Graph Layout Using Queues
Lenwood S. Heath and Arnold L. Rosenberg

TR 89-45






GRAPH LAYOUT USING QUEUES

Lenwood S. Heath
Department of Computer Science

Virginia Polytechnic Institute
Blacksburg, VA 24061

Arnold L. Rosenberyg
Department of Computer and Information Science

University of Massachusetts
Ambherst, MA 01003

December 21, 1989

Abstract

We study the problem of laying out the edges of a graph using queues, In a
k queue layout, vertices of the graph are placed in some linear order and each
edge is assigned fo exactly one of the & queues so that the edges assigned to each
queue obey a first-in/first-out discipline. This layout problem abstracts a design
problem of fault-tolerant processor arrays and a problem of sorting with parallel
queues. We relate the queue layout problem to the corresponding stack layout
problem using stacks (the book embedding problem) and immediately derive some
asymptotic bounds for d-valent graphs., We show that every 1-queue graph is a
2-stack graph and that every l-stack graph is a 2-queue graph. We characterize the
l-queue graphs (they are almost leveled-planar graphs). We prove that the problem
of recognizing 1-queue graphs is NP-complete. We give some quene layouts for
specific classes of graphs. Relationships to cutwidth, bandwidth, and bifurcators
are presented. We show a tradeoff between queuenumber and stacknumber for a
fixed linear order of the vertices of G.



1. Introduction

A recurring theme in computer science is the comparison of the relative powers and
properties of queues and stacks in a variety of computational situations. As just one
significant and relevant example, Tarjan [T72] and Even and Itai [EI71] study the
problem of permuting objects using queues and stacks. In this paper, we study the
problem of laying out graphs using queues. We have three motivations for this study.
First, queues and stacks are dual data structures, so the queue layout problem is dual
to the stack layout problem, more commonly known as the book embedding problem
(Bernhart and Kainen [BK79]). Our second motivation is the DIOGENES approach
to the problem of designing fault-tolerant arrays of VLSI processors ([Ro83]); either
queues or stacks (or both) can be incorporated into a fault-tolerant design. A third
motivation is a proposed queuing solution to sch.eduling problems in parallel operating
systems. Throughout, we contrast each result about laying out graphs using queues

with the analogous result about laying out graphs using stacks.

In DIOGENES, an array of communicating processors is implemented in a con-
ceptual line and some number of hardware queues and/or stacks pass over the entire
line. The queues and/or stacks implement the communication links among processors
in such a way that faulty processors are ignored, and all good processors are utilized.
If the processors and their connections are represented by an undirected graph, then
the DIOGENES layout problem is equivalent to a graph layout problem, where edges
are assigned to conceptual queues and/or stacks. The variant of DIOGENES in which
only stacks are used is one motivation for the studies of the book embedding problem:
Bernhart and Kainen [BK79], Buss and Shor [BS84], Chung, Leighton and Rosenberg
[CLR87], Heath [He84,He85], and Yannakakis [Y86,Y89]. This research intends to in-
vestigate the same issues for queues as that study does for stacks. In particular, we
show parallels between queue and stack layouts in some asymptotic results, but we also

find significant points of departure between the two layouts.

A k-queue layout of a graph G = (V, E) has two aspects. The first aspect is a linear
order of V' (which we will think of as being on a horizontal line). The second aspect is
an assignment of each edge in E to one of k queues such that the set of edges assigned

to each queue obeys a first-in/first-out discipline. Think of scanning the vertices in



Figure 1.1: Example graph G.

order from left to right. When the left vertex of an edge is encountered, the edge enters
its assigned queue (at the back of the queue). When the right vertex of an edge is
encountered, the edge exits its assigned queue (and must, therefore, be at the front of
the queue). If a queue is examined at any instant, the edges in the queue are in the
order of their right vertices, with the lefimost of those right vertices belonging to edges
at the head of the queue. The freedom to choose the order of V and the assignment of
E so as to optimize some measure of the resulting layout constitutes the essence of the

queue layout problem.

As an example of a 1-queue layout, consider the graph G in Figure 1.1. A l-quene
layout of G is shown in Figure 1.2. The linear order of V' is a, f, b, e, ¢,d. The order in
which edges pass through the single queue is

(@, £),(a,8),(£,), (£, ), (b, €), (b, ), (b, d), (e,d), (c, d).

Note that edges having the same left vertex enter the queue in an order determined by
their right vertices. For example, edge (a, f) must enter the queue before edge (a, b)
since f is to the left of b.

The queue layout problem also generalizes the problem of permuting a sequence

using parallel queues that was studied by Even and Itai [EI71] and Tarjan [T72]. Let



Figure 1.2: 1-queue layout.

7 be a permutation defined on {1,...,n}. Define the bipartite graph G by

V = {alv-' y Gy D1, - - -5bn}

E = {(a;,b)11<i<n}.
Then realizing 7 by k parallel queues is equivalent to laying & out using % queues when
V is ordered ay, ..., Gy, brq), - - - br(n)-

A k-stack layout of G also has two aspects. The first aspect is a linear order of
V. The second aspect is an assignment of each edge in E to one of & stacks such that
the set of edges assigned to each stack obeys a last-in/first-out discipline. Unlike a
queue layout, edges do not exit a stack in the same order in which they enter it. As
an example, Figure 1.3 shows a 1-stack layout of the graph G in Figure 1.1. The linear
order of V' is a,b,¢,d, e, f. The order in which edges enter the stack is

(a, f);(a,8), (b, I (,€),(5,d), (3, c), (¢, d),(d, ), (e, f)-

The order in which edges exit the stack is
(,8), (5, ¢), (¢, ), (b, ), (d; ), (b, ), (e, ), (b, ), (a, f).

Book embedding is a related problem. A book consists of a spine (a line) and some

number of pages (half-spaces having the spine as boundary). A graph is embedded in



Figure 1.3: 1-stack layout.

a book by placing its vertices along the spine in some order and assigning each edge to
a single page such that each edge can be drawn in its assigned page with no two edges
in the same page intersecting. Chung, Leighton, and Rosenberg [CLR8&T] have shown
that the book embedding problem is equivalent to the stack layout problem. We will
refer to the literature on book embeddings to reveal similarities and differences between

queue and stack layouts.

2. Basics

We start with formal definitions of queue and stack layouts and their associated cost
measures. We develop results on fixed-order queue and stack layouts, including an

optimal and efficient algorithm for fixed-order queue layouts.

2.1. Definitions

A k-queue layout QL of an undirected graph G = (V, E) consists of a linear order of

V and an assignment of each edge in F to exactly one of k queues, ¢1,..., ¢ We use



¢ =1,2,...,n to denote the order. Each queue g; operates as follows. The vertices
of V are scanned in left-to-right (ascending) order. When i is encountered, any edges
assigned to g; that have ¢ as their right endpoint must be at the front of the queue and
are removed (dequeued). Any edges assigned to ¢; that have i as left vertex are placed
on the back of the queue (enqueued) in ascending order of their right vertices. k is the
queuenumber of the layout. The queuenumber of G, QN(G), is the smallest k such that
G has a k-queue layout; G is said to be a k-queue graph. Let w(i, ¢;) be the number
of edges in g; just before i is encountered. Then the queuewidth of g; is QW(g;) =
max;ey (%, ¢;). The mazimum gquevewidth of the layout is QW(QL) = max; QW(g;).
The cumulative queuewidih of the layout is CQW(QL) = ¥, QW(g;).

A k-stack layout SL of an undirected graph consists of a linear order of V and
an assignment of each edge in E to exactly one of k stacks, sq,...,s;. Each stack s;
operates as follows. The vertices of V are scanned in left-to-right (ascending) order.
When ¢ is encountered, any edges assigned to s; that have ¢ as their right endpoint
must be on the top of the stack and are removed (popped). Any edges assigned to s;
that have 7 as left vertex are placed on the top of the stack (pushed) in descending
~order of their right vertices. k is the stacknumber of the layout. The stacknumber
of G, SN(G), is the smallest k such that G has a k-stack layout; G is said to be a
k-stack graph. Let w(i,s;) be the number of edges in s; just before ¢ is encountered.
Then the stackwidth of s; is SW(s;) = maxiev w(,s;). The mazimum stackwidth of
the layout is SW(SL) = max; SW(s;). The cumulative stackwidth of the layout is
CSW(SL) = ¥, SW(s;).

2.2. Fixed-Order Layouts

In this subsection, we fix an order ¢ = 1,2,...,n of V and examine the difficulty of
minimizing the number of queue or stacks required to complete o to a layout. We
concentrate on sets of edges that are obstacles to minimizing the number of stacks or

queues. A k-rainbow is a set of k edges
{65 = (7‘1;,83'), 1 S 2 S k’}
such that

Py <Py < e Py T << S < Sy << v Sy <8y



in other words, a rainbow is a nested matching. A k-iwist is a set of k edges

such that
T <Py << L P T <8y <8y < ree <8y < 8

in other words, a twist is a fully intersecting matching.

A rainbow is an obstacle for a queue layout because no two nested edges can be

assigned to the same queue.

Proposition 2.1 Suppose ¢ has ¢ k-rainbow. Then there is no queue layout of o with
fewer than k queues. There exists a stack layout of o in which all edges of the k-rainbow

are assigned to the same stack.

A twist is an obstacle for a stack layout because no two intersecting edges can be

assigned to the same stack.

Proposition 2.2 Suppose ¢ has a k-twist. Then there 1s no stack layout of o with
fewer than k stacks. There exists a queue layout of ¢ in which all edges of the k-twist

are assigned to the same queue.

The largest rainbow in ¢ determines the smallest number of queues needed in a

queue layout of o.

Theorem 2.1 If o has no rainbow of more than k edges, then there is a k-queune layout

for . Such a layout can be found in time O(|E| logn).

Proof: We describe an algorithm for assigning edges to queues. Maintain an array
R indexed by integers 0..n. For 1 < i < n, array entry R[¢] contains the larger of 0
and the index of the rightmost vertex of any edge that has already been assigned to
the queue ¢;. The algorithm maintains the invariant that nonzero entries in R are in
strictly decreasing order (R[i] < Rli — 1], 1 <1 < n, if R[i — 1] > 0). A suitable
initialization for R assigns R[0] = n + 1 and R[i] = 0, otherwise; then R satisfies the






show that every l-queue graph is a 2-stack graph and that every l-stack graph is a
2-queue graph.

3.1. Characterizing 1-queue Graphs
The characterization of 1-stack graphs was given in [BK79].
Proposition 3.1 G is a 1-stack graph if and only if G is outerplanar.

(An outerplanar graph is a planar graph having a planar embedding in which all vertices
appear on a common face.) We show that the 1-queue graphs are also planar graphs

that have a particular kind of planar embedding.

Consider the normal cartesian (z,y) coordinate system for the plane. For i an
integer, let £; be the vertical line defined by £; = {({,¥) |y € R}. A graph G = (V, E)
is a leveled-planar graph if V can be partitioned into levels V4, Va,...,V,, and G can
be embedded in the plane such that all vertices of V; are on the line £;, each edge in E
is embedded as a straight line segment wholly between #; and £;,, for some 7, and the
embedding is a valid planar embedding for G (i.e., no edges cross). Figure 3.1 shows
a leveled-planar graph having 3 levels. Note that the leveled-planar embedding of a
leveled-planar graph is not unique. Henceforth, we assume that an arbitrary leveled-

planar embedding is given along with a leveled-planar graph.

A leveled-planar embedding induces an order (the induced order) on V as follows.
As 7 takes the values 1,2,...,m, scan line 4 from bottom to top. Label the vertices
1,2,...,n as they are encountered. For 1 <7 < m, let b; be the (bottom) first vertex in
level 1, and let ¢; be the (top) last. Let s; be the first vertex in level  that is adjacent to
some vertex in level ¢ + 1, or, if there are no edges between levels ¢ and i + 1, let 3; = ¢..
Consider augmenting G with new edges. A level i arch for G is an edge connecting #;
with 7, where b; < j < min(¢; — 1,5;). A leveled-planar graph G, augmented by any
number of arches, can be embedded in the plane by drawing the arches around level 1;
because of the leveling, the arches do not cross. See Figure 3.2 where (3,5) and (6, 8)
are arches. A leveled-planar graph augmented by (zero or more) arches is called an
arched leveled-planar grdph. The edges that are not arches are called leveled edges. An

arched leveled-planar graph that cannot be augmented with further arches or leveled



Figure 3.1: A leveled-planar graph.

edges is mazimal. See Figure 3.3 for an example. The above definitions for b;, s;, and ¢;

will be used throughout the paper to refer to vertices in arched leveled-planar graphs.

We can now state the characterization of 1-queue graphs.

Theorem 3.1 A graph G is a I-queue graph if and only if G is an erched level planar
graph.

We develop the proof of the theorem through three lemmas.

Lemma 3.1 Every leveled-planar graph is a I-queue graph. The induced order of ver-

tices yields a 1-queve layout.

Proof: Given a leveled-planar graph G = (V, E) with m levels V1, V5,..., Vi, order V
in the induced order 1,...,n. We claim that this order yields a 1-queue embedding of
G. It suffices to show that no two edges nest. If two edges have a vertex in common,
then the edges cannot nest. So consider two edges (p1, ¢1) and (ps, ¢3) such that p; < ¢4,
P2 < g2, P1 < p2, and g1 # ¢2. If p; and p, are in the same level V;, then ¢; and g, are

in the same level Vi1, and ¢; < ¢ because the edges do not intersect. If p; and ps are

10



Figure 3.2: Drawing arches.

11



Figure 3.3: A maximal arched leveled-planar graph.

12



First construct a leveled-planar embedding of Gy = (V, E¢). Place the vertices of
V; on line ¢; in the order b;,b; + 1,...,t; from bottom to top. Draw the edges in E; as
line segments. Two of these line segments might eross only if they end on two adjacent
lines £; and £ir1. Let (p3,q1), pr < g1 and (p2,¢2), P1 < g2 be the edges corresponding
to two line segments that cross. Then py < pa < ¢2 < g1, that is, the edges nest. That

is a contradiction to ¢ being the order of a 1-queue embedding of G.

Tt remains to show that E — F, contains only arches for G,. Let (ps, ¢s) € E — Ey,
where ps, gz € Vi, ps < ¢3. Clearly, ps < min(f; — 1, s;) since otherwise there is an
edge from s; to some vertex in Vi, that nests over (ps,q3). Since t; is adjacent to
some vertex z € Vi_1, we must have ¢ = t;, for otherwise (z,t;) and (ps, g3) nest. We
conclude that E — E, contains only arches and that we have constructed an arched level

planar embedding of G. O

Theorem 3.1 follows from Lemmas 3.2 and 3.3.

It is well known that a maximal outerplanar graph on n vertices contains 2n — 3

edges. A similar result is now shown for maximal arched leveled-planar graphs.

Theorem 3.2 Let G = (V,E) be a graph on n vertices having a mezimal arched
leveled-planar embedding of m levels. Suppose that f of the levels V3,..., Vi1 are
singletons. Then G has at most 2n — 1 — [V1| — f edges.

Proof: Partition E into levels Ey, . .., En, where an edge is in level E; if its left vertex
is in V;. Then all level i arches are in E;, and V,, contains only arches. For convenience,

let tg = 0.

By the maximality of the embedding: (a) E; contains 8; — ti-1 arches if ¢; # ¢; and
s; — t;_y — 1 arches if #; = s;; (b) if t; # b;, then there 1s a leveled edge from ¢; — 1 to
level 1 + 1 and hence s; # ¢;. Thus E; contains 8; — ;-1 —1=10 arches only when V; is

a singleton level.

Each leveled edge in E;, 1 < i < m — 1, has one endpoint among #; — s;+1 vertices
in level i and one endpoint among t;.1 — t; vertices in level ¢ +1. By planarity, there is

a bottom-to-top order on the set of leveled edges in F;. Scanning these edges in order,

14



in different levels, then ¢; and ¢; are in different levels, and again ¢; < ¢3. In either

case, the two edges do not nest. Hence, the given layout is a l-queue layout of G. O

Lemma 3.2 Every arched leveled-planar graph is a 1-queue graph. The induced order

of vertices yields a 1-queune layout.

Proof: Let G = (V, E) be an arched leveled-planar graph. By the previous lemma, it

suffices to show that no arch nests with another edge.

Let {p1,t;) and (pa,t;) be two arches. If {; = ¢;, then the arches do not nest since
they have a vertex in common. If ¢; # ¢;, say ¢; < t;, then py < t; < py < ¢;, and the

arches do not nest.

Now suppose (ps,q3), P3 < g3, 15 a leveled edge between levels k£ and &k + 1. Since
every arch is between two vertices on the same level, no leveled edge can nest inside an
arch. For (p1,%;) to nest inside (ps, ¢3), we must have k = { and p3 < p; < ;. By the
definition of s;, there are no leveled edges from level ¢ vertices to the left of s;. Thus,

(p1,t:) and (ps,g3) do not nest. We conclude that we have a 1-quene layout for G. O
Lemma 3.3 Every 1-queue graph is an arched leveled-planar graph.

Proof: Let G = (V, E) be a 1-queue graph, and let ¢ = 1,2,...,n be the order of a
1-queue layout of G. It suffices to describe an arched leveled-planar embedding of G.

Without loss of generality, we may assume that G is connected.

Partition V as follows. V3 = {1}, and #; = s; = ¢; = 1. For ¢ > 1, until each vertex
is placed in some set, let ¢; be the rightmost vertex incident to some vertex in V;_;. Let
b =1t,_1+ 1. Let V; = {b;,...,%;}. Let s; be the leftmost vertex in V; that is adjacent

to some vertex to the right of ¢;; let s;, =¢; if t; = n.

Let the resulting partition be Vi, V45,...,V,,. This partition consists of breaking
the sequence ¢ into m contiguous subsequences that end at 1 = #1,%,,...,%,, = n,
respectively. By the construction of V;, it is clear that there is no edge from a vertex
in V; to a vertex in V; if | — j| > 2. Let E, be the subset of E consisting of edges that
connect vertices at consecutive levels; that is,

E,=EnN U VZ-’XVHL

1<i<m

13



recognizing 1-queue graphs is NP-complete (see Garey and Johnson [GJ79}). Formally,

the recognition problem for 1-queue graphs is the following decision problem.
ARCHED LEVELED-PLANAR

INSTANCE: A graph G = (V, E), represented by adjacency lists.
QUESTION: Does ( have an arched leveled-planar embedding?

The next recognition problem is an intermediate destination on the way to the

desired NP-completeness result.
LEVELED-PLANAR
INSTANCE: A graph G = (V, E), represented by adjacency lists.
QUESTION: Does G have a leveled-planar embedding?
Notice that it is not immediate that either of these problems reduces to the other.

We describe a decision problem first defined by Lichtenstein [L82]. An instance
of 3-SAT [GJ79] is a boolean formula ¢ in conjunctive normal form such that each
clause contains at most 3 literals. Let {vy,vs,...,v,} be the variables of ¢, and let
{c1,€2,-..,6m} be the clauses. Each ¢; is a set containing at most 3 literals, where each

literal is either a variable v; or the complement T; of a variable; call a clause containing

exactly k literals a k-clause. The graph of ¢, G($) = (N, A) has vertex set
N={¢;{1<ij<m}U{v;|]1 <7< n}
and edge set A = A; U A, where
Ay = {(¢j,v)|vi €cjorT; € ¢}
A = {(vivir)|1 i< n—1}U{(va,v1)}-

The edges of A, form a cycle called the wariable cycle. The graph in Figure 3.4 rep-
resents the graph of the formula having clauses ¢; = {v1,73,v5}, c2 = {73, 74, vs},
ez = {T1,v2}, €4 = {v9, 03,04}, and cs = {v2, vy, T5}-

Lichtenstein shows that the following restricted version of 3-SAT is NP-complete.
PLANAR 3-SAT (P3SAT)
INSTANCE: An instance of 3-SAT ¢ such that G(¢) is planar.

QUESTION: Is ¢ satisfiable?

16



the first edge connects two vertices, and each subsequent edge connects a new vertex

to a previously encountered vertex. Thus, the number of leveled edges in E; is
(fipn—t)+ (i —si+ 1)~ 1 =tipn — si.
Therefore, for 1 <1 <m —1,

tH_]_ - ti-—l lf |V'z| > 1
|Ei| = . :
t5+1 - ti—l bt 1 lf |V;| = 1

Also,
IEm| = t’m - tm—i - 1
The cardinality of E is then
Bl = > |E
=1
m—1
= ty—tpa—1—f+ Z (tip1 — tic1)
i=1

= tp—tmaa—1—f+in+tna—14
= QUm—1l—ti—f

= n—1—t;—f
< 2n—3

Thus the greatest number of edges that can be assigned to a single queue is 2n — 3.

This value can be used to obtain a lower bound on the queue number of a graph.

Corollary 3.1 QN(G) > [5%1

3.2. Recognizing 1l-queue Graphs

The 1-stack graphs are exactly the outerplanar graphs and, therefore, can be recog-

nized in linear time (Systo and Iri [SI79]). In contrast, we show that the problem of

15



It always suffices to consider only instances such that each clause contains either 2
or 3 literals. From Lemma 1 of [L82], we may assume that G(¢) has a planar embedding
such that, for each v;, all clauses containing the literal v; are on one side of the variable
cycle, and all clauses containing the literal 77 are on the other side. Call this property
of the planar embedding of G(¢) consistency. The planar embedding of Figure 3.4 is

consistent.

While LEVELED-PLANAR is as simple a recognition problem as one could formu-

late for queue layouts, we show that it is NP-complete.
Theorem 3.3 LEVELED-PLANAR is NP-complete.

Proof: We reduce P3SAT to LEVELED-PLANAR. As LEVELED-PLANAR is easily

in NP, this suffices to prove the theorem.

Let V = {v1,...,vs} and C = {e1,..., ¢} be an instance of P3SAT. Fix a planar
embedding of G(¢) that is consistent. We will construct an instance H of LEVELED-
PLANAR, which is a biconnected planar graph.

We need some building blocks. Consider the copy of K, 3 in Figure 3.5. Suppose
this copy 1s in a leveled-planar embedding. Then a; and a, are exactly two levels apart,
and by, by, and b3 are all on the level in between. Further, only two of by, by, and b,
can have any additional edges incident to them. In a leveled-planar embedding, the
leveling of any copy of K4 is forced. If b1, by, and b3 are made to correspond to a single
vertex, a path of length 2 results. In a leveled embedding, K, 3 differs from a path of
length 2 in the sense that it cannot “bend” in the middle in order to bring the ends
together; its two endpoints must appear two levels apart. We think of K 2,3 a8 a rigid
path of length 2. By joining k — 1 copies of K3 in the manner illustrated in Figure 3.6
for k = 3, rigid paths of any length % can be obtained. In general, we call a rigid path
of length k a k-rod. (A l-rod is an edge.) We draw a k-rod as a thick hollow line with
intermediate vertices as needed (Figure 3.7). Note that what appears to be a single

intermediate vertex is actually two different vertices, one on each side of the rod.

A second building block is called a semi-rod. It consists of a 3-rod and a 2-rod
connected by 2 edges. See Figure 3.8. A semi-rod has one degree of ﬂexibﬂity that a

5-rod does not have: if 2 is in level ¢ and y in level ¢ — 1, then z is either in level { — 5

18






O—6—6—6-0

Figure 3.7: Representation of a k-rod, k = 4.

Figure 3.8: A semi-rod.

20



Figure 3.5: A 2-rod.

Figure 3.6: A 3-rod.

19



Figure 3.10: Representing the variable path.

and therefore L{V[i}) = L{W]i]) — 2, 0 < ¢ < n. The intention of the construction (not
vet realized) is that all W/[i]’s appear on the same level L(W[i]) = L(W{0]). For the
time being, we use the level A = L(W]0]) as a relative reference for other £ values.

Call the property of all W[i]’s appearing on level A line up.

Because the embedding of G(¢) is planar, the variable cycle partitions the clause
set  into two subsets Cy, C, such that the clauses in ) nest and the clauses in C5
nest. We will place the clauses in C; to the left of P and the clauses in C, to the right.
(In Figure 3.4, C; = {e1,¢2} and C; = {e3,c4,¢5}. ¢2 is nested under ¢;, and ¢y is
nested under ¢s5.) A clause ¢; € Cs is associated with the 2 or 3 T'[¢]’s that correspond
to its literals. (Similarly, a clause in C} is associated with 2 or 3 S¢]’s). Because the
embedding of G(4) is consistent, each T'{i] can be associated consistently with either
v; or T (the corresponding Sfi] is associated with the complementary literal). If the
Wi]’s line up, then each T[] appears either on level A+ 1 or A — 1. If T[] is on level
A —1, then we say that T[¢] is intruded and S7] is eztruded; otherwise, T[] is extruded
and S[i] is intruded. If T{z] (or S[¢]) is intruded, we will interpret its associated literal

to be true; otherwise, its associated literal is false.

We need gadgets for each clause in C. By mirror-image symmetry in P, we consider

22



Figure 3.9: Representation of a semi-rod.

or ¢ — 3; note, however, that » must be at a lower level than y. We draw a semirod as

a 5-rod with a textured interior (Figure 3.9).

In the construction of H, some vertices will be called fized; if X is a fixed vertex,
we intend that, in any leveled-planar embedding of H, the level contaimng X is always
the same (given that a particular vertex, to be specified later, is on the first level).
The level in which X should appear is its preferred level £(X ). If we fix the two ends
of a rod, then the intermediate vertices of the rod are also fixed, with preferred levels
derived in the obvious way. During the construction we designate certain vertices X
fixed and give a value to L(X). We show later that each fixed X indeed must appear
on level £L{X).

To begin the construction, represent each variable v; by a 2-rod VRODIi] having
left and right vertices S[i] and T'[{]. Represent the edge (v;,vi41), 1 <i<n-1,bya
2-rod ERODYi] having left vertex V[i] and right vertex W[i], as shown in Figure 3.10.
Partially represent the edge (vn,v1) by a 2-rod EROD[0] connected to VROD[1] and
by a 2-rod EROD|n] connected to VROD(n] (the representation of the edge will be
completed later). Call the graph constructed so far P. P may be thought of as a path
of thickness 3 from EROD[0] to ERODIn)]. The vertices of each EROD are fixed, and
the vertices of each VROD are not fixed. Note that, in any leveled-planar embedding
containing P, the levels of T'[i] and of W5 differ by exactly one level. Further, if Wo] is
to the right of V0], then each Wz] is to the right of V[i], and vice versa. By symmetry,
we may assume that any leveled-planar embedding has each W3] to the right of V1],



Qfj,3]

A XTi1
)
. \_/
Qlj,2]
Y [il
Qfj,1]

Figure 3.11: The gadget for a 3-clause.

24



only clauses in C; and place their gadgets to the right of P. Construct the gadgets for
the clauses in €5 in any order that is consistent with the nesting of clauses, taking the
more deeply nested clauses earlier. We first assume that ¢; € Cy is a 3-clause. Let ¢;
be associated with T'i1], T[i2], T[és] in order from bottom to top. By the construction
order, the gadgets for any clauses nested inside ¢; have already been constructed. The
gadget for each ¢, € C; contains a fixed vertex U[s] that is visible on the right side
of the gadget. If no clauses nest under c¢;, then £(U [7]) = A+ 4. If there are one or
more clauses nested under ¢;, let ¢, be one that maximizes L(Us]). Put L(U[4]) =
L{U[s]) + 4. Let k = L(U[j]) — A — 2. Place a k-rod on each of Ti4], T[i2), T3]
and connect them to Q[j, 1], Q[4,2], Q[7, 3], as shown in Figure 3.11. @[, a] is intruded
(extruded) exactly when Ti,] is intruded (extruded) . X[7] and Y[j] are fixed with
LX[j]) = L(Y[5]) = A+ k. There will be U[s]’s or Wi]'s visible under X[5] (or Y'[§]).
For each, connect a rod of the appropriate length from X [7] (or Y[j]) to each U[s] or
W] For example, between X [5] and U[s], connect a (L(X[7]) — L(U[s]))-rod.

In the case that ¢; is a 2-clause, the gadget is the same. There are only two vertices
T(i1] and TT[i,] associated with c;. Connect TTia) to Q[4,1] and T[is) to Q[4,3] with
rods as before. There will be at least one fixed vertex visible under X 71, Y[7], @l4, 2]
Connect rods of appropriate lengths between one such fixed vertex and X [7], Y[7], and
Q[/,2], so that Q[7,2] is always extruded. Then ¢; 1s represented by the gadget in the
same manner as a 3-clause in which the second literal is always false. This allows us to

treat every clause as though it were a 3-clause.

Once gadgets have been constructed for each clause to the right of P, cap the
right end of H with a path around the right end. Let ¢, € Cy maximize L(U[s]).
Let £ = L(U[s]) ~ A+ 3. Place a k rod at each of W0} and W(n]; identify their
free ends. Notice that two edges, one from each rod, are also identified as the edge
(X[m+1], Z[right]). XIm+1] is a fixed vertex with L{X[m+1]) = A+E. See Figure
3.12. Some Uls]’s or W{z]’s will be visible from X[m + 1}. Connect X[m + 1] to each of
them with a rod of appropriate length. The cap around the right end may be thought
of as a dummy clause containing no literals whose purpose is to provide a rod for any
Uls]’s and W[i]’s that have yet to be connected $o a rod.

After the gadgets for the clauses to the left of P are constructed, cap the left end by

two rods from V[0] to X [0] and from V[r] to X[0] in a similar manner to the preceding

23



paragraph. This completes the construction of H. A is now fixed as 1 plus the distance
between Z[le ft] and W[0]. Clearly, the construction can be accomplished in polynomial
time, Also, H is a planar graph with a planar embedding that is essentially unique

except for some freedom in embedding the intermediate vertices in k-rods.

Every V[i], W[i], and U[j] in H has a rod connecting it to either an X[j] or a Yj].
If H has a leveled-planar embedding, then it has a leveled-planar embedding in which:
(1) Z[left] is in level 1; (2) every vertex in the capping cycle

Z[left],...,V[n],...,W[n],...,Z[right],..,,W[O],...,V[O],...,Z[left]

is in its preferred level; (3) W(n] is above W[0] in level A. Because the capping cycle
has only one leveled-planar embedding satisfying these constraints, all other vertices
are forced to be inside the capping cycle. In such an embedding, we want each fixed
vertex to be in its preferred level. We show that this must be the case in the following
two claims. In Claim 1, we assume that, for a particular clause ¢; € Cs, U[f] is in level
t, X[j] and Y[j] are in level ¢ — 2, the rod connected to Ulj] goes right, and the rods "

connected to Q[f, l]ax[j]rQ[j>2]1YU]$QUa 3] go left.

Claim 1. The gadget for ¢; has such a leveled-planar embedding if and only if at
least one of Qfi, 1], Q[i, 2], @i, 3] is intruded.

Proof: If Q[f,2] is intruded, Figure 3.13 shows such an embedding. If @7, 3] (or,
by symmetry, Q[7,1]) is intruded, Figure 3.14 shows such an embedding. From these
figures, it is clear that there is no leveled-planar embedding if all three vertices Ql7, 1],
Q{7,2], and Q[4, 3] are intruded. 0

Claim 2. If H has a leveled-planar embedding such that each vertex in the capped

cycle is in its preferred level, then each fixed vertex of X is in its preferred level.

Proof: Suppose there is a fixed vertex not in its preferred level. If there is such a
vertex in an FROD, choose i smallest where ERODIi] contains such a vertex. By left-
right symmetry, it suffices to consider the case that Wi is in a level ¢+ > A. Because
¢ is minimum, + = A 4+ 2. W] is connected by a rod to either an X[j] or a Y.
Without loss of generality, suppose the rod is to Y[j]. The rod forces Y] to be in level
LY [7]) + 2 = L(U[]). We claim that U[5] is in a level higher than L£(U[;]).

26



D[n+1]

Z[lert] ZIright]

D[0]

Figure 3.12: Capping the left and right ends.

25



Q[j,3]

=XIil

Uil

Qlj,2]

AYIi]

Qfj,1]

Figure 3.13: Q[4, 2] intruded.



Figure 3.14: Q[j, 3] intruded.

28



Suppose U[j] is in level £(T7[5]). The semi-rod to Ql[4,1] forces Q[7,1] to be in level
L(U[5]) — 1. The rods of Y[j] and Qly, 1] force Q[7,1] to be below Y;]. Therefore, it
is not possible to embed the path from Q[f,1] to Uyl

We conclude that U[j] is in level > L(U [7]) + 2. The above argument repeats with
the rod from U[j] connecting to some X[;'] or Y[y'], shifting U[j'] to a level higher
than L£(U[j]). Repetition of the argument ends at X [m + 1] which must be in level
L{X[m + 1]), not higher, This contradiction proves that each W] is in A.

A similar argument shows that any fixed vertex that is not a Wi] must also be in

its preferred level. o

We need to show that ¢ is satisfiable if and only if H has a leveled-planar embedding,.

Suppose ¢ is satisfiable. Choose a satisfying assignment for ¢. Embed P first. Place
all fixed vertices of P on their assigned levels. If v, is true, let whichever of S[i] and
T[4] corresponds to the literal v; be intruded. If v; is false, let whichever of S[i] and
T'[¢] corresponds to the literal 7; be intruded. Then each u[7] has at least one intruded

@[¢, 7] and can be level embedded by Claim 1. Thus H has a leveled-planar embedding,

Now suppose H has a leveled-planar embedding. By Claim 2, we may assume that
each fixed vertex F is on level L(F). Let Z [:] be whichever of S[i] and T:] corresponds
to the literal »;. If Z[7] is intruded, assign v; the value true; otherwise, assign v; the
value false. By Claim 1, every U[] has an intruded @[z, j]. Therefore, each clause ¢;
contains a literal that is true under this assignment. This truth assignment satisfies ¢,
that is, ¢ is satisfiable.

Thus P3SAT reduces to LEVELED-PLANAR. As P3SAT is NP-complete, we con-
clude that LEVELED-PLANAR is N P-complete. 0

It appears that the graph H is arched leveled-planar if and only if it is leveled-
planar. To be certain of this, we modify the construction slightly by adding an arched
cap on the left and right ends of H. The cap on the right end is shown in Figure
3.15. The rightmost edge of the right cap and the leftmost edge of the left cap must
be arches, and no other edges may be arches. With this change to H , H is an arched

29



Figure 3.15: An arched cap.

30



leveled-planar graph if and only if ¢ is satisfiable. This proves the following corollary.

Corollary 3.2 ARCHED LEVELED-PLANAR is NP-complete.

3.3. Comparing Queues and Stacks

A graph G = (V, E) is subkamiltontan if it is a subgraph of a planar graph that has a

hamiltonian cycle. [BK79] provides a characterization of 2-stack graphs.

Proposition 3.2 4 graph G has a 2-stack layout if and only if G is subhamilionian.
We can bound the stack number of a 1-queue graph.

Theorenﬁ 3.4 Every 1-queue graph is a 2-stack graph.

Proof: Let ¢ = (V, E) be a 1-queue graph having n > 3 vertices. By Lemma 3.3, G
has an arched leveled-planar embedding with some leveling of V, say V4,..., V... By

Proposition 3.2, it suffices to show that G is subhamiltonian.

Because the stacknumber of a graph equals the maximum stacknumber of any of
its biconnected components [CLR87], we may assume that G is biconnected, so, in
particular, none of the levels V3,...,V,,_; is a singleton. We may also assume that
G is a maximal arched leveled-planar graph. For each level 4, add the vertical edges
(p,p+1), b < p < t; — 1, that is, the edges that go along the line £;, connecting
consecutive vertices of Vi. Let the resulting graph be G' = (V, E'). Clearly G is

planar; we claim that it is hamiltonian.

Note that when [V;| > 2, the vertical edges on level i together with the arch (b;,t;)
form a cycle on V;. Call these edges the level-i cycle edges. These cycles on levels are
nested in the planar embedding. Our strategy is to connect each pair of consecutive

cycles by two leveled edges to obtain a hamiltonian cycle for GY.

By an induction on m — 1 > 1, we show that there is a particular kind of spanning
cycle for levels Vi, Viyq,..., V. The inductive hypothesis is that there is a cycle C

spanning levels Vi, ...,V such that all but one of the level-; cycle edges are in ' if

31



|V;| = 2, then C contains the edge (b;,t;) (which is considered to be both a vertical

edge and an arch).

For the base case i = m — 1, there are three subcases. First, if |V, =1, then let C
be the spanning cycle

matiybiabi_ 1:"-:ti—1:m;

all level-i cycle edges are present except (t; — 1,%:). Second, if [Vim| > 1 and |[Vi] = 1,
then i = 1 (because of our assumption that G is biconnected) and G’ is obviously
hamiltonian. Third, if [Vix] > 1 and |Vi| > 1, then choose four vertices p,p+ 1,4,9 +1
such that p,p+1 € Vi, ¢,g+1 € Vi, and (p, 9), (p+1,9+1) € E. Because G is maximal
and |Vj| > 1, |Vis| > 1, this choice is always possible. Let C be the spanning cycle

Pyt by DGy byt ,...,q+Lp+ 1

All level-: cycle edges except (p,p+1) are in the spanning cycle; if |V;| = 2, then p = b;,
p+1=¢t;,and (p,p+1)isin C.

For purposes of induction, assume there is a spanning cycle C satisfying the induc-
tive hypothesis for Vist. s Vin- We extend the spanning cycle to a spanning cycle C’
for Viy..., Vi i =1and |Vi| = 1, then choose some level-2 vertical edge (p,p + 1)
that is in C. Construct ¢ from C by deleting (p, p+1) and adding (1,p) and (1,p+1).

A hamiltonian cycle for G’ results.

Otherwise, |Vi| > 1. Let (z,y), < y, be the level-(i 4 1) vertical edge (if any)
that is not in C. We wish to choose four vertices p,p+ 1,¢,¢ + 1 with the properties
p,p+1€Vig,q+1€ Vi, and (p,g), (p+1,¢+1) € E. If such a choice is possible so
that (¢,q + 1) # (2,y), then C can be extended to ¢’ by removing edge (¢, ¢ -+ 1) and
adding the path

¢ Py b tip+ 1+ 1L

All level-i cycle edges except (p, p+1) are in the spamning cycle; if 1V;| = 2, then p = b;,
p+1=t;and (p,p+1)isin C.
Suppose the only choices for the four vertices forces (q,q+1) = (z,y). (This implies

that either z or y is the only level-(i +1) vertex that is adjacent to more than one level-t

vertex. Thus, either z = by or y =ti4q. 2z = biy1, then every level-(z + 1) vertex is

32

S 1P I



adjacent to t;. If y = ¢,,1, then every level-(: + 1) vertex is adjacent to b,.) Fix one such
choice. Because G is maximal, either (p,g+ 1) € E or (p+ 1,q) € E. First suppose
(p +1,9) € E. Because the choice of ¢ and ¢ + 1 was forced, we can conclude that
¢ = biy1 and p+ 1 = ¢;. Further, the edges (j,¢), s < j <p+1=t;and (p+1,5),
biy1 = ¢ < 7 < tiyq are all the leveled edges between V; and Vi, (biy1,%i44) is an edge
in C. Replace it with the path

bz‘+1,p, ey b,;, tz', t5+1,
yielding €. The result is a spanning cycle for V;,...,V,, satisfying the inductive hy-
pothesis.
Now suppose (p,g+1) € E. We can conclude that ¢+ 1 = ¢;,, and p = s;. Further,
the edges (f,¢+ 1), s=p < j <t;and (p,7), bix1 < J < ¢+ 1 =t;; are all the level
edges between V; and Viyy. (biy1,%;41) is an edge in C. Replace it with the path

bi+1; Siyenny b‘ia t‘ia tt’-{-l?

yielding C’. The result is a spanning cycle for V;, ..., V,, satisfying the inductive hy-
pothesis.

By induction, G’ has a hamiltonian cycle. The theorem follows. O

This result is best possible in the sense that there are 1-queue graphs that require
2-stacks. For example, the complete bipartite graph K3 is a leveled-planar, hence
1-queue, graph, but is not outerplanar, hence not a 1-stack graph. Similarly, 1-stack

graphs need not be 1-queue graphs, but they never need more than two queues.
Theorem 3.5 Any I-stack graph is a 2-queue graph.

Proof: Let G = (V,E) be a l-stack graph having n > 3 vertices. Then G is out-
erplanar. We may assume that G iz a maximal outerplanar graph. Then G has a
unique outerplanar embedding such that all its vertices are on the exterior face, and

the boundary of that face is the unique hamiltonian cycle C' for G.

Level V as follows. Choose any 1 € V. For each v € V, let §(v) be the length of a
shortest path from 1 to v. Let m =1 + max,ey §(v). For 1 <7 < m, define

Vi={veV|éw)=i—1}.

33



Then, V4,...,V,, is a partition of V. In each V;, order the vertices b;,...,%; as they
are encountered in a counterclockwise traversal of C, beginning at 1. Ordering V' level
by level, we obtain a linear order ¢ = 1,2,...,n for V. We need to show that o

accommodates an assignment of & to 2 queues.

Let E, C E be the edges between consecutive levels. We claim that no two edges
in E, nest with respect to . Suppose (ps,¢2) € By, P2 < ¢o, nests inside (p1,91) € Es,
p1 < ¢ Then 8(p;) < 8(p;) and &(gz) < 8(q1)- Since §(q1) = &(p1) + 1 and 6(q2) =
5(p2) -+ 1, we must have 6(p;) = 6(p2) and 6(g1) = 6(qz). Then the vertices occur in the

counterclockwise order

1,?1,?2, g2, d1-

But then

a contradiction.

Each edge in E — E; is incident on two vertices in the same level. Clearly, for two
edges in E — E; to nest, they must be in the same level. Suppose there are two edges
(p1,q1), (p2,q2) € E — E; that nest so that p1,p2, 01,42 € V; and p; < py < ¢2 < ¢1. But

then the counterclockwise order of the vertices is

1,p1,P2, 92, 01-

Since §(p1) = 6(q1) = 1, it is not possible that &(p2) = §(q2) = 1, a contradiction.
Therefore, no two edges of E — E; nest.

We conclude that all the edges in E; can be assigned to one queue and all edges in

E — E, to a second queue. This produces a 2-queue layout for G, as required. O

This result is also best possible in the sense that there are 1-stack graphs that require

2-queues. We will demonstrate this fact in Corollary 4.1.

From the results of Theorems 3.4 and 3.5, one might hope for a result like the

following:

Any k-queue (k-stack) graph is a 2k-stack (2k-queue).

34



However, in both theorems, the transformation from a queue (stack) layout to a stack
(queue) layout transforms the vertex order in a way that depends on the original queue
(stack). But for a general multi-queue (multi-stack) layout, the order transformations
will be different for each queue (stack) and hence not consistent for all queues (stacks).

In fact, we conjecture

Conjecture The QN/SN ratio of graphs is not bounded by any constant.
The SN/QN ratio of graphs is not bounded by any constant.

In harmony with the fact that planar graphs can be laid out in a bounded number of

stacks (Yannakakis [Y89]), we conjecture

Conjecture Planar graphs can be laid out in a bounded number of queues.

4. Layouts for Specific Graphs

In this section, we present queue layouts for a variety of specific families of graphs. The
intuition that an easily-leveled graph has a good queue layout is illustrated by most of

these families. Some details are left to the reader.

4.1. Trees and Meshes

We begin with trees and meshes, two naturally leveled families of graphs.
Proposition 4.1 A free is a leveled-planar, hence 1-queue, graph.

Proof: Choose a root for the tree. Lay the tree out breadth-first from the root. The

result is a l-queue layout of the tree. a

An m X n mesh is a graph with vertices
{oill<i<m,1<5 <n}
and edges

{(visovi500) |1 <5 Sn =1 U {(vij, i) |1 S <m — 1},

35



Proposition 4.2 An m X n mesh is a leveled-planar, hence 1-queue, graph. There is
¢ 1-queue layout QL of the mesh having quevewidth QW(QL) < min{m,n}.

Proof: An m X n mesh has a natural embedding in the plane with vertices in m rows
and n columns. If this embedding is rotated 45°, vertices line up on m + n — 1 vertical

lines. The result is a leveled-planar embedding with the stated queuewidth. O

For m > 2,n > 2, an m X n mesh is not an outerplanar graph and, in fact, has
stacknumber 2 ([CLR87]). Such a mesh provides another example of a I-queue graph
that fails to be a 1-stack graph.

4.2. Unicyclic Graphs

A unicyclic graph is an undirected graph in which each connected component contains
at most one cycle. The family of unicyclic graphs includes trees, forests, and cycles of
all lengths.

Proposition 4.3 A unicyclic graph is an arched leveled-planar, hence 1-queue, graph.

Each connected component contributes at most one arch.

Proof: Let G = (V, E) be a unicyclic graph. We may assume that G is connected. By

Proposition 4.1, we need only treat the case that G contains a cycle. Let
C = uq,Ugy..., U, Uy
be that cycle. If & is even, level C into % + 1 levels
Uy ={u1},Us = {ua,ur},. .., Ui = {s, up—is2},.- ., U,§+1 = {u%H};
a leveled-planar embedding of C results. If % is odd, level C' into & Jevels
Uy = {ug,ug b, Ua = {ug,up—1}, .. Ui = {ui, tpip by - - U%-_l = {u%i},

an arched leveled-planar embedding of C results with the single arch {(uy,uz).

36



Let G be G without the edges of C. G contains one connected component for each
u;. The connected component containing u; is a tree that we root at u;. Proceeding
as in Proposition 4.1, we obtain a leveled-planar embedding for the tree that begins at

the level of u;. An arched leveled-planar embedding for G results. O

4.3. X-Trees

The depth-d complete binary tree CBT(d) has vertex set {1,2,...,2%1 — 1} and edge
set

{(a,2a), (e, 20+ |1 <a <241},

The root of CBT(d) is 1, and CBT(d) has d + 1 levels in the leveling starting at the
root. The depth-d X-tree X(d) is the supergraph of CBT(d) that has edges added
across each of the levels from left to right. See Figure 4.1.

Every X(d) is a 2-stack graph; when d < 2, X(d) is a 1-stack graph ([CLR8T7}). In

contrast, even small X-trees require two queues.

Proposition 4.4 For d > 1, X(d) admits ¢ 2-queve luyout with quevewidths 27 and
1. For d > 2, X(d) is not ¢ I-queue graph.

Proof: For the upper bound, choose the order o = 1,2,...,2%"? — 1. The edges of
CBT(d) are assigned to one queue and the edges across the levels are assigned to a

second queue.

For the lower bound, since X(2) is a subgraph of X(d), d > 2, it suffices to show
that X(2) is not a 1-queue graph.

We exploit an alternate means of constructing X(2). Given any graph G and any
edge (z,y) in G, define the operation of hatting (z,y) as adding a new vertex (the peak)
z and new edges (z,2) and (y, z). Start with a cycle of length 4

C = uq,uq, Us, Uy, U1
Choose any three of the four edges of C. Hat each of the chosen edges. The resulting

graph is isomorphic to X(2).

37



Figure 4.1: X-tree X(3).

38



To obtain a contradiction, suppose that X (2) has a 1-queue layout. Let ¢ be the
order of the vertices. Without loss of generality, assume that wu; is the leftmost vertex
of C'in 0. Neither u; nor u4 can be the rightmost vertex of C in o, for then two edges
of € would nest. By symmetry we may assume that the order of the vertices of C in
o 18 Uy, Uy, Uy, uz. Three of the four edges of C must be hatted. In particular, either u,
or uz has both of its incident edges hatted. By symmetry, we may assume that (uy,u4)
and (uy,u) are hatted. Let w be the peak of (ty, tg).

There are 5 possible placements of w within the order U1, Uz, Ug, ¥3. Only placement
of w between u; and u, fails to yield two nested edges. But, with w between u; and
Uz, there is no placement of the peak of (u1,u;) that does not vield two nested edges.

This is a contradiction to o giving a 1-queue layout of X (2). 0

Since X (2) is outerplanar, we have the following corollary, which completes a comment

made in section 3.3.

Corollary 4.1 X(2) is a 1-stack graph that is not o 1-queue graph.

4.4. DeBruijn Graphs
The order-2* deBruijn graph DB(d) has vertex set {0,1,...,2¢ — 1} and edges
(2,22 (mod 2%))(z,2z +1 (mod 2.

See Figure 4.2. Note that multiple edges and loops are discarded.
Proposition 4.5 DB(d) admits a 2-queue layout with quenecwidths 2971,

Proof: The edges of DB(d) of the forms (z,22) and (7,224 1), 2 € {1,2...,2¢1 _ 1},
are the edges of a depth-(d — 1) complete binary tree with root 1 and containing all
vertices except 0. Similarly, the edges of the forms (297t + 2, 22) and (21 2,22 + 1),
z € {0,1...,2% 1 — 2}, are the edges of a depth-(d — 1} complete binary tree with root
29-1_2 and containing all vertices except 2471 —1. Choose the order o = 0,1,...,29-1.

Assign edges of the forms (z,2z) and (2,22 + 1) to one queue and edges of the forms

39



Figure 4.2: The deBruijn graph DB(3).

(291 + 2,22) and (297 + 2,22 + 1) to a second queue. (When edges are assigned to
both queues, break ties arbitrarily.) O

Proposition 4.6 DB(d), d > 4, does not admit a 1-queue layout. DB(3) does admits

a 1-queue layout.

Proof: DB(d), d > 4, is not planar, hence not a l-queue graph. The order ¢ =
1,0,2,3,4,5,7,6 yields a 1-queue layout of DB(3). m

4.5. FFT and Benes Networks

We now consider two related families of graphs that have importance as computational
networks. The FFT network represents the computational structure of the Fast Fourier
Transform algorithm. The Benes rearrangeable permutation network is a switching

network capable of realizing at its n outputs any permutation of its n inputs (Benes

[B64]).

The n-input Benes network B(n), n a power of 2, is defined inductively as follows.

- 40



1. B(2) is the complete bipartite graph /&,, on the two input vertices I[1, 1] and
I[1,2] and the two output vertices O[1,1] and O[1, 2.

2. B(n) is obtained from two copies of B(n/2) together with n new input vertices
I[n,1},In,2],...,IIn,n] and n new output vertices O[n,1],0[n,2],...,0[n,n]. In the
second copy of B(n/2), each vertex I[k,1] is relabeled I[k,i + n/ 2], and each vertex
O[k, ] is relabeled Ok, + n/2); all vertices then have distinet labels. For 1 <1< nm,
add edges to create a copy of K,; on vertices I[n,i] and I [n,i + n/2] and vertices
I[n/2,:] and I[n/2,i +n/2]; also, add edges to create a copy of K, 5 on vertices O[n, 1]
and Ofn,i + n/2] and vertices O[n/2,i] and O[n/2,i + n/2].

As shown in Figure 4.3, the Benes network has a natural level structure with 2 logn
levels. The n-input FFT network is the graph consisting of the first n + 1 levels of
B(n).

As the Benes and FFT networks are not planar, the queuenumber of each is at least
2. The level structure (of either network) provides a straightforward 3-queue layout:
order the vertices level by level, going up each Jevel; one queue for the “across” edges,
one queue for the “upward” edges, and one queue for the “downward” edges suffices.

A more complicated 2-queue layout of B(n) is due to Reibman [Re84].

Proposition 4.7 The Benes network B(n) admits o 2-queue layout with each queue
of width n. The layout is optimal in quenenumber and within a factor of 2 of optimal

i queuewidth.

Proof: The layout of B(n) follows its inductive definition. The inductive hypothesis
is that B(n) has a 2-queue layout which respects the leveling of B(n); that is, all level
© vertices appear before any level ¢ + 1 vertices, though no restriction is placed on the

relative order of vertices within each level.

1. The vertex order for B(2) is I[1,1], I[1,2], O[1,1], O][1,2]. The two edges incident
to I[1,1] are assigned to one queue and the two edges incident to I[1,2] are assigned

to the second queue. The layout satisfies the inductive hypothesis.

2. We assume that B(n/2) has a 2-queue layout satisfying the inductive hypothesis.
Let By and B, be two copies of B(n/2). Lay each out in the 2-queue order that is
guaranteed by the induction. Merge the two layouts level by level so that the level ¢

41






vertices of B, always appear immediately to the right of the level i vertices of By In
particular, ITk, i + n/2), respectively, Ofk, 14 n/2), is always n/2 vertices to the right
of I[k, 1], respectively, of O[k,7]. Because the leveling of B (n) is honored in the layout,
each level-; edge of By crosses every level-j edge of By, so no nesting results from the
merging; hence, a 2-queue layout of B, and B, results. Add n new input vertices to
the left and n new output vertices to the right of the entire layout. View the n new
inputs as consisting of n /2 consecutive pairs of vertices. Add edges from the first pair
to the first vertices of By and B, to form 2 copy of Ky, In general, add edges from
the ith pair to the ith vertices of B, and B,. Assign the added edges incident to By
to the first queue and the added edges incident to B, to the second. Similarly, connect

the n new outputs to the last vertices of By and B,. The result is a 2-queue layout of
B(n). 0

Because the FFT network is & subgraph of the Benes network, it also has a 2-queue
layout. This compares favorably with the stacknumber optimal 3-stack layouts of the
Benes and FFT networks in Games [G87]. The natural leveling of these networks is a
definite advantage in constructing queue layouts that are good, at least in the sense of

queuenumber.

4.6. Hypercube

The d-dimensional hypercube H (d) has vertex set {0, 1}* and edges connecting every
pair of vertices that differ in cxactly one bit position. The hypercube admits a, very

regular layout strategy.

Proposition 4.8 For d > 2, H(d) admits a (d — 1)-queue layout with quewewidths
291 2d=2 923

Proof: We lay out H (d) inductively. The order o — 00,01,10,11 gives a 1-queue

layout of H(2) with queuewidth 3. To obtain a layout for & (d), d > 2, mductively lay

out two adjacent copies of H(d— 1), similarly ordered. The two copies of H (d—1) use

d — 2 queues with queuewidths

2972 99-3 | 923

43



The 2% edges to connect one copy of H{d — 1) to the other requires one additional
queue of width 291, |

The queuenumber of the preceding layout is optimal to within a constant factor.
Proposition 4.9 QN(H(d)) = Q(d).
Proof: H(d) has d2¢-1 edges. By Corollary 3.1,

W@ 2 | =] = o)

4.7. Complete Graphs

The complete graph I, has a vertex set of size n and an edge connecting every pair of

vertices.
Proposition 4.10 QN(K,) = [n/2].

Proof: Every vertex order for K, is symmetric, so fix any order g = 1,2,...,n. The
maximum size of a set of nesting edges is exactly [7/2]. By Proposition 2.1 and
Theorem 2.1, the result follows. a

An explicit assignment of edges of K, to queues is easily described. In the fixed order
7, every edge (i, j) has length |i — jl- There are edges of every length from 1 to n — 1.
Assign all edges of length 27 — 1,21, 1 < 4 < In/2], to queue ¢;. No two edges having
the same length or having lengths differing by 1 can nest.

4.8. Complete Bipartite Graphs

The complete bipartite graph K,, , has vertex set

{011,612,. . .,am} U {bh bg,. .. ybn}

44



and edge set
{(@asb)]1<i<m,1<j <n)

Proposition 4.11 QN(K,, ) = min([m/2], [n/2]).
Proof: Without loss of generality, assume that m < n. We need to show QN (Kmn) =
[m/2].
Upper Bound. Choose the layout order
g =a,qs,... 5 G,’m/z'l, bla vy bn; arm/21+1, ey Gy

Assign edge (a;,b;), 1 < ¢ < [m/2] to queue ¢, Assign edge (@rmpa4i05), 1 < 4 <
[m/2] to queue g¢;. Clearly, no two edges in dqueue g; nest, so [m/2] queues suffice, as

required.

Lower Bound. Let ¢ be an order of the vertices in a QN (K )-queue layout. By

symmetry, we may assume that the a;’s appear in the order a1,82,...,0, in o and that

the b,’s appear in the order basbnot1y..., by in 0. Because We may reverse ¢ and still

have a QN (K nn)-quene layout, we may assume that drm/s appears after Glmsa] I 0.
Then the set of edges

{(ai,5:) |1 <4 < [m/2]}
nest. By Proposition 2.1, QN(Kp,n) > [m/2]. 0

This straightforward determination of QN(K,,,,) contrasts with the status of SN( K, ,)
as reported in [MWWS8S). Even after much effort, the exact stacknumber of K, ., or
even of K, ., has not been determined, though Muder, Weaver and West have obtained

nontrivial bounds.

3. Queuenumber and Graph Structure

We now explore some structural properties of graphs that provide bounds Ol gueuenum-
ber. For the valence of a graph, we give some probabilistic worst-case results for queue
layouts that are similar to those for stack layouts. Other significant properties that we

have identified include bandwidth, bifurcator size, and cutwidth.

45



5.1. Valence

The valence of G is the maximum degree of a vertex of G. @ is regular if all vertices of
( have the same degree. The observation that twists are obstacles for stack layouts has
heen exploited to obtain upper and lower bounds on stack number for d-valent graphs
([CLR87,M88]). The proofs dualize to queue layouts with rainbows playing the role of

twists.

The first theorem contains probabilistic upper bound on the queuenumber of a

graph of bounded valence.

Theorem 5.1 Let G be an n vertez graph of valence d > 3. Then, G has an F(d, n)-

queve layout, where

F(d,n) = min (n/?, O (dnlfz)) .

Proof: Use the same argument as Theorem 4.7 of [CLR87], except replace permu-
tations having long Increasing sequences (large twists) by permutations having long

decreasing sequences (large rainbows). O

The next theorem contains a probabilistic lower bound on the queuenumber of a graph
of bounded valence that leaves a significant gap with the upper bound of Theorem
5.1. In particular, there are bounded-valence graphs of arbitrarily large queuenumber,

though we do not know an example of a sequence of such graphs.
Theorem 5.2 Most regular d-valent graphs on n vertices have queue number

Q2 (\/c—ln%"é) .

Proof: Use the same argument as Theorem 6.1 of [M88], except replace completely
crossing (twist) with completely nested (rainbow). o

46



Figure 5.1: Maximal bandwidth-B graph M(3,8).

5.2. Bandwidth

Let 0 =1,2,...,n be any order of the vertices of . The bandwidth of & is the length
of the longest edge; that is,

BW(7) = mox i — jl.

The bandwidth of (7 is the minimum bandwidth of any o; that is,
BW(G) = m&in BW(o).

Assume that n > B+ 1. The mazimal bandwidth-B graph on n vertices M(B,n) has
vertex set {1,2,...,n} and edge set that forms a complete graph on each subset of

vertices
{i,i-{-l,...,z’-{-B}, 1<i:<n-B,

See Figure 5.1.

The following lemma establishes a relationship between bandwidth and queuenum-

ber.
Lemma 5.1 QN(M(B, n)) = [B/2].
Proof:

47



Upper Bound. Choose the order o = 1,2,....n for the vertices of M(B,n).
There are edges of every length from 1 to B. Assign all edges of length 27 — 1,2;,
1 <4 < [B/2], to queue %- No two edges having the same length or having lengths
differing by 1 can nest. A [B/2]-queue layout of M (B, n) results.

Lower Bound. A (B,n) contains complete graphs on B + 1 vertices. By Propo-
sition 4.10, Bt B

WN(B,m) > | =2 < [2].

O

Since every bandwidth B graph is a subgraph of some Af (B,n), Lemma 5.1 immed;-
ately yields

Theorem 5.3 If BW(G@) = B, then QN(@) < [B/2].

5.3. Bifurcator Size

two subgraphs of approximately equal size. That measure is the notion of bifurcator in
Bhatt and Leighton [BL85]. An n-vertex graph G has an a-bifurcator of size F', e > 1,
F a function of n, if G has a (F, a)-decomposition tree defined recursively as follows.
G is the root of the tree. If @ 1s empty or has fewer than F(n) edges, then ¢ has no
children. Otherwise, the children of @ are two equal-size graphs that partition G such
that the number of edges between them is at most F(n); each of these graphs is the
root of a (F(r) /e, a)-decomposition tree. V2-bifurcators are important in obtaining
good VLSI layouts ([BL83)).

For our purposes, we can use a v/2-bifurcator of a graph to produce g queue layout.
Theorem 5.4 If G has o V2-bifurcator of size F(n), then
QN(G) = O (n/log(n/F(n))).

Proof: [BL85] shows that a graph having a /2-bifurcator of size F' has bandwidth
O (n/log(n/F(n))). By Theorem 5.3, the result follows. ]

48



5.4. Cutwidth and Valence

Let 0 =1,2,...,n be a fixed order of the vertices of G. Intuitively, the cutwidth of o
is the maximum number of edges cut by any line perpendicular to o, Formally, define
the cut at vertez s, 1 < <n-—1, to be

CUTE) ={(hB)[1<j<i<k <n).

The cutwidth of o is
CW(o) = max [CUT(2)].

We develop a tradeoff between the queuenumber and the stacknumber of & using
the following result due to Erdés and Szekeres [ES35].

Proposition 5.1 Suppose P is the sequence w(1),. .. (1) where 7 is some permuta-
tion of 1,...,n. Let a be the length of the longest ascending subsequence in P and let
d be the length of the longest descending subsequence in P, Then ad > n.

The tradeoff is based on finding an interesting matching in the graph.

Theorem 5.5 Let o = L,2,....,n be a fized order of the vertices of G. Then

SN(o) x QN(o) > CW(o)/valence(G).

Proof: Choose i, 1 <i < pn — 1, such that [CUT(:)| = CW(o). CUT(:) is the edge
set of a bipartite graph H with valence(H) < valence(G). Select a maximum matching
M C CUT(:) in H. The size of M is at least CW(o)/valence().

The left vertices of M give an order to the edges in M. The right vertices give some
permutation 7 of that order. Let ¢ and d be as required for Proposition 5.1. Then o
gives the length of 4 longest similarly ordered sequence between left and right vertices
of M. Therefore M contains an a-twist. By Proposition 2.2, SN(o) > a. Similarly, M
contains a d-rainbow. By Proposition 2.1, QN(o) > d. Finally,

SN(o) x QN(¢) > ad > [M] > CW(o)/valence(G).

49



The factor valence(G) is necessary. Consider the star graph G with vertex set
11,2,...,n} and edge set {(1,i)[2 < i < n}. If o = 1,2,...,n, then SN(e) = 1,
QN(o) =1, CW(o)=n — 1, and valence(G) = n — 1,

6. Queuewidth and Graph Structure

In this section, the queuewidth of a I-queue layout is related to the diameter of
the graph. We provide evidence of an apparent tradeoff between queuenumber and

queuewidth for queue layouts of complete binary trees.

The diameter of a connected graph is the greatest distance between two vertices in
the graph. The next theorem suggests a tradeoff between diameter and queuewidth for

I-queue graphs.

Theorem 6.1 Suppose G is-a connected I-queue graph having diameter D, Let QL be
@ I-queue layout of G. Then,

QW(QL) > |B|/(2D +1).

Proof: By Theorem 3.1, layout QL yields an arched level planar embedding of @
having levels Vi, Va,..., V. Consider the following 2m — 1 cuts of QL

CUT(#: - 1), CUT(h),..., CUT(#; — 1), CUT(:),..., CUT(t,, — 1).

Every edge either has some t; as a right endpoint or passes over some t;. Thus, every
edge is in at least one of these cuts. By the definition of diameter, m < D 4+ 1. There
are at most 2D + 1 cuts. The result follows. 0

For a depth-d complete binary tree 7, there are 5 — 2¢ leaves, Vi =2n-1,
[El=2n~2and D=2 = 2logn. We have this corollary.

Corollary 6.1 Any 1-queue layout of a depth-d complete binary tree has quevewidth
at least (2n — 2)/(4d + 1) = Q(n/log n).

50



The breadth-first layout of T starting at the root has queuewlidth n. The lower bound
on queuewidth in the corollary is close to this upper bound. We do not know how to
achieve this lower bound and doing so appears difficult. These bounds are much larger
than the O(logn) stackwidth of a 1-stack layout of T' ([CLR87]). The higher width
of queue layouts over stack layouts suggests that stack layouts of trees are preferable
to queue layouts. The question arises whether a lower cumulative queuewidth can
be achieved by using additional queues. The following theorem answers the question

affirmatively.

Theorem 6.2 A depth-d complete binary tree T with n = 9¢ leaves has a k-queue
layout QL with CQW(QL) = O(knt/¥),

Proof: We give the proof for & = 2. To simplify the construction, we assume that
d = 2d' is even. Let n/ = 9d' — vn. Let T, be the upper d’ + 1 levels of T, and let
1,2,...,n' be the leaves of T, in canonical order. Each i is the root of a subtree 7T} of
depth . Order the vertices of T, in the obvious breadth-first order so that 1...,n
appear rightmost in the order. For cach 4,1 < i < pn!, place the vertices of T; in
breadth-first order immediately to the right of its root ;. Assign the edges of T, to one
queue and the edges of 11, Ts,...,Ty to a second queue. Fach queue has queuewidth
n’ = +/n. The cumulative queuewidth of the 2-queue layout is 25/ — O(2n1/?),

The details of the proof for k > 2 are left to the reader. ad

We have no lower bounds on cumulative queuewidth for multi-queue embeddings of
T. Thus we do not know whether there is a rea] tradeoff between queuenumber and
queuewidth here.

7. Future Directions

We have offered two conjectures in Section 3.3. We believe there is hope of resolving
the second conjecture, that the queuenumber of planar graphs is bounded, Further
comparison of the relative merits of queues and stacks is warranted. In particular,

queues appear to be more appropriate than stacks for graphs with a leveled structure;

51



can this insight be formalized? . [CLR87] and [He87] show that there are tradeoffs
between stacknumber and stackwidth in the sense that, for certain graphs, devoting
more stacks to a layout decreases the cumulative stackwidth. We expect that there are

analogous tradeoffs between queuenumber and queuewidth.

Acknowledgements

Part of this research was conducted while the first author was at the University of North
Carolina at Chapel Hill. A portion of the work of the second author was done during
a visit to the Department of Applied Mathematics and Informatics of the University

of Saarbrucken.

We wish to thank Sandeep Bhatt, Fan Chung, Tom Leighton, and Andrew Reibman
for helpful conversations. We also acknowledge the support of the National Science
Foundation Grants DCI-87-96236 and CCR-88-12567.

References

[B64] V. E. Benes, “Optimal rearrangeable multistage connecting networks,”
Bell System Technical Journal, Vol. 43, 1964, pp. 1641-1656.

[BK79] F. Bernhart and B. Kainen, “The book thickness of a graph,” Journal
of Combinatorial Theory B, vol. 27, 1979, pp. 320-331.

[BL85] S. Bhatt and F. T. Leighton, “A framework for solving VLSI graph
layout problems.,” Journal of Computer and System Sciences, vol. 28,
1984, pp. 300-343.

o2



[BS84]

[CLRS7]

[ES35]

[BI71]

[GKS89)

[G87]

[GI79]

[GIMPS0]

(He84]

[He85]

J. Buss and P. Shor, “On the pagenumber of planar graphs,” Pro-
ceedings of the 16th ACM Symposium on Theory of Computing, pp.
98-100.

F. R. K. Chung, F. T, Leighton and A. L. Rosenberg, “Embedding
graphs in books: a layout problem with applications to VISI design,”
SIAM Journal on Algebraic and Discrete Methods, vol. 8, 1987, pp.
33-58.

P. Erdés and E. Szekeres, “A combinatorial problem in geometry,”
Compositio Math., vol. 2, 1935, pp. 463-470.

S. Even and A. Itai, “Queues, stacks and graphs,” In Theory of Ma-
chines and Computations (Z. Kohavi and A. Pagz eds.}) Academic
Press, NY, 1971, pp. 71-86.

Z. Galil, R. Kannan, and E. Szemerédi, “On nontrivial separators for
k-page graphs and simulations by nondeterministic one-tape Turing
machines,” Journal of Computer and System Seiences, Vol. 38, 1989,
pp. 134-149,

R. Games, “Optimal hook embeddings of the FFT, Benes, and barrel
shifter networks,” Algorithmica, Vo, 1, 1986, pp. 233-250.

M. R. Garey and D. S. Johnson, Computers and Intractability. W. H.
Freeman and Company, New York, 1979.

M. R. Garey, D. S. Johnson, G. L. Miller and C. H. Papadimitrion,
“The complexity of coloring circular arcs and chords,” STAM Journal
on Algebraic and Discrete Methods, Vol. 1, 1980, pp. 216-227.

L. S. Heath, “Embedding planar graphs in seven pages,” Proceedings
of the 25th Annual IEEE Symposium on Foundations of Computer
Science, 1984, pp. 74-83.

L. 8. Heath, “Algorithms for embedding graphs in books,” Ph.D. dis-
sertation, University of North Carolina at Chapel Hill, 1985.

o3



[He87]

[Hs85]

[L82]

[M&8]

[MWWSsS]

[Re84]

[Ro83]

[S179]

[T72)

[Y86]

[Ys9]

L. S. Heath, “Embedding outerplanar graphs in small books,” SIAM
Journal on Discrete and Algebraic Methods, Vol. | 1987, pp.

W.-L. Hsu, “Maximum weight clique algorithms for circular-arc graphs
and circle graphs,” SIAM Journal on Computing, Vol, 14, 1985, pp.
224-231.

D. Lichtenstein, “Planar formulae and their uses,” STAM Journal on,
Computing, Vol. 11, 1982, pp. 329-343.

S. M. Malitz, “Genus g graphs have pagenumber o(/9),” Proceedings
of the 29th Annuaql IEEE Symposium on Foundations of Computer
Science, 1988, pp. 458-468.

D.J. Muder, M. 1., Weaver, and D. B. West, “Pagenumber of complete
bipartite graphs,” Journal of Graph Theory, Vol. 12, 1988, pp. 469-
489,

A. Reibman, “DIOGENES layouts using queues,” Typescript, Duke
University, 1984,

A L. Rosenberg, “The DIOGENES approach to testable fault-tolerant
arrays of processors,” JEEE Transactions on Computers, vol. C-32,
1983, pp. 902-910.

M. M. Systo and M. Iri, “Efficient outerplanarity testing,” Pundamentq
Informaticae, Vol. 2, 1979, pp. 261-975.

R. E. Tarjan, “Sorting using networks of queues and stacks,” Journgl
of the ACM, vol. 19, 1972, pp. 341-346.

M. Yannakakis, “Four pages are necessary and sufficient for planar
graphs,” Proceedings of the 18t Annual ACM Symposium on Theory
of Computing, 1986, pp. 104-108.

M. Yannakakis, “Embedding planar graphs in four pages,” Journal of
Computer and System Sciences, vol. 38, 1989, pp. 36-67.

54



	20050915131923825.pdf
	TR-89-45b.pdf

