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Abstract.

A new direct full variational approach exploits a tensor (Kronecker) product decomposition
of the Hamiltonian. Explicit assembly and storage of the Hamiltonian matrix is avoided by using
the Kronecker product structure to form matrix-vector products directly from the molecular in-
tegrals. Computation-intensive integral transformations and formula tapes are unnecessary. The
wavefunction is expanded in terms of spin-free primitive kets rather than Siater determinants or
configuration state functions, and the expansion is equivalent to a full configuration interaction
expansion. The approach suggests compact storage schemes and algorithms which are naturally
suited to parallel and pipelined machines.

i

1. Introduction.

A central problem in theoretical chemistry is the determination of approximate eigenvalues
and eigenfunctions of spin-free Hamiltonian operators for many-electron systems. Many approaches
to this problem have made use of the Hartree-Fock approximation followed by either truncated
configuration interaction (C. 1.}, many-body perturbation theory, or a combination of the two f1-
3]. However, the only post-Hartree-Fock method that is at once size consistent, extensive, and
variational is a full Rayleigh-Ritz treatment [2, 4-6]. In this paper we discuss a new approach that
is equivalent to full configuration interaction.

Our method is a variational treatment that is based on a temsor-product decomposition of
the many-electron space {7, 8]. This leads to a computational procedure that does not require
an orthogonal orbjtal basis. Integral transformations are avoided by using wavefunctions that are
expanded in terms of primitive orbital products rather than Slater determinants or configuration
state functions. Matsen’s structure projectors [9] are utilized to restrict the trial vectors to physi-
cally realizable subspaces. This simultaneously reduces the dimension of the problem and suggests
an efficient storage scheme for trial vectors. The method is generally applicable to ground or
excited electronic states, open or closed shells, and systems of arbitrary spatial symmetry. Most
importantly, the method leads to algorithms that are well-suited to parallel and vector machine
architectures.
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2. The Tensor Product Construction.

Within the Born-Oppenheimer approximation the electronic part of the nonrelativistic Hamil-
tonian can be written
N N
H=Y h()+ Y g5,
i=1 i<y
where the one- and two-electron operators f;(z) and g(,7) are usually spin-free so that separation

of spin and spatial variables is possible. The one-electron operators fl(z) include the electronic
kinetic energy and nuclear attraction operators

’ N,
s 1 s ~  Z,
h(z)_“zvt b;""i""Ra[,

where r; and R, are the position vectors of the 4-th electron and the a-th nucleus, respectively.
The pairwise operators §(4, 1) are the usual Coulombic repulsion operators fri — r;|71, If we use a
basis of orbital functions ¢;,i = 1,...,m that span a mode] space V of dimension m, the primitive
N-particle functions

‘z) = Hl?' .. =?:N) - ¢i1(1)¢i2(2)"'¢5N(N)5 1< "':j <m,1 <7< AT;
span an N-fold tensor product space
V[M :I/&@..-@VN

of dimension m?, VIV contains ajl linear combinations of the elementary tensor products ¢ =
@ ® --Rey withe; €V, i= 1,...,N.
On VM the i-th one electron operator can be written

j1®"'®-fi-1 ®f1(i)®fi+1 ®"'®fN,

where J; is the identity operator in Vj. The restriction of the bare nucleus Hamiltonian to V1V
has the matrix representation

h®s®--°®s+s®h®s®---®s+---+8®---®3®h,

where £ is the one-electron core Hamiltonian matrix [{¢; | h | $;3)] and s is the one-electron overap

matrix [(qb,- | gbj)] - Similarly each two-electron operator §(¢,7) may be first restricted to VIN and

- then viewed as an operator on V; @ V;. For example, g(1,2) when restricted to fanctions in VIV
can be represented as

| §(1,2)®5 @ - ® Iy,

where §(1,2) acts nontrivially only in the space V1 @ V2. If we define g to be the matrix of two-
electron integrals (i | kI), with ¢;, ¢ in V; and js $1in V2, then the restriction of &(1, 2) to VIM
has the matrix representation

1®s® - ® s,
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where N — 2 copies of s appear in the tensor product. To model the general two-electron operators
&(k, 1) the unitary mapping Py, is introduced for notational convenience [10]:

Pr1¢i,(1)¢i,(2) - ¢iy (N) = 64, (1)6:,(2):,(3)ei,(4) - - -
v ¢ik—1 (k + 1)¢ik+1(k + 2) e ¢’fr-1 U)¢‘ii+1(l + 1) o ¢iN (-N)'

Then as before, on VIM g(, I) can be written
Pl a0 ke -0 iy Py,
and the matrix representation of jts restriction to VIM jg
Pilllg®s® - ® 5| Pay,

where Py in this context is the permutation matrix corresponding to the previously defined unitary
mapping. The complete tensor product construction [8] for H is

N N
T=3 s ohedV-11% prigyg sV Py,
=1 i<j

i
and the N-particle overlap matrix is

3. Eigenfunction Structure and Storage.

The Hamiltonian matrix has beeq constructed in VIN without assuming orthonormality or
symmetry adaptation of the basis sct. The full space VIN spanned by the N-th rank tensors
generated from the basis of m orbital functions has dimension m™, While the dimension of the
model Hamiltonian within this reducible representation space is very large, the extreme simplicity
of the matrix structure is a potent analog of sparsity and can be exploited to good effect in
computational algorithms used to resolve the resultant large matrix eigenvalue problem.
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According to the Pauli principle, systems of fermions are described by state functions which
belong to the antisymmetric (alternating) representations of the symuietric group Sy. Conse-
quently all naturally occurring permutation states must have cyclic structures characterized by
partitions [A] of the integers 1,..., N which satisfly

p groups of 2 N=2p groups of 1

N

[A] = ['{?:1,'1‘:2},--.,{2.2;,_1,2'2:}‘, ’{_?:2}?-}‘-1}3'--7{7:}\’?",

where p = N/2 — § is the permutation quantum number and S is the spin quantum number,
Equivalently, the physically relevant irreducible representation subspaces of VIM are labelled by
Young frames with one or two columns.

A Young tableau can be constructed by placing each of the first N integers in a box of a Young
frame. The tableau is called standard if the integers always increase from left to right and from top
to bottom; the number of standard tableaux associated with a frame gives the dimension of the
corresponding irreducible representation. These tableaux are concise sources of information about
the irreducible representations: for example, they can be used to build the matrix representations
of Sy and can be used to form structure projectors [9) which project primitive N -particle functions
into the physically relevant subspaces. The structure projector associated with a standard Young
tableau T can be written

At = Q('-’rxl)K:%’"xl

where (7} is the signature of the permutation operator = and Tyt permutes the indices of TQ to
obtain the standard tableau T} of Figure 1.
3

1 2
3 4
2Ng —1 2N,
2Ns + 1
N

Figure 1. The standard Young tableau 7). N, and N, s are the numbers of boxes in the first
() and second () columans, respectively.

The unnormalized Young operators K are written as
K= Appr, "

where A} denotes an antisymmetric sum of products of permutations over indices in the columns
of the tablean T},

A= Y7 e(nfnf)mgat,

=gy



and 'Pf denotes a product of symmetric sums of permutations over indices in tableau rows,

P =T]+ ).

]
The column operators 7§ and 7r15 permute indices in the first () and second (B) columns of T},
respectively. The row operators 7] permute indices in the rth row of 17, and T is the identity
operator. The eigenfunctions of the spin-free Hamiltonian are approximated as

@ = Z lev"'le IjIQ.I-’jN)'

Flpeerin=1

Because all & which belong to an irreducible representation space Jabelled by A satisfy @ = A @,
symmetry adaptation places constraints on the variational coefficients Ciyo i The relationships
among the coefficients can be visualized by inserting the orbital indices into the Young frame to
generate Weyl tableauz [11]. Each Weyl tableau can be associated with a particular ket and its
variational coefficient; for example,

C,'jk*‘.:}- ol 2
k

All coeflicients whose orbifal indices are related by permutations over same-column indices
have equal absolute values with relative signs equal to the parity of the permutations. That is, if

(jls'--}jN) = ﬂ'1&'171'@(‘131,- ..,kN), then
le!"'!jN = Q(ﬁfwf)c’kl,...,k)v'

When both columns of the Weyl tablean are of equal length, coefficients whose orbital indices are
related by permutations exchanging Wey! tableau columns must be equal. For singlet systems, if

(jly'-':jN) = (wa 77{) (kls- --1kN)$ then
Chrpmnin = Chy ooy -

The unigue ket coefficients are the set of all coefficients which are not mapped onto each other
by permutations over same-column indices (or by column exchanges for systems with zero spin

columns have identical coefficients. The canonically indexed vector of unique ket coefficients (the
“packed” vector) for the 3 electron system is given in Figure 3.
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The number of unique kets g(m,N,S) is

2 N, '8
(m,N,8) = m

m th .
olherwise,
N/ \W3)

2541/ m+1 m+1
D(m, I, 5) = m+ 1 (N/2—S) (m—N/Q— s)'
Typical values of g(m,N,8) and D{m, N, 8) for small systems are given in Table 1. Note that
g(m, N, §) is larger than Weyl’s number because of linear dependencies among some of the unique
ket coefficients in the spin-adapted vector. When m is much greater than N, the ratjo q/D
approaches £(1N 4 1) for singlet systems and (3N + 5+ 1)/(25 + 1) when the 8pin quantum
number is nonzero,

4. Method.
4.1 Large Matriz Eigenvalue Algorithms

standard form by a congruence transformation B’ = (TIN])*HT[N}, where 71N — ®fi1 Tand T
is an invertible matrix which satisfies
I=TsT,

The eigenvalues of H' ang H are identical and the corresponding eigenvectors are related by a
factor of (TN ) . There are several choices for T which can accomplish the reduction to standard
form [13]. We currently use the symmetric orthogonalization

T = Tt — .5'_1/2 = UD"1/2Ut,

Ho= (T grivly — gy, 4= (Tt~

where the structure of H' is

N N
H' =3 1" g (Thr) g V-1 4 2 PTeT)g(TeT) g 1Y Al p;.

i=1 i<j
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We have adapted to our use the two-tiered inverse/Rayleigh quotient iteration scheme devel-
oped by Szyld [14]. The basic iteration produces a sequence of eigenvector estimates T0,%1,Tp, -+
satisfying the recurrence (H' - Vied)xper = “k+1Zk, Where wyy; is chosen so that [lz,q1]l = 1 for
each k. The shift Y& is initially set to g fixed value ¥ and so produces the usual snverse fterg-
tion [15]. Typically, the generated vector iterates converge linearly to an eigenvector associated
with the eigenvalue closest to 4, At some point in this Process, it is possible to greatly accelerate
convergence by selecting the shift Tk = r(zx) = 2L H'z), which effects a switch to Rayleigh quo-
tient iteration. The rate of convergence becomes cubic (roughly trebling the number of significant
digits per step). The feasibility of either vector iteration depends on the difficulty of solving sys-
tems (H' — vy = 2, Following Szyld, we iteratively solve these systems using the large sparse

stricted to any particular permutation class, so the ground state energy often does not correspond
to the lowest eigenvalue of H', We Tequire an initia] €lgenvector estimate which belongs to the
alternating Tepresentation and which closely approximates the true eigenvector to obtaip swift

lem because all of the operators employed are spin-free and identjcal integral matrices are used

throughout. In practice, the usé of finite precision arithmetic may allow the vector to “legk” into

nonphysical subspaces. Periodic SPin projection of the tria) vector over the course of the iteration
may then be necessary.

~ An important feature of these large-scale iterative matrix eigenvalue algorithms jg that the

Hamiltonian matrix need be referenced only via a subroutine which forms Hamiltonian matrix-

vector products, allowing the tensor product structure to be used adva.ntageously. The special

tensor product structure of the Hamiltonian matrix in this context is used analogously to the way
sparsity is often used for other large-scale matrix eigenvalue problems.

4.2 Formation of the Model Hamiltonian Matriz. Vector Product
In each step of the vector iterationg Hamiltonian matrix-vector products are required;

N

2 PP TeT) e g IN=2 py

i<

W is the fé.féiimiting step. The expression for H®} in terms of pair transpositions Pij (cl DB ®
8G® - Bey) = (o ®---®cj®---®c,-®--.®cN) leads to

N :
2P (g (rgr Jo(TOTy@ V=1,
£<j



z* and yhl of length m? which cycle indices % and / while holding all other indices constant, the
two-electron matrix vector product can be reduced to forming

ehh = (T®T)g (T T)yk!

matrix columns [18]. Because the subvectors contain two cycling indices they can be naturally
written as matrices y§l = vee Vyu,
While there are many subvectors, they each possess the same spin Symmetries as their com-

ponent kets, e.g.,

where rorfy = J. Exploiting these symmetries signjﬁcantly reduces the number of subvectors
which must be explicitly gathered and premultiplied by the transformed two-electron integral

4.3 Operation Count: Subvectort Algorithm

The formation of the two-electron integral matrix-vector products dominates the contribution
due to the one-electron terms, hence we may fairly estimate the complexity of g single step of
our strategy by restricting attention to the two-electron contribution. Each two-electron vector
has length m? and corresponds to a subvector of the full trial vector in that a pair of orbjta]
indices cycles from 1 to ™ while all other indices remain fixed, Ignoring symmetr , the number
of subvectors s (YymN~-2, Many of these subvectors are equal or differ only ip 8ign; a set of
nonredundant subvectors includes;

1) all subvectors that cycle two particular first-column (@) indices;

" number of subvectors p that need to be considered is

p= { (N%) ( N/’;-z) + (N/;,,_I)z _ for singlet systems,
Nf2ts—3) (njoes) + (v/orss) (v Zsoa) + (n/oss) (v/sTs-s) otherwise,

For m much greater than N, () = -’1"N—,N - rﬁ—]_‘_il—)!-m’v“l +(’)(mN‘2) and p = CymN-2 —CymN-3

O(m”» —4) where :
N/ N1 .
- 50 for the singlet case,

N(N~1)—(N/2+s}(N/2~.S) .
(N7 SN/ —5)1 otherwise,
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and for the singlet case,
(V2P (N - 2)
Cy = s
[(~/2)]

H

otherwise
Co=[(N-1)}N - 2)N/2+ SYNJ2 - S)+H(N/24+ 8 N/2+ 5 - I)(N/2+ 8§ - 22
+(V/2- S N/2— S~ 1)/ - g - 271 /[(¥/2+ sy /g ).

Each subvector must be multiplied by the transformed two-electron matrix,
2={T&T)y(T®T)y

where T accomplishes the basis set orthogonalization (ie, T = .9‘1/2) and il ey = {47 | kl),
fig] = (¢ - 1)/2+ ] K vecy = Y, and vec X =z the required operations for each subvector are:
1) Form the product 7y T=vy,
2) Form g v = w, where v = vec V and w is a vector of length m2,
3) Form the product T W T =X, where w = vee W.

Without taking advantage of the structure of g or v, Step 2) requires m? floating point oper-
ations (flops), which we nominally consider to consist of an addition, a multiplication, and some
overhead required to fetch or store 3 value. Steps 1) and 3} require about 4m?® flops. Hence, the
total cost of the Hamiltonian mhtrix-vector multiply is CymN+2 4 (8C1 — Cy)ymN+1 + O(mV) for
m significantly larger than N. The implementation of Step 3) is complicated by the size of the
two-electron integral list. The two-electron integral matrix wi]] have bermutational symmetry and
often a block structure that ariges from the symmetry of the molecular geometry. However, it js
often not feasible to store the entire matrix in memory, even if the structure and induced sparsity
of the matrix is exploited. A list of Symmetry-unique integrals is put into secondary storage in
Some convenient order, and the integral matrix-vector multiply should access this list sequentially
in as few passes as possible.

column can be written ag skew-symmetric matrices; the rows and columns that correspond to
fixed indices from the same Young tableau colump are zero. Subvectors that cycle indices from -
different tableay columns have rows of zeros corresponding to fixed o indices and zero columns

= corresponding to fixed 4 indices,

4-4 A&vantages Jor Parglle] Computation

and Knowles’ addressing array 7 [6] which computes the lexicographic indeyx of combinations of
orbital indices.



At the k¥ iteration step, the subvectors of g, may be efficiently collected, multiplied by
(T®T)(T ® T), and scattered to different subvectors with indices dictated by spin symmetry.
This procedure has severa] advantages for parallel computation:

1} Subvectors which differ by 3 or more noncycling indices can be constructed from distinct por-

subvectors from a packed vector in a shared memory multiprocessor without memory con-
tention, or simultaneously communicate several subvectors in a distributed memory paralle]
computer, '

2) Each of the transformed two electron integral matrix-subvector multiplications involves the
same number of floating point operations. . The matrix-vector multiplications can be appor-
tioned evenly among the processors for very good load balancing,

3) The independence of the individual subvector problems requires minimal interprocessor com-
munication. ,

4} The generation of the molecular integrals in parallel on different DProcessors leaves integrals over
different shells distributed among the processors. With the bresent tensor product method

_ this causes no difficulty because there js no need to perform integral transformations, which
would involve sorting and redistribution of the integrals among the processors.

5. Applications

considered, The program has been preliminarily applied to several small model systems. For ex-
ample, Table 2 gives total energies computed for linear Hs with Pearson
[19], with and without the p function. In Table 3, tensor product variational energies reproduce
Jankowski and Paldus’ [20] “H4” model hydrogen molecular dimer fu]] CI energies to 1-2 micro-
Hartrees. The model consists of a pair of coplanar STQ-3G hydrogen molecules with the atoms
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functions, and § = (.

m

10
20
30
40
50

20
30
40

10
50
75

1
1
10

AT
4
4
4
4
4
8
8
8
0
0

Full Space
Dimension
m

10000
160000
810000

2560000
6250000

2.56 x 1p1°
6.56 x 1p11
6.55 x 1012

1.00 x 1010
9.77 x 1016
5.63 x 1018

Number of

Determinants

(%)
4845
891390
487635
1581580
3921225

76804685
2.56 x 10°
2.89 x 1p10

184756
1.73 x 103
1.17 x 1015

Number of
Unique Kets
g(m, N, 5)

1035
18145
94830

304590
750925

11739435
3.76 x 108
4.18 x 10°

31878
2.24 x 1012
1.48 x 1014

Weyl’s
Number
D{m,N,§ )
825

13300
67425
213200
520625

5799465
1.72 x 108
1.85 x 109

19404
8.3 x 1011
5.3 x 1013

TABLE 2. Total energies (H) for linear Hj, with By g, = Ry gy, = 1.7924 bohrs, using
Pearson’s [2s] and [251p] basis sets,

Method (4s)/{2s] (4s1p)/[2s1p]
UHF -1.597903 -1.601412
MP2 -1.615693 -1.631693
MP3 -1.622184 -1.638914
SD-CI -1.627822 -1.643855
SD-CI+SCC -1.628111 -1.644279
This work -1.627969 -1.644761

. UHF: Unrestricted Hartree-Fock energy,

MP2, MP3: Second and third order Moller-Plesset energies,

SD-CI: Configuration interaction including single and double excitations only.
SCC: Davidson’s size-consistency correction.

UHF, MP2, MP3, SD-CI energies computed using Gaussian 82 [21}.
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TABLE 3. CI correlation energies for the H, model (in mH, all signs reversed ).

a SD-CI DQ-C1 F-CI This work
0.500 — 53.511 53.690 —
0.200 55.8710 57.168 57.260 57,2591
0.100 63.5454 65.227 65.321 65.3203
0.050 73.7890 76.401 76.429 76.4273
0.020 88.8065 92.124 02.148 92.1462
0.015 93.2459 96.686 96.711 96.7099
0.005 105.5560 109.188 109.196 109.1947
0.0060 113.9716 — — 117.6195

SD-CIL: Configuration interaction including single and double excitations ounly, computed using
Gaussian 82 {21].

F-Cl, DQ-CI: Full and truncated CI including double and quadruple excitations taken from
Jankowski and Paldus [20].
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Figure 2. Weyl tablean construction of the trial vector: N

L[]

=3,m=3,S=:1/2.
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Weyl tableau construction of the trial vector: N =4, m = 4, 5 =0,
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Figure 3. The full and packed spin-adapted trial vectors C and € for N

Index ¢ Ket C; Ci
1 flll) 0 €119
2 f112) Ci12 €113
3 1113) Ci13 €213
4 J121) 0 - 122
5 [122) ¢y €123
6 ,123) €123 Co23
7 l131> 0 C132
8 1132) €132 €133
9 {133) C133 €233
10 ,211) —C112
11 [212) 0
12 '213) Co13
13 ,221) —C122
14 [222) 0
15 223)  ey0n
16 ’231) —Ci39
17 232) 0

i 18 ,233) Ca33
i9 ,311) —C113
20 1312)  —ep3
21 1313) 0
22 321)  —¢pag
23 i322> =203
24 1323) 0
25 331)  —epas
26 J332) —C233
27 1333) 0
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