) #¢, then choose xjeX(3,8,13) and Ax;<0, which makes Afj> 0, as shown
in Figure xx, and () is satisfied. This means we must choose Ax, >0, which is
always feasible if we choose

X ¥by  some k #j . (63)
Under the present conditions such an X}, as indicated in (63), does exist, because
if otherwise X, =b, for all k#j, then we would have

Xp=L =B x =L - Iysibk
which means Xj=a; (since x; cannot have any value smaller than L - Ey# 00
which is a contradiction to x;€X(3,8,13).

This completes the proof of Theorem 2. We next direct our attention to the

global minima and maxima of F(x).

3.3 Global Minimum Points

THEOREM 3

Let im be the set of all local minimum points and f('g be the set of all global

minimum points of F(x) in C(L,a,b); then

i X, cX,
(i) ze is if and only if F(z)=min, g F(x) .
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PROOF
The set C(L,a,b) is the intersection of the compact n-cell defined by x,g[a,;b,]
and the closed set of the hyperplane defined by X +X,+...+x,=L. Hence C is compact.
By the Lemma, F(x) is a continuous function over C and must therefore attain its
global minimum value F for some point xeC
F = min,..F(x) = Fx) xeC. (64)
We now show that iggfm. Consider any point zefg and a §-neighborhood N (z,5).
Since z is a giobal minimum point, one has F(z+Az)>F(z) for all (z+ Az)eC, and since
NccC, we have
F(z+az) > F(z)  for all (z+Az) € Nc(z,6) . (65)
The statement in (65) makes z a local minimum point, i.e., zeim, hence Eggj{'m. We
now prove the second part of the Theorem.
Sufficiency: Given a point zeC such that
F(z) = min, ¥ ,F(x) . (66)
We shall prove that zeig. Since iggim, one has
mife¥mF(X) < min, FF(x) . (67)
The left hand side is equal to F(z) and the right side is F, hence
F(z) < F. (68)
Similarly, since )?mgc, one has
min,ecF(x) < min, ¥, F(x) . (69)
The left side is F and the right side is F(z) as indicated by (64) and (66); hence
F < F(z) . (70)
From (68) and (70) we obtain F(z)=F, i.e., z is a global minimum point of F(x) and
Necessity: Let z be a global minimum point of F(x), i.e., zei’g,
F(z) = F. (71)
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We shall prove that F(z)=min _¥ F(x). Assume to the contrary that

F(z) #min, Y, F(x) . (72)
The statement in (72) implies

F(z) = F < min},F(x) . (73)
Note that the other alternative, F>min,¥,F(x), is impossible because F is the global
minimum value of F(x). We have already shown that igg)‘fm, hence

min, g, F(x) < min, 5 F(x) = F
which is a contradiction to (73). Hence, the assumption in (72) cannot be true, and

F(z)=min ¥, F(x).

3.4 Global Maximum Points

THEOREM 4
Let gm be the set of all local maximum points and gg be the set of all global
maximum points of F(x) in C(L,a,b); then
i X cX

(ii) z e )?g if and only if F(z)=max,§,F(x) .

We have already shown in the proof of Theorem 3 that C is compact. By the
Lemma, F(x) is a continuous function over C and must therefore attain its global
maximum value F for some point xeC

F = max .F(x) = Fx) xeC. (74)
We now show that S\(gggm. Consider any point ze')as and a §-neighborhood N(z,s).
Since z is a global maximum point, one has F(z+Az)<F(z) for all (z+Az)eC, and since
NccC, we have

F(z+aAz) < F(z) for all (z+Az) € N(z,5) . (75)
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The statement in (75) makes z a local maximum point, i.e., z € )?m, hence ;(g c gm. We
now prove the second part of the Theorem.
Sufficiency: Given a point zeC such that

F(z) = max, %, F(x) . (76)
We shall prove that ze’)zg. Since ﬁggi\m, one has

Max, FaF(X) > max RF(x) . 77)
The left hand side is equal to F(z) and the right side is F, hence

F(z) > F. (78)
Similarly, since Si\m ¢ C, one has

Max,ecF(x) > max,RaF(x) . (79)
The left side is F and the right side is F(z) as indicated by (74) and (76); hence

F > F(z) . (80)
From (78) and (80) we obtain F(z)=F, i.e., z is a global maximum point of F(x) and

Necessity: Let z be a global maximum point of F(x), i.e, z € ’)_(\g,

F(z) = F . (81)
We shall prove that F(z)=max 3 _F(x). Assume to the contrary that

F(z) #max,RnF(x) . (82)
The statement in (82) implies

F(z) = F < max, R, F(x) . (83)
Note that the other alternative, F < max,%,F(x), is impossible because F is the global
maximum value of F(x). We have already shown that ig c ‘}.(\m; hence

max 4 F(x) > max,RF(x) = F
which is a contradiction to (83). Hence, the assumption in (82) cannot be true, and

F(z) = max, g, F(x).
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3.5 Extensions to f(x) = minf,(x;)

All the foregoing results, which were derived for the resource allocation problem
with objective function F(x) = max;f,(x,), are readily extendable to the same problem with
objective function f(x) =minf;(x;). The analytical connection between the two problems

derives from the simple general identities

minfi(x;) = ~max;[-fi(x;)] (84)
min,of(x) = -max_ [ -{(x)] (85)
max,ef(x) = -min . [-f(x)] . (86)

The min and max in (85) and (86) signify the absolute minimum and absolute maximum
values of the functions f(x) and -f(x). These relations are also true of the local
minima and maxima, a fact we represent by the following notation

Imin ¢ of(x) = -Imax o[ -f(x)] (87)

Imax . f(x) = ~Imin .[-f(x)] (88)
where (87) and (88) are to be read: "for every xeC at which f(x) exhibits a local
minimum (maximum) value, —f(x) exhibits a local maximum (mimimum) value of equal
magnitude but opposite sign." Referring back to (84), let g,(x;) denote -£,(x;) and G(x)
denote max;g;(x,); thus

f(x) = minfi(x;) = -max[-fi(x;)] = -maxg(x) = ~G(x) . (89)
Note that the function G(x)=max;g;(x) has the same form as the objective function
F(x)=max;fi(x;) for which all the previous results in the Lemma and the four theorems
were derived. Thus these results can be used to find all the local and global minima
and maxima of G(x). Since (89) indicates that G(x)= -f(x), the statements in (85),
(86), (87), (88) indicate that the local minimum (maximum) points found for G(x) are
the local maximum (minimum) points of f(x). The same is true for the global minimum

and maximum points.
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4. EXAMPLES

We now illustrate the foregoing concepts and criteria via simple examples with
n=2. The two functions f,(x,) and f,(x,) are specified by their graphs in Figure 4. We
have deliberately elected to represent the functions fi(x;) by their graphs rather than
by their analytical expressions to emphasize the fact that the results of this paper are
equally applicable in real-world optimization problems where the given functions fi(x))
are determined from empirical or simulation data which can be plotted into cartesian
graphs for which no exact analytical expressions can be specified. Figures Sa,b,c,d,e
show plots of the function F(x)=max(f,(x,) for L=2,4,6,8,10 respectively, with a;=0 and
b;=L in all cases. Note that, as illustrated in Figure Se, a point on the horizontal axis
of these graphs represents the 2-tuple (x,x,) with x,+x,=L, X, and x, being measured

from the left and right ends of the interval [0,L] respectively.

FIG. 4. Graphs and modal composition of the functions f,(x,) and f,(x,) used in the
examples.
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FIG. 5. Maxima and minima of F(x) of the example for various values of L

We now explain the details of applying the four theorems to find all the local and
global extremum points for the case L=10 shown in Figure 5e. .Note that by inspecting
the graphs of f;(x,) and f,(x,) we determine the following:

modes exhibited by Xy : 4,6,10,11,13,15 (éO)
modes exhibited by x, : 4,6,10,11,13,15 . (91)

33



The specific sets of points x,(m) exhibiting mode m are indicated on Figure 4. Recall

the meaning of X, X, and X(mg,my,...,my) from (15), (16), and section 2.7 respectively:

X = {xex: fi(x) = maxfi(x,) = F(x)} (92)
X =x-X = {xex @ fi(x) < maxf(x;) = F(x)} (93)
X(my,my,...my) = {x,€X : mode of X; = my,m,,.m.} . (94)

First we determine the set of local minimum points (Iminp) satisfying condition C, of
Theorem 1, which we shall denote by \}Zm(cl). Let x=(x,,x,) be a point satisfying Cy

X(1,2,..,8) # ¢ . (95)
From (90) and (91) we have X(1,2,...,8)=X(4,6)=X(4)+ X(6). Thus condition (95)
implies

X(4)+X(6) # ¢ , X(4) # 6 or X(6) # ¢ .
Assume first x,€X(4)cX. There is only one such point, namely x, =6, which exhibits
~mode 4 with f,(6)=2. Hence X;=L-x;=10-6=4, {,(4)=4.9 and f,(6) <f,(4) and x,¢X,
which is a contradiction. Next assume x,6X(4); hence x,=7.5, £,(7.5)=3,
x.1=10—7.5=2.5, £,(2.5)=5.85, £,(7.5)<f,(2.5), x,¢X, a contradiction. Next assume
x1€X(6); hence x, =0, f,(0)=2, x,=10, f,(10)=8.35, £,(0) <£,(10), x,€X, a contradiction.
Finally assume x,6X(6); hence X, =0, £,(0)=1, x,=10, f,(10)=7.95, £,(0) <£,(10), x,€X,
a contradiction. Thus in all cases (95) leads to a contradiction; therefore there can be
no point x that satisfies (95) and S('m(Cl) is empty.

Next we determine the set ‘)-('m(Cz) of lminp satisfying C,. Let x=(x,,x,) be a point

satisfying C,:

X = X(9,10,11) , X = X(7,8,11). (96)
From (90) and (91), the conditions in (96) become

X = X(10,11) , X = X(11). (97)
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Assume first that X#¢; hence X(11)#4. If x,€X(11), then x,= 10, £,(11)=7.5, x,=0,
£2(0)=1, £(x,) <fy(x,), x;,€X, x,¢X, a contradiction. Similarly, if x,eX(11),then x,=10,
£,(10)=8.35, x,=0, £,(0)=2, f,(x,)<f,(x,), x,€X, X;¢X, a contradiction. Thus the
assumption )—(#¢ always leads to a contradiction, hence X=¢ and {xi,x2}=X. Thus
f(x;)=f(x,)=F(x). From (97) we have

{xpX} = X = X(10,11) = X(10) + X(11) , X =4¢. (98)
We now show that neither x; nor x, can belong to X(11). If x,e€X(11), then x,=10,
X,=0, f(x,)<f(x;), x,€X, which contradicts X=¢. If X,€X(11), x,=10, x,=90,
f,(x1) <fy(x,), xle)_(, which contradicts }_(=¢. Thus (98) becomes

{xpx;} = X(10) . (99)
This means both x; and x, must belong to the intervals where f, and {, are increasing,
with f;(x,) =f,(x,) and x,+x,=10. The values of x, and X, that satisfy these requirements
can be easily searched for by sliding a horizontal line, representing F(x) =1,(x;) =1,(x),
in a vertical direction and summing up its x, and X, intercepts with the increasing
portions of f; and f, and determining the values of F(x) for which X;+X,=10. Two such
points are found:

F(x) = 4.5 with x = (1.3,8.7) and F(x)=3.7 with x=(7.652.35) . (100)
The conditions represented by the points in (100) are depicted graphically in Figure 4.
The top dotted line corresponds to the first point and the bottom dotted line

corresponds to the second point. Thus
A4

Xm(Cy) = {(1.3,8.7), (7.65,2.35)} , F(1.3,8.7)=4.5 , F(7.65,2.35)=3.7. (101)
The set )\Em(CJ) of Iminp satisfying C, is determined in an analogous fashion. We find
X=¢ and {x;;x;} =X=X(13). Hence x can be found by sliding a horizontal line in a

vertical direction and summing up its x, and x, intercepts with the decreasing portions
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of f; and f, and determining the values of F(x) for which X;+X,=10. In this case only
one such point is found, as represented by the middle dotted line in Figure 4:

F(x)=4.25 , X,(Cj)=(4.25,5.75) . (102)
The set of all Iminp is the union of )\(‘m(Cl), Em(cz), and )\Em(CS)

X = {(1.3.8.7), (4.25,5.75) , (7.65,2.35)} .
The global minimum point, by Theorem 3, is the Iminp with the smallest value of F(x)

F(7.65,2.35)=4.25 .

Next, we turn our attention to finding the set g(\m of all local maxima by Theorem

2. Let x=(xy,X,) be a local maximum point (Imaxp). From (53), (90), and (91) we have

X = X(1,5,7,9,11,12,14,15) = X(11,15) = X(11)+X(15) .
Since X# ¢, we have either x,eX or x,eX. If x,eX(11), then x,=10, f,(x,) =74,
X;=10-10=0, £,(0)=1, f,(x,)<f,(x,); hence x=(10,0) is a lmaxp with F(10,0)=7.4. If
x,€X(11), then x,=10, f,(10)=8.25, x, =0, f,(0)=2, £,(0) <f,(0); hence (0,10) is a Imaxp
with F(0,10)=8.25. If x,€X(15), thenx, =3, £,(3)=6,x,=7, £,(7)=3.1, £,(7) <£,(3); hence
(3,7) is a Imaxp with F(3,7)=6. If X,€X(15), then x,=4.5, £,(4.5)=5, x,=10-4.5=5.5,
£,(5.5)=2.3, {,(5.5)<f,(4.5); hence (5.5,4.5) is a lmaxp with F(5.5,4.5)=6. The set of all
Imaxps is

~

Xw = {(10,0), (0,10), (3,7), (5.5,4.5)}
and the global maximum point is, by Theorem 4, the point in )?m with the largest value
of F(x), namely F(0,10)=8.25.

Before concluding the discussion of these examples, it is interesting to note how

the comprehensive knowledge of all the local extrema afforded by the criteria at hand
provides illuminating information about the behavior of the objective function F(x) and

its variation with the resource allocation vector x. Compare this to the traditional

approaches and techniques of optimization problems which seek to determine only one

36



feature of the objective function: its absolute minimum or maximum point. By contrast,
the techniques of this paper provide the means for charting the "topography” of the
objective function over its entire domain. This is vividly illustrated by the foregoing
examples, which also show the dramatic changes in the topography of the objective
function that might result from changes in the value of the total resource L. The
knowledge of all local minima and maxima may prove quite useful in selecting
suboptimal, yet more desirable, solutions under certain problem formulations. To
illustrate this point, note how in Figure 5(e) the three local minimum values 3.7, 4.25,
4,5 are fairly close to each other. Suppose that in a given practical situation it is highly
desirable to have the total resource as evenly distributed among the x;s as possible, in
which case one may opt to choose x=(4.25,5.75), F(x)=4.25 as the preferred "optimal"
minimum solution. To state the same argument quantitatively, suppose there is an
extra cost or penalty of 0.5|x,—x,| associated with the choice of any solution x= (x4,%,)
such that the objective function to be minimized is now F(x) +0.5 |Xy=X,|. In this case

the middle local minimum in Figure 5(e) becomes the new optimal solution.

5. CONCLUSIONS

This paper has presented the "definitive” solution of the REMAXMIN problem
with continuous variables: The necessary and sufficient conditions for local and global
minima and maxima of the objective functions F(x)=maxf(x;) and f(x) = minf;(x,) with
no restrictions (other than local monomodality) placed on the functions f; which can be
specified in analytical or graphical formats. There are a number of noteworthy
theoretical and practical implications of these powerful results. The necessity and
sufficiency of the conditions of optimality make them theoretically equivalent to the

property of optimality. This enables the reliable determination of all the global optima
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of the objective function in those cases where the optimal solution is not unique, and
the ordering of such multiple optima according to some additional criterion of
desirability or the carrying out of a second level of optimization over the domain of all
global optima. The results establish the theoretical relationship between the global
optima and local optima. The determination of all local maxima and minima may be
practically important because it provides significant data on the variational behavior
(topography) of the objective function over the feasible set. This provides the means
for carrying out suboptimal trade-offs whereby a locally optimum resource allocation
is deemed more desirable than a global optimum in view of some additional criteria
such as the balancing of resource allocation. The relaxation of the traditional
restrictions of differentiability, monotonicity, convexity, and unimodality of f.(x;),
commonly found in previous investigations of the problem, is theoretically significant
because it presents a new analytical approach for dealing with the mathematical
difficulties arising from the absence of such restrictions in this problem as well as the
wider contexts of optimization and nonlinear programming. The analytical concepts
and techniques based on the classification of variational modes presented in this paper
are totally new, as far as the author’s literature search has determined. From the
practical standpoint, the relaxation of the restrictions on fi(x;) extends the applicability
of results to 2 much wider class of real-world problems, notably in the area of
multiprocessor and distributed system performance. The applicability is further
enhanced by the graphical implementability of criteria and the resulting admissibility
of functions fi(x;) that are specified by their graphs or tabulated data. The only
condition retained by the analysis on f;(x;), namely local monomodality, does not seem

to present any restriction of significance in practical situations.
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