Development of New Hueristics for the
Euclidean Traveling Salesman Problem

By Thurman W. Tunnell
and Lenwood Heath

TR 89-30

DEVELOPMENT OF NEW HEURISTICS
FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

by

Thurman W. Tunnell

Project submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in

Computer Science in Applications

APPROVED:

Dr. Lenwood Heath

Domals Atlon Ul . Kads

Dr. Donald Allison / Dr. John Roach

September 1989

Blacksburg, Virginia

DEVELOPMENT OF NEW HEURISTICS
FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM
by
Thurman W. Tunnell

Lenwood Heath, Computer Science

(ABSTRACT)

Many heuristics have been developed to approximate optimal tours for
the Euclidean Traveling Salesman Problem (ETSP). While much progress
has been made, there are few quick heuristics which consistently produce
tours within 4% of the optimal solution.

This project examines a few of the well known heuristics and introduces
two improvements, MaxDiff and Checks. Most algorithms, during tour
construction, add a city to the subtour because the city best satisfies some
criterion. MaxDiff, applied to an algorithm, ranks a city according Vto its
effect (based on the algorithm's .criterion) if it is not added to the subtour.

The checks evaluate the subtour during tour construction. After each
city is added to the subtour, the subtour is examined to detect inefficiencies
in the subtour. If a possible improvement is detected, then a change is
made in the tour. Although checks require some time, the goal is to
improve the tour with as little cost as possible.

The tests were performed on five 100 city problems and five 500 city
problems. The checks consistently decreased the tour Iengfh with a 20% to
90% incréase in time. MaxDiff was particularly successful in the 500 city
problems; all three heuristics to which MaxDiff was applied resulted in a

decrease in tour length and a decrease in time for all five problems.

ACKNOWLEDGEMENTS

I would like to thank Dr. Donald Allison and Dr. John Roach for serving
on my committee and for their Support and helpful suggestions, I owe a
special thanks to my advisor, Dr. Lenwood Heath, whose advice has been
invaluable throughout the development of this project.

I would also like to thank Jannae Tunnell and Ed Wilson for their
comments on my first drafts, and for letting me use their computer during
all hours of the night. I thank my mother, Lane Tunnell, for her emotiona]
and financial support. I also thank Matt Zukoski and many other
computer science students at Virginia Tech who have given me invaluable
Macintosh programming advice.

During the early stages of thig project, the encouragement, patience,
and love of Christiane Jung inspired many of my ideas, including MaxDiff

and Checks. It is to her I dedicate this project.

1ii

TABLE OF CONTENTS

1.0 Introduction

2.0 Existing Heuristics for the ETSP

2.1 Terms and Definitions

2.1.1 The Convex Hull

2.2 Nearest Neighbor

CD\'IG)CJ'(H

2.3 Nearest Insertion

2.3 Cheapest Insertion

2.5 Convex Hull (CH) Cheapest Insertion

2.6 Stewart's Algorithm

2.7 Simulated Annealing

3.0 MaxDiff

4.0 Checks

4.1 Checkl

4.2 Check?2

4.3 Check3

4.4 Check4

4.5 Check5

4.6 Checksg

iv

8%&888'&&385!&‘55&

5.0 Results and Analysig

5.1 Analysis of Checks

5.2 Analysis of MaxDiff

5.3 Analysis of Computation Times

6.0 Conclusion

6.1 Further Research

List of References

Appendix

8 2 8 8 & & & 8

1.0 INTRODUCTION

The Traveling Salesman Problem (TSP) is a well known and well
studied problem in the area of combinatorial optimization [Lawler, Lenstra,
Rinnooy Kan, and Shmoys, 1985). The description of the problem is easily
stated :

A traveling salesman wants to visit n cities, each city once, and then
return home to his starting city. The problem is to find the shortest
route. The distance between each pair of cities is given.

This research concentrates on a special case of the TSP, the Euclidean
Traveling Salesman Problem (ETSP) where the distance between two cities
18 calculated from the locations (e.g. the x and y coordinates) of the cities.
Thus, the ETSP is also restricted to two dimensional Euclidean space,
whereas the TSP is not,

Although the ETSP is very simple to state, finding an optimal tour is
difficult. The ETSP is a known NP-hard problem [Garey and Johnson,
1979]; therefore, it has no efficient algorithm unless P = NP. Presently, the
only way to be assured that the shortest route has been found is to try all
possible tours, which is very expensive. For example, when n is only 20, a
100 mip (million instructions per second) machine would literally take

centuries to find all possible tours.

Since it is usually impractical to find the best tour, many heuristics have
been developed to approximate the optimal tour lengths. The methods have
been quite diverse, each with some Successes and failures. In thig project,
a few of these methods are explored, and new heuristics are developed by
modifying some of thege existing algorithms,

The distinction between tour construction procedures and tour
improvement procedures should be noted. Tour construction heuristics
build a tour from a set of points. Tour improvement procedures modify an
already constructed tour to obtain, hopefully, a better tour. Thus, one
method builds a tour and the other improves it. In this paper, only tour
construction heuristics are discussed.

This project Proposes two ideas, each applicable to many existing tour
construction heuristics. The first idea is MaxDiff, a heuristic that can be
used i1_1 conjunction with various algorithms including the tour
construction heuristics Cheapest Insertion, Convex Hull (CH) Cheapest
Insertion, and Stewart's Convex Hull Insertion procedure. MaxDiff is not
a complete heuristic by itself but is rather a concept which we can apply to a
variety of existing TSP algorithms,

The second idea is the use of Checks. Checks are motivated by common
problems with the tours constructed by convex hull procedures. There are
six checks presented here, where each one attempts to detect a particular
problem and resolve it. Checks are made during tour construction after
each city is added to the subtour. None of the checks used in this project
increase the overall time complexity of the algorithms to which they are

applied.

Extensive testing was performed on a suite of five 100 city problems and
a suite of five 500 city problems. The results of using MaxDiff and the
checks have been encouraging. One of the more successful algorithms
used in ETSP tour construction is the convex Aull insertion procedure
developed by W.R. Stewart [Golden and Stewart, 1985]. Our research has
produced many heuristics which perform better than Stewart's algorithm,
Although many of these heuristics require more computing time, none of
them on the average require double the time of Stewart's algorithm.,

MaxDiff performed especially well on the 500 cify problems. MaxDiff
produced shorter tours. and in less time, than the original algorithms to

which MaxDiff was applied. In the 100 city problems, the success of
MaxDiff is less certain, but some good results were obtained.

Every check added to an existing heuristic resulted in either the same
tour length or in a shorter tour. The checks were particularly successful
when used in combination with MaxDiff, or with other checks. The most
successful checks were also the most expensive,

This research justifies further research in checks and MaxDiff. If an
approximate tour is needed for a large set of cities using Stewart's
algorithm or the CH (convex hull) cheapest insertion algorithm, then we
can definitely recommend that MaxDiff be applied since a shorter tour and
less time is very likely. If distance is more important than time, then
checks should also be used. Recommendations of particular heuristics are
discussed later.

The existing heuristics used in this research are each separately

defined and discussed in section 2.0, Following, MaxDiff and its

applications are discussed in section 3.0. In section 4.0, each check is
defined separately, with examples demonstrating their usefulness. The
test results are reported and analyzed in section 5.0, and conclusions about
MaxDiff and checks are then drawn in section 6.0. The best tours found for

each test case in this study are listed in the appen&jx.

2.0 EXISTING HEURISTICS FOR THE ETSP

Many heuristics have been developed for the ETSP with a variety of trade
offs between the quality of a tour and time efficiency. In this paper, a few
fast heuristics that produce good tours are considered. The nearest
neighbor and nearest insertion algorithms are included because they are
very fast and certain conclusions can be drawn about the optimal tour
length from the length of the tours obtained from these algorithms. The
cheapest insertion algorithm is used in combination with MaxDiff. The CH
cheapest insertion procedure and Stewart's algorithm are used with
MaxDiff and the checks, Stewart's algorithm is also included because it is
one of the most successful quick heuristics [Golden, Bodin, Doyle & Stewart,
1980]. In addition the simulated annealing heuristic is used. Although it
is much slower than the other heuristics in this paper, it usually produces
very good tours. Simulated annealing is especially useful in analyzing the
results of the 500 city problems, because the optimal solutions are not
known, and because it provides a good comparison measure.

These algorithms (other than simulated annealing) have basic
characteristics common to all of them. Tour construction begins with an
initial subtour, which could be, for example, the convex hull (explained

below), an edge, or just a single city. Two lists are maintained during tour

construction; one list 7' contains all cities which compose the subtour, and
the second list N7 contains all the cities not yet placed in the tour (Noga,
1984). Based on some heuristic, one city in NT is chosen to be inserted into
T; this step continues until all cities are in T. In other words, cities in NT
are added to the subtour, ¢ne at a time, until all cities in NT have been
added and the tour is thug complete. Each of the heuristics begins with

only a set of coordinates representing the location of the cities.

2.1 Terms and Definitions

Before describing each heuristic, certain terms need to be defined. Every
algorithm has an insertion criterion and a selection criterion which
determine where and what should be added next to the tour. The selection
criterion decides which city will be added next to the. tour. The insertion
criterion determines where the city will be added. The city which satisfies
the selection criterion the best ig also sometimes said to fit in the best. In
some of the heuristics (e.g. cheapest insertion, nearest neighbor), these
criteria are the same; but many of the algorithms (e.g. nearest insertion,
Stewart's, MaxDiff) have two Separate criteria which determine where ang
what should be added.

Two common measures used in this paper are dist and cost .

dist(a,b) = the Euclidean distance between city a and b,

cost(a,b,c) = dist(a,b) + dist(b,¢) - dist(a,c).

Cost is a very intuitive measure for the ETSP. Assuming (a,c) is an edge
in the subtour and b ig in NT, then cost(a,b,c) is the distance lost in the
subtour if b is added to T between edge (a,c).

Most of the algorithms in this study add a city k to the subtour by
inserting k between two adjacent cities in T, i and J. These letters 1, k, and j
are used consistently in this paper in this context. That 18, k represents the
last city added to the subtour between edge (i,j).

Two functions commonly used are A and B. Assuming ¢ ig a city in T,

then A(c) is the city in T after ¢, and B(c) is the city before c,

2.1.1 The Convex Hull

Most of the algorithms used in combination with MaxDiff and checks
use the convex hull as ther initial subtour. The convex hull is the shortest
perimeter simple polygon which containg a set of points in a plane [Noga,
1985]. The convex hull can be easily visualized by stretching a rubber band
around all points on a graph; the points which the rubber band touches are
the vertices of the convex hull,

There are various advantages of using the convex hull ag the initial
subtour. According to one survey of TSP construction procedures,
heuristics which do not employ the convex hull as the initial tour are "hard
pressed” to find a TSP tour which is much better than 5% to 7% above the
optimal solution [Golden et al, 1980]. One explanation for this is that it has
been proven that for any set of cities, the original order of the cities which
compose the convex hull remaihs the same for the optimal tour [Eilon,

Watson, and Christofides, 1971]. For this paper, the method used to find the

convex hull is the Graham algorithm [1972;, Two ETSP heuristics that
start with the convex hull are used in this project ag g basis for applying
our new techniques. These two heuristics are Stewart's [1977] algorithm
and the Convex Hull Cheapest Insertion Procedure [Golden and Stewart,

1985].

2.2 Nearest Neighbor

The nearest neighbor algorithm -

choose an arbitrary city as the initial subtour;

while NT is not empty do begin
{selection and insertion step}
find the city closest to the last city added and add this city to the
subtour;

end;
connect the last city to the first city;

1 h of nearest neiochbor <=1/2 [lg(n)] + 1/2
length of optimal tour

where n is the number of cities [Golden, et al, 1979].
There are other heuristics that have significantly better performance

guarantees. The minimum Spanning tree algorithm (0(n2)) produces a

tour no more than twice the length of an optimal tour [Johnson and
Papadimitrioy, 1985]; and Christofides’ algorithm (O(n3)) produces a tour
length that is always less than 3/2 times the length of the optimal solution
[Johnson and Papadimitriou, 1985].

on the city chosen as the starting node. In our tests, the nearest neighbor
algorithm was run three times, starting with a random initial city each
time. The best result (shortest tour) of the three runs is the solution
reported,

The nearest neighbor procedure is computationally one of the quickest
ETSP algorithms. After each city k is added to the subtour, all cities not yet
in the subtour must be evaluated to see which city is the closest to k. Since
there are n-1 cities added to the tour (after the initial random city is
selected) and there are (n- Isubtour!) scans through the cities not yet in the
tour after each city is added, the number of computations is proportional to
the sum of (n- |subtour!) as I'subtour! goes from 1 to n-1. Thus, the

nearest neighbor algorithm requires O(n2) computations.

10

2.3 Nearest Insertion

The nearest insertion algorithm :

choose an arbitrary city p as the initigl subtour;
find the city q closest to p and form the subtour pP-q-p;
while NT'is not empty do begin

{selection step)

find the city k in NT closest to any city in the subtour;

{insertion step}

insert city k in between adjacent cities (i,j) such that

cost(i,kj) is minimal;
end; -

This procedure is a little more intricate than the nearest neighbor
heuristic but has the same time complexity. After each city k is added to
the subtour, each city p not in the subtour must be checked to see if k is
closer to p than the city previously closest to p (stored in memory). This
check is only one comparison, and thus each check is done in constant
time. While each NT city p is checked, it can also be determined if p is the
closest city to any subtour city. Thus, to find the NT city which is closest to
any T city, only one pass through the NT cities is needed. To insert a city,
one pass through T is needed. There is a total of n cities in the two lists NT
and T, and n-1 cities must be inserted, resulting in a time complexity of
O(n2).

Nearest insertion guarantees a tour length which s less than or equal to

twice the length of the optimal tour [Johnson and Papadimitriou,1985].

11

24 Cheapest Insertion

The cheapest insertion algorithm :

choose an arbitrary city p as the initial subtour:
find the city q closest to p and form the subtour P-q-p;
while NT is not empty do begin
{selection step and insertion step)
Minimize cost(i,k,j) for all adjacent cities (i,j) in T and k in NT:
Insert city k between i and j;
end;

The usual pProgramming steps of this procedure are to find the next city
k to be inserted, and then update the NT cities. Of these two steps, the
updating is the more costly. Updating is needed to determine which T edge
each NT city fits in between the best. If p is in NT and its minimum edge
was the (i,j) which k was Jjust inserted between, then all edges in T must be
checked to find a new minimum edge for P. In the worst possible case, all
cities in NT would have (i,j) as their minimum edge, leading to O(n3)
[Noga, 1984]. In most cases though, p's minimum edge is not (i,j), and
therefore only the new edges (i,k) and (k,j) must be evaluated to update the
minimum edge for p. Golden et. al. (1979) state the average time complexity

is O(nZIgn),

12

2.5 Convex Hull (CH) Cheapest Insertion

The CH cheapest insertion algorithm is the same ag the cheapest
insertion procedure with the exception that the convex hull is the initial
tour. This heuristic ig especially significant in thjs paper because MaxDiff
and many of the checks were conceived of with the CH cheapest insertion

algorithm in mind.

The CH cheapest insertion algorithm :

T := the convex hull;

while NT is not empty do begin
{insertion and selection step}
Minimize cost(i,k,j) for all adjacent cities (ij)in T and k in NT;
Insert city k in between i and 5

end;

The computational complexity of this heuristic is identical to that of the
cheapest insertion algorithm. For this research, the convex hull was
calculated by the Graham algorithm [Graham, 1972] which has a worst
case time complexity of O(nlgn) [N oga, 1984]. If most of the cities are on the
convex hull, then the complexity is reduced; but in the average case, the

complexity of CH cheapest insertion is O(n?Ign).

13

2.6 Stewart’s Algorithm

Stewart's algorithm was originally called the Convex Aull insertion
procedure [Golden and Stewart, 19851, but because this name describes
many of the existing heuristics for the ETSP, this paper refers to this
algorithm simply as Stewart's algorithm. This heuristic is one of the most
successful quick algorithms. In one study [Golden, et al, 1980] of various
quick algorithms, Stewart's algorithm, on the average, had the shortest

tours.

Stewart's algorithm -

T := the convex hull
while NT is not empty do begin
for each city k in NT do begin f{insertion step}
Find (,j) in T that minimizes cost(i,k,j);
k.ratio := [dist(i,k) + dist(k,j)] / dist(i,j);
end;
select the k* in NT which minimizes k.ratio;
Insert the selected city k* in between i and j;
end; {while})

This procedure is computationally the same as CH cheapest insertion
with the exception that Stewart's algorithm must also calculate a ratio for
each city. This doesn't effect the overall time complexity; the number of

computations is O(n2lgn) [Golden, et al, 1980].

14

2.7 StmulatedAmwaImg

We use the simulated annealing heuristic only to find short tours to
compare to our results. For more information and implementation details,
see Kirkpatrick, Gelatt, and Vecchi [1984], Skiscim and Golden [1983], and
Cerny [1985].

Simulated annealing is analogous to the statistical mechanics process
called annealing where a low eénergy state of a compound can be reached by
heating the compound and then slowly lowering the temperature. The
lowest energy state is analogous to the optimal solution in the TSP,
Simulated annealing allows increases in the tour length with the hope that
the increase will avoid a local minimum [Golden and Stewart, 1985]. |

Simulated annealing is computationally very expensive because it

examines many tours to find a good solution.

3.0 MAXDIFF

Most of the quick algorithms used in the Euclidean Traveling Salesman
Problem are based on a "greedy” approach. That is, based on some loeal
selection criterion, the next city added to the subtour is the city which best
satisfies the criterion. For example, in Stewart's algorithm, the next city to
be added is the city which minimizes (dist(i,k) + dist(k,j)) / dist(i,j).

MaxDiff can be thought of as a "non-greedy" approach. The basic idea of
MaxDiff is to evaluate a city not yet placed in the subtour according to itg
effect if it is inserted or added at a place in the subtour other than the place
which would best satisfy the selection criterion.

MaxDiff is not an algorithm for ETSP but is rather a method for
modifying existing ETSP algorithms, Generalizing, though, the basic idea
of MaxDiff is as follows

Find the initial subtour; {e.g. the convex hull }
While NT is not empty do begin
Find the two "best" places for city k in NT to be inserted in the
subtour according to the algorithm's ingertion criterion;
k.1 := best place;
k.2 := second best place;
end;
k* := the city k in NT which Magimizes the Difference between k.1
and k.2 according to the selection criterion;
Insert city k* in the subtour according to the gelection criterion;

15

16

Applying MaxDiff to Stewart's algorithm :

T := the convex hull
while NT is not empty do begin
For each city k in NT do begin

{insertion step}
find adjacent cities i1, j1 and adjacent cities i2,j2 in T such that
cost(il,k,j1) < cost(i2,k,j2) < cost(im,k,jm), where im,jm are all
adjacent cities in T except i1, j1 and i2, ;2;
k.ratiol := [dist(i1,k) + dist(k,j1)] / dist(i1,j1);
k.ratio2 := [dist(i2,k) + dist(kj2)] / dist(i2,j2);

kil :=il;
kjl:=j1;
end;

k* := the k which maximizes k.ratio2 - k.ratiol; ({selection step}
Insert k* in between k*.i1 and k* j1;
end; {while}

Applying MaxDiff to the CH Cheapest Insertion algorithm :

T := the convex hull
while NT is not empty do begin
For each city k in NT do begin

{insertion step}
find adjacent cities i1, j1 and adjacent cities i2,j2 in T such that
cost(il,k,j1) < cost(i2,k,j2) < cost(im,k,jm), where im,jm are all
adjacent cities in T except i1, j1 and 12, j2;
k.costl := cost(il,k,j1);
k.cost2 := cost(i2 k,j2);

k.l :=11;
k.jl:=j1;
end;

k* := the k which maximizes k.cost2 - k.costl; ({selection step}
Insert city k* in between k*.i1 and k*j1;
end; {while}

To clarify how MaxDiff works, and why one would want to employ it,
consider a simple example. Figure 3.1 illustrates part of a subtour. In this
example, we assume that all cities and edges not shown are
inconsequential. Figure 3.1(a) shows the initial state. If the cheapest
insertion method or Stewart's algorithm is used, cities e and f will be

inserted first, and in that order (Figure 3.1(b)). Finally, city g will be added

17

P L]
of f
oe o /[e
Y b ¢ d a b c
(a) (b)
9
¢
e
a b ¢ d
(c)

Figure 3.1. One problem with standard insertion heuristics.

18

(Figure 3.1(c)) between cities b and ¢ according to the insertion criterion.
As one can see, this is not the shortest tour possible.

If city g were inserted first, before e and f, then e and f would be inserted
between g and b according to the insertion criterion, and a shorter tour
would result. This is what MaxDiff does. Cities e and f fit in best between
edge (a,b) and second best between edge (b,c). City g fits in best between
edge (b,c) and edge (a,b), in that order. As can be seen, cities e and f fit in
between b and ¢ almost as well as they do in between a and b; but on the
other hand, g fits in much better between b and ¢ then it does between a and
b. In other words, city g maximizes the difference between the two places
which best satisfy the selection criterion for g. Thus, city g is inserted first
(Figure 3.2(b)) and afterward cities e and f are inserted between b and g
(Figure 3.2(c)).

MaxDiff is intuitively appealing. If a city k in NT can fit in between two
distinct edges almost equally well, then there is little reason to add k now.
Only when there is gne edge with which k fits in well, should k be added to
the subtour.,

The basis of MaxDiff can possibly be seen more clearly from the stand
point of the. cities in NT. Imagine each city in NT competing with each
other over which city will be added next to the subtour. Assume city p in NT
fits in very well with edgel, and almost equally well with edge2 in the
subtour. City g, on the other hand, fits in edge3 well, but fits in all other
edges very poorly. It is the hypothesis of MaxDiff that q will have to be
added eventually between edge3, and that if q is added now, then tour

19

«g

of
o

o
o
o
a

(a) (b)

Figure 3.2. MaxDiff solution inserts city g first, which results in an
optimal subtour. :

20

construction is enhanced because the edges created by inserting q are used
in the construction process.

In this project, MaxDiff is used only in combination with algorithms
that determine the next city k to be added according to how well k fits in
between two adjacent cities (an edge) in the tour. However, the concept of
MaxDiff may be be used in conjunction with other algorithms.

As can be seen by comparing the above MaxDiff algorithms with the
original algorithms, the time complexities remain the same. MaxDiff only
adds a few computations; that is, instead of having a pointer for every city
in NT to the best insertion locations, MaxDiff requires two pointers. The
most costly part of MaxDiff is the updating of NT after every city k is added
to T. When k is added between i and j, the chances are doubled that city p in
NT is pointing to edge (i,j), thus increasing the update time. This issue was

discussed previously in the description of the cheapest insertion algorithm.

4.0 CHECKS

Checks are heuristics that determine whether small changes made in
the tour reduce the present length of the tour. Checks are made during
tour construction, as opposed to tour improvement heuristics that make
improvements on a completed tour. Checks are made after each city, other
than a city in the initial subtour, is added to the tour. Typically, the number
of checks made is equal to the total number of cities minus the number of
cities in the initial tour. An exception occurs with checkl because cities
can be removed from T (discussed below), increasing the number of times a
city is added to the tour, and thus increasing the number of checks.

Although checks obviously increase the computing time of the ETSP,
none of the checks described in this paper actually increases the asymptotic
time complexity of the algorithms with which they are used in this project.
Below, the complexities of each check are described individually.

It should be noted that there are other checks which could easily be
developed but are not covered by this project. The goal of this part of the
project is to determine whether further research of checks might be

promising.

21

22

4.1 Checkl

Check1 has the greatest time complexity of the checks but is also one of
the more successful checks. After each city k is added between two cities i
and j, checkl searches for a city p in the tour such that p fits in better
between i and k or k and j than between A(p) and B(p).

The algorithm is :
After k is inserted in T between cities i and j do
for each city pin T (besides 1,k, and j) do
if (cost(i,p,k) < cost(B(p), p, A(p))) or
(cost(k,p,j) < cost(B(p), p, A(p))) then
remove p from T.

The appeal of checkl is that cities in the tour can be removed (and
reinserted later) if the city fits in better with a new edge than with its
present position in the tour. For example, Figure 4.1 shows a situation
when checkl would succeed. Figure 4.1(a) is the tour after city k is added to
the tour. Checkl examines all cities in the tour; when city p is evaluated,
the condition in the above algorithm succeeds. That is, cost(i,p,k) is less
than cost(B(p),p,A(p)); and thus, p is removed, as seen in Figure 4.1(b).

The time complexity of all executions of checkl is O(n2), assuming no
more than n total cities are removed. A question of termination arises here
since a city is removed and must be added later. If a city p were removed
from T every time a city k was added to T, then the program would

terminate. Although no proof is given here, by observation, it appears that

23

A(p) B(p)

(b)

Figure 4.1. Checkl removes city p from subtour.

24

checkl rarely removes a city more than 5% of the time. Assuming this is
true, the computing time of the algorithm (used with checkl) is increased

but the overall time complexity remains the same.

4.2 Check2

In checkl, efficiency suffers whenever a city is removed from the
subtour. This means that for every successful check in checkl, a city is
added twice to the tour, which obviously increases the computing time of
the tour construction. Check2 differs from checkl only in that, instead of
removing a city from the subtour, the city is put back in the tour between
either i and k or k and j. Figure 4.2 illustrates the previous example before
(Figure 4.2(a)) and after (Figure 4.2(b)) check2.

The algorithm of check?2 :

After each k is inserted in the tour between cities i and j do
for each city p in the tour (besides i,k, and j) do
if (cost(i,p,k) < cost(B(p), p, A(p))) then begin
remove p from T
insert p between i and k;

else if (cost(l,p,j) < cost(B(p), p, A(p))) then begin
remove p from T;
insert p between k and j;

end;

The time complexity of check2 is also O(n2). Check2 is a little more

efficient than check1, because city p is repositioned in T, not added to NT.

25

A(p) B(p)
(@)
A(Lz) B(-p)

®)

Figure 4.2. Check2 reinserts city p.

26

4.3 Check3

Because of the nature of most convex hull algorithms (e.g. cheapest cost,
Stewart's), certain problems repeatedly arise. One common problem
results when, during tour construction, part of the tour forms an hourglass
shape. Figure 4.3(b) is an example of this shape. Figure 4.3(a) and 4.3(b)
shows a tour as it is being constructed, to illustrate how this problem
arises. The purpose of check3 is to find this type of situation and correct it.
The result of using check3 on the problem in Figure 4.3(b) is shown in
4.3(c), which can easily be seen to be shorter than 4.3(b).

There are various ways that check3 could be programmed. The
algorithm for check3 used in this project is very simple, but can miss some
hourglass problems as described above. Two terms used in this check are
present cost and local. The present cost of i is defined by the cost of i
between the two cities adjacent to i in the tour; that is, the present cost of i
equals cost(A(i),i,B(i)). Local means that only a certain number of edges
are checked. Letting k be the last city inserted (between i and j), the basic
approach of check3 is to see if there is any edge (p,q) local to i,k,j, where
cost(p,i,q) is less than the present cost of i or cost(p,j,q) is less than the
present cost of j.

The reason for only checking local edges is to avoid checking all edges in
the tour. For this project, 12 edges were checked, 6 on each side of i and j

respectively. This restriction is one way in which check3 could miss

27

Figure 4.3. Check3 detects the hour
glass shape in (b).

28

possible improvements. For example, in Figure 4.3, if there were seven
cities between i and p, the edge (p.@) would have never been evaluated,
In more detail, the algorithm is :

After each k is inserted in T between i and j do begin
for each of the six edges(p,q) in T before i do
if cost(p,j,q) < cost(k,j, Aj)) then begin

p* == p;

q*:=q;

found_j := true;
end,

if not found_j then
for the six edges(p,q) in the tour after jdo
if cost(p,i,q) < cost(B@) ,i,k) then begin

p*:=p;
q*:=q;
found_i := true;
end;
end;
if found_j then begin

remove j from between k and A(j);
insert j between p* and a*;

else if found_i then begin
remove i from between B(i) and k;
insert i between p* and q*;

end; '

The problem with check3 is with respect to the restriction of evaluating
only 12 edges. This does not seem to be a major concern, because by a study
of different sets of random cities, one can observe that looking at six edges
on either side of i or j is adequate for most cases. As the sets of cities
increase, it is likely that the number of edges checked locally should also

increase; although, by observation, most possible improvements of the

nature of check3 appear to be detectable at an early stage.

29

\

Figure 4.4. Check3 does not detect the

improvement here because it only looks at one
city at a time.

30

Another and more serious problem with check3 lies in the fact that only
one city, (i.e. 1i or j) is examined to be repositioned in the tour. In the
example in Figure 4.3, if there were an additional city very close to j, the
algorithm above would not detect the obvious improvement. If the
algorithm checked for two cities to be repositioned in addition to checking
for just one city, the improvement would then be detected; but the problem
still remains because there could be any number of cities very close to j (or i)
which would all have to be repositioned in the tour for an improvement (see
Figure 4.4).

Check3 does 12 checks after every city is added to the subtour. Therefore,

the number of computations required is O(n).

4.4 Check4

Check4 is a very simple and quick check. As stated earlier, certain tour
construction inefficiencies occur because of the nature of most convex hull
algorithms. One situation which is easily improved is illustrated in Figure
4.5(b). Check4 examines two cities in the tour, the city before i and the city
after j. If improvement is possible, checkd will reposition either one or both
of these cities. Figure 4.5 illustrates an | example where city A() is

repositioned for tour length improvement.

31

(a)

Figure 4.5. Check4 detects the problem in (b) and changes the
subtour to (c).

32

The algorithm for checkd4 :

After each k is inserted in T between i and jdo begin
if cost(i, B(i) k) < present_cost(B()) then
place B(i) in T between i and k;
if cost(k,AG),j) < present_cost(A(j)) then
place A(j) in T between k and 3
end;

All cases similar to the example in Figure 4.5 are not detected by check4
for improvement. The weakness of check4 is analogous to the last problem
mentioned for check3. That is, only one city (i.e. A(j) or B()) is evaluated to
be repositioned in the tour. Thus, in Figure 4.5, if there were an additional
city very close to A(j), the possible improvement would not be detected.

Check4 is computed in a constant amount of time and is called after

every city is added to the subtour, resulting in a time complexity of O(n),

4.5 Checks5

Check5 detects the same possible improvements that check4 does and
detects some of the situations that check4 misses as discussed above. The
algorithm of check5 is more complicated and involved than the previously
mentioned checks and, therefore, a longer explanation is needed.

Before discussing check5, the weakness of check4 discussed in the
previous section should be further detailed so that the reason for check5 is
clear. Figure 4.6(a) illustrates a situation where improvement is possible
but is not detected by check4, because there is more than one city between i

and B(e).

33

B{c

(o)
T
L)

~—
(W

" (a) i (b)

Figure 4.6. Check5 finds city ¢ and improves the tour.

34

To improve on part of a tour such as in Figure 4.6(a), the city B(c) must
be detected. One way to locate B(c) is to evaluate a certain number of cities
on each side of i and j. There are two problems with this approach. One is
that the number of cities to check is unsure; for example, in Figure 4.6,
there could be a very large number of cities between i and ¢. The other
problem is that excessive checking is done because, in most cases (i.e. after
every city is added to the tour), no improvement is possible.

Check5 alleviates both of these problems but does not detect all cases
similar to the example in Figure 4.6. This check is different from the
previous checks in that some of the information used is stored information
attained earlier as the tour was being built. When each city k is added to
the tour between i and j, the cost(i,k,j) is stored in association with k (e.g.
usually the cost is stored in a record representing city k). This cost to add k

is referenced by k.oldcost.

35

The algorithm of check5 :

After each k is inserted in the tour between i and j do begin
c:=1i
while cost(i,B(c),k) < c.oldcost do
¢ := B(c);
if (c <> 1) and (dist(B(c),i)+dist(c,k) < dist(B(c),c)+dist(i k) then
begin

insert all edges from city i to city ¢ between B(c)and k such that
the new order in the tour is .. B(e), 1, ... ¢, k...

end;
{ now check for the edges after il
:vhiié cost(j,A(c),k) < c.oldcost do
¢ := A(c);
li)t;zg;;> i) and (dist(k,c)+dist(j,Alc)) < dist(A(c),c)+dist(k,j) then

insert all edges from city j to city ¢ between A(c)and k such that
the new order in the tour is ... k, c, ...j, Alc)...

end;
end;

In the worst case, the 'while' loops terminate when a convex hull city is
encountered since convex hull points have no ‘oldcost’. This situation leads
to a time complexity O(n2). In most cases, however, one can observe that
the while statement will fail immediately. We speculate that check5 is

usually done in constant time resulting in a time complexity of O(n).

4.6 Checké6

Like check5, check6 is more complicated than the previous checks, and

the algorithm also uses previously stored information. Check§ looks for

36

situations for improvement similar to the nature of checkl and check2 with
the exception that check6 looks at many cities instead of only one city at a
time to be moved in the tour. For example, in Figure 4.7(a), the obvious
improvement is to insert all cities between and including p and q in between
1and k.

The difficulty is in determining the existence and location of cities p and
q. One approach is to try every combination of adjacent cities in T. This, of
course, would result in a very costly algorithm. Checks, however, discovers
most possible improvements of this nature in a much quicker time by
employing an edge list which lists all edges that once existed but no longer
do. For example, when k is inserted between cities i and j> the now missing
edge (i,j) is added to the edge list. Thus, when the last city is added to the
tour, the number of edges in the edge list will equal [total number of cities -
number of cities in the initial tour).

This edge list is used to find p and q. It is hypothesized that in most
cases, if there is a group of cities between cities ¢1 and ¢2 that fit in between
two other adjacent cities in the tour better, then (c1,c2) was once an edge;
and therefore edge (c1,c2) would be in the edge list. In the example in
Figure 4.7, using CH cheapest cost or Stewart's algorithm, it is easily seen
that ¢1 and ¢2 must have formed an edge earlier during tour construction.
This hypothesis is not proven here, but is only supported by the observation
of many examples.

The edge list contains specific information for each edge: the two cities
which make the edge (e.g. ¢1,c2), the cost of the edge (explained below in
the algorithm), and a pointer to the next edge in the list.

37

(b)

Figure 4.7. Check6 detects this improvement by employing
an edge list, in which (c1,c2) belongs.

38

In check8, we are looking for improvement only when i, k, j are not in
the sequence c1, p, ..., q, ¢2. Otherwise, check6 can find a P, q (as described
above) and make a change in the tour which does not improve the tour
length. The function NotInSameTourPart in the algorithm below checks to
see if 1, k, j are in the above sequence.

The algorithm for check§ :

After each k is inserted in the subtour between j and j do begin
for each edge (c1,c2) in the edge list do begin

p = Alcl);

q := B(c2);

edge.cost := dist(c1,p) + dist(c2,q) -
dist(c1,c2);

{check for improvement between edge (i,j) }
distance := dist(i,q) + dist(k,p) - dist(i,k);

if distance < edge.cost then begin
if NotInSameTourPart then
if this is the best improvement found so far then
save edge;
end
else begin (now check for improvement between edge (k.j)}
distance := dist(k,q) + dist(j,p) - dist(k,j);
if distance < edge.cost then begin
if NotInSameTourPart then
if this is the best improvement found so far
then save edge;
end,; {if)

end; felse begin)
end; {for each edge (c1,c2)...}
end; {After each k ...

if an improvement was found then begin
reposition cities p to q in between i and k [or k and j];
remove saved edge from edge list;
insert edge (i,k) [or edge (kj)] into the edge list;

end;

add edge (i,j) to the edge list;

To search through the edge list after every city is added to the subtour
requires O(n2) computations.

5.0 RESULTS and ANALYSIS

All heuristics (except simulated annealing) were coded in Turbo Pascal
and tested on the Macintosh SE/30. Five 100 city problems and five 500 city
problems were the test data. The 100 city problems, reported as problems 24
to 28, were first presented by Krolak, Felts, and Marble [1971]. Optimal
tours for these problems were proven by Crowder & Padberg [1980]. (There
is a discrepancy for problem 25 concerning the optimal solution. The
simulated annealing heuristic found a tour which is slightly shorter than
the optimal tour reported by Crowder and Padberg.) This set of test
problems has been the test data for numerous articles [Golden et al, 1980;
Golden and Stewart, 1985; Norback & Love, 1977].

The 500 city problems were created especially for this project. A scale of
0 to 4000 for the x-axis and 0 to 2000 for the y-axis was used in keeping with
the boundary of the 100 city problems. The five 500 city problems are
reported as largel - large5. The random number generator used was the
RandomX function in Macintosh's Turbo Pascal; the algorithm for
RandomX is:

NewX = (75 * OldX) mod (231 - 1),
which is, according to a recent article, a good random number generator

[Park & Miller, 1988).

39

40

The five principal algorithms used were nearest neighbor, nearest
insertion, cheapest insertion, CH cheapest insertion, and Stewart's
algorithm. Nearest neighbor and nearest insertion, both very quick
algorithms, were used as a basis for comparison. Cheapest insertion is
easily converted to a MaxDiff algorithm, but because of its nature, does not
fit the style of most of the checks. For this reason, cheapest insertion was
only combined with MaxDiff. AJl three of these algorithms reported the best
of 3 runs, each run with a randomly generated starting point. The two
convex hull algorithms, CH cheapest insertion and Stewart's algorithm,
were used in conjunction with MaxDiff and all of the checks.

Certain combinations of the checks were also tried. The combinations
reported were chosen by some pre-testing and according to which
combinations appeared intuitively promising.

When checks are combined, certain programming problems arise. For
example, assume a combination of checks 3, 5, and 6 are used. If check3 is
successful and makes an improvement in the tour, then it has also
consequently changed the ordering of i,k,j (where k is the last city inserted
between tour edge (i,j)). Therefore, check5 and check6 can no longer look at
both edges (i,k) and (k,j) because at least one of these edges no longer exists.
In order to simplify the program, if one check is successful, then no more
checks are'attempted for that particular i, k,]

The results are shown in Tables 5.1 - 5.4, Table 5.1 shows the solutions
to the 100 city problems. The algorithms, which at least once, resulted in
the best tour (the best tours are highlighted) of the tested problems were:
Stewart's algorithm with checkl and with checks 3 and 6 combined; CH

41

Table 5.1 Solutions to the 100 city problems.
[Algorithm prob 24 prob 25 [nrob 28 prob 27 iprob 28
Optimal 21282 22141 20749 21294 22068
Simulated Annealing 21285 22139 20770 21284 22183
Nearest Neighbor 26800 25897 24154 27820 26909
Nearest Insertion 25405 26874 25890 25007 26722
Cheapest Insertion 24419 25522 25262 24996 25361
+ MaxDiif 21527 22650 20820 21751 22290
CH Cheapest Insertion 23050 23247 21632 21712 22870
+ Check1 21877 23147 21526 216486 22827
+ Check2 22124 23147 21608 21646 22827
+ Check3 222886 22794 21278 21664 226811
+ Check4 22389 23114 21667 21712 22787
+ Check5 22131 23114 21526 21657 22837
+ Checkb 21634 23037 21526 21646 22827
+ Checks 1 & 3 218386 22718 21128 21598 22768
+ Checks 3 & 6 21580 227186 21176 21609 22768
+ Checks 3, 5 & 6 21528 227186 21132 21598 22788
+ MaxDiff 21579 23049 20922 223985 22680
+ MaxDiff + Checki 21579 22437 20922 21898 22550
+ MaxDiff + Checks 1 & 3 21579 22437 21021 21886 22493
Stewart's Algorithm 22055 22700 21275 21794 22830|
+ Check1 21481 226786 21016 21729 22809
+ Check2 21727 22676 211900 21729 22809
+ Check3 21848 22526 21023 21794 22528
+ Checkd 21957 22689 21224 21794 22780
+ Checks 21589 22689 21014 21739 22830
+ Checks 21520 22576 21271 21729 22780
+ Checks 1 & 3 21481 22513} 20923 21728 22528
+ Checks 3 & 6 21605 22395 20923 21728 22519
+ Checks 3, 5, & 6 21605 22395 20923 21739 22519
+ MaxDift 228657 23178 21233 22205 23558
+ MaxDiff + Checkl 21798 23098 20871 21918 22845
+ MaxDiff + Checks 1 & 3 21701 23192 20871 22109 22330

42

Table 5.2 Solutions as a percentage over the optimal solution.

Algorithm prob24iprob2siprob26/prob27|prob2s avg |
Optimat 21282 22141 20749 21294] 22068
Simulated Annealing 0.01%]-0.01% 0.10%[0.00% 0.43%[0.11%
Nearest Nelghbor 25.93%[17.42%| 16.41%]| 30.65%) 21.94%| 22.47%
Nearest Insertion 19.37%| 21.38%| 24.78%]| 17.44%)| 21.09% 20.81%
Cheapest Insertion 14.74%{ 15.27%| 21.75%| 17.39%) 14.92%] 16.81%
+ MaxDiff 1.15%| 2.30% 0.34%| 2.15%| 1.01%| 1.39%
CH Cheapest Insertion 8.31%| 5.00%| 4.26% 1.98% 3.63%| 4.63%
+ Checkt 2.80%| 4.54%| 3.74%| 1.65%| 3.44%| 3.24%
+ Check2 3.86%| 4.54%| 4.14%| 1.65%| 3.44%| 3.55%
+ Check3 4.72%| 2.95% 2.55%| 1.74%| 2. 46%| 2.88%
+ Check4 2.20%]| 4.39%| 4.42%| 1.96%| 3.26%| 3.85%
+ Check5 3.99%| 4.39%| 3.74% 1.70% 3.48%| 3.46%
+ Check6 1.65%| 4.05%| 3.74%| 1.65% 3.44%| 2.81%
+ Checks 1 & 3 2.60%| 2.60%| 1.83%] 1.43%| 3.17%| 2.33%
+ Checks 3 & 6 1.40%| 2.80%| 2.06%| 1.48%| 3.17%| 2.14%
+ Checks 3, 5, & 6 1.18% 2.80%| 1.85%| 1.43%| 3.17%| 2.04%
+ MaxDiff 1.40%| 4.10%| 0.83%| 5.17%l 2.77% 2.85%
+ MaxDiff + Checkl 1.40%| 1.34%| 0.83%| 2.84%| 2.18% 1.72%
+ MaxDitf + Checks 1 & 3 1.40%| 1.34%| 1.31%! 2.78%| 1.83%] 1.75%
Stewart's Algorithm 3.83% 2.52%| 2.54%| 2.35%| 3.45%| 2.90%
+ Checkt 0.94%| 2.42%| 1.29%| 2.04%] 3.36% 2.01%
+ Check2 2.00%| 2.42%| 1.69%| 2.04%| 3.36%| 2.32%
+ Check3 2.66%| 1.74%| 1.32%] 2.35% 2.08%| 2.03%
+ Checkq 3.17%]| 2.48%| 2.29%| 2.35% 3.23%| 2.70%
+ Check5 1.44% 2.48%| 1.28%| 2.09%| 3.45%] 2.15%
+ Checks 1.12%| 1.96%| 2.52%| 2.04% 3.23% 2.17%
+ Checks 1 & 3 0.94%| 1.68%| 0.84%| 2.04%| 2.08% 1.52%
+ Checks 3 & 6 1.52%] 1.15%| 0.84%| 2.04%| 2.04%| 1.52%
+ Checks 3, 5, & 6 1.52%| 1.15%| 0.84%| 2.09%] 2.04%| 1.53%
+ MaxDiff 6.46%| 4.68%| 2.33%| 4.28%| 6.74%| 4.90%
+ MaxDiff + Check1 2.42%| 4.32% 0.59%| 2.94%] 3.52%| 2.76%
+_MaxDifft + Checks 1 & 3 1.97%| 4.75%| 0.58%| 3.83% 1.19% 2.46%

43

cheapest ingertion with the combination checkl and check3 and the
combination check3, check5, and check6; and Cheapest insertion with

MaxDiff. The only ETSP heuristic to produce the best tour twice was
MaxDiff applied to cheapest insertion. With the exception of simulated
annealing, there was no one heuristic that performed exceptionally well for
all five problems.

Table 5.2 gives the result of each heuristic for problems 24-28 as a
percentage over the optimal. Cheapest Insertion with MaxDiff performed
the best with an average of 1.39% over the optimal solutions; and Stewart's
algorithm with checks 1 and 3 and checks 3 and 6, performed almost
equally well with 1.52% over the optimal. Even though MaxDiff applied to
cheapest insertion resulted in the shortest tours for the 100 city problems,
these results are not guaranteed since for every starting point, a different
tour could develop. Thus to guarantee the best tour produced by cheapest
insertion plus MaxDiff, a problem must be executed n times, each time
with a unique starting point,

Table 5.3 and 5.4 show the results of all five 500 city problems, Simulated
annealing produced the best tours and its results were used as an
approximation of the optimal solution. Although most of the ETSP
heuristics using the convex hull as the initial tour produced tours within 3-
7% above the optimal (best known tour length), none of the heuristics
performed as well as they did with the 100 city problems. The methods
tested which performed the best were Stewart's algorithm with MaxDiff
and checkl, and CH cheapest insertion with MaxDiff, checkl, and check3,
Stewart's algorithm with MaxDiff plus checkl had the best average

44

Table 5.3 Solutions to the 500 city problems.

Algorithm large1 large2 large3 larged largebs
Best Known - S. Annealin 49253 47992 46412 48003 48080
Nearest Neighbor 61023 54897 584686 58741 57894
Nearest Insertion 59835 59788 57727 58620 58440
Cheapest [nsertion 56462 57097 55630 58648 58898
+_ MaxDiff 51681 50315 48868 49650 49335
CH Cheapest Insertion 55110 53185 529786 53934 54229
+ Check1 53717 52403 50751 51880 52863
+ Check2 53788 52720 51151 51878 53100
+_ Check3 53144 51082 45867 50065 51428
+_ Check4 54184 52665 51339 52298 53492
+ Check5 54070 52323 51094 52225 53204
+ Checks 53648 52382 51015 51843 52087
+ Checks 1 & 3 52356 51043 50050 49998 50413
+ Checks 3 & § 52225 51411 50006 49715 51024
+ Checks 3, 5, & 6 52225 51411 50007 49747 51024
+_ MaxDitf 51829 49569 48802 49693 50825
+ MaxDiff + Check1 51343 49382 48627 48839 50809|
+ MaxDiff + Checks 1 & 3 51194 49259 48582 48768 50389
Stewart's Aigorithm 53674 51712 49549 51208 51719
+ Check1 52063 49867 48366 50234 49830
+ Check2 52585 50184 48781 50337 502290
+ Check3 51851 50299 48794 50106 50188
+ Check4 524686 50894| 49044 507867 50638
+_Check5 52676 50607 48852 50709 50576
+ Checké 52154 48502 48202 50140 48571
+ Checks 1 & 3 51547 49801 48358 49363 49697
+ Checks 3 & 6 51751 49408 47987 49719 50535
+ Checks 3, 5, & 6 51665 49352] 47820 49368 50535
+ MaxDiff 52783 50920 49509 50335 49972
+ MaxDiff + Check1 50806 49264 48537 49498 490691
+_MaxDiff + Checks 1 & 3 50843 49527 48628 49775 49701

45

Table 54 Solutions as a percentage over the best known tour.,

Algorithm largel llarge2 [large3 [iarge4 [larges5 Javg
Best Known - S. Annealin 49253; 47992 46412 48003 48080
Nearest Neighbor 23.90%) 14.39%(25.97%)| 22.37% 20.41%[21.41%;
Nearest Insertion 21.61%| 24.58% 24.38%| 22.129% 21.55%| 22.85%
Cheapest Insertion 14.64% 18.87%] 19.86%) 18.01% 18.34%| 17.96%,
+ MaxDiff 4.93%| 4.84%| 5.29%| 3.439% 2.61%| 4.229%
CH Cheapest Insertion 11.89%| 10.82%(14.14% 12.36%| 12.79% 12.40%
+ Check1 9.06%| 9.19% 9.35% 8.08%; 9.95% 9.13%
+ Check?2 9.20%| 9.859% 10.21%| 8.07%| 10.44%% 9.56%
+ Check3 7.80%| B.46%! 7.889% 4.30%| 6.96% 6.85%
+ Check4 10.01%| 8.74%|10.62%| 8.95% 11.26%| 10.119%
+ Check5s 9.78%| 8.02%| 10.00% 8.80%| 10.66%| 9.67%
+ Checks 8.92%| 8.17%| 9.92% 8.00% B.35%| 8.87%
+ Checks 1 & 3 B.30%| 6.36%| 7.84% 4.18% 4.85%| 5.90%
+ Checks 3 & 6 6.03%| 7.12%[7.74% 3.57% 6.12% 6.12%
+ Checks 3, 5. & & 6.03%| 7.12%| 7.75%| 3.63% 8.12%| 6.13%
+ MaxDiff 5.23%| 3.29%! 5.15% 3.52% 5.71%| 4.58%
+_ MaxDiff + Check1l 4.24%| 2.90%| 4.77%| 1.74% 5.68% 3.87%
+ MaxDiff + Checks 1 & 3 3.94%| 2.64%| 4.68%| 1.59% 4.80%| 3.53%
Stewart’'s Aigorithm 8.98%| 7.75%| 6.76% 6.88% 7.57%| 7.55%
+ Check1 5.71%| 3.91% 4.21% 4.65%| 3.64%| 4.42%
+ Check2 8.77%| 4.57% 5.10%| 4.86%; 4.45% 515%
+ Check3 5.48%| 4.81% 5.13% 4.38%| 4.38%] 4.84%
+ Checkd 6.52%| B.05%| 5.67% 5.76%| 5.32%| 5.86%
+ Check5 6.95%| 5.45% 9.26%| 5.64%| 5.19% 5.70%
+ Checks 5.89%| 3.15%| 3.86%)| 4.45% 3.10%| 4.09%
+ Checks 1 & 3 4.66%| 3.77%| 4.19%f 2.83% 3.36%| 3.76%
+ Checks 3 & 6 5.07%| 2.95%| 3.33%| 3.57% 5.11%| 4.01%
+ Checks 3, 5 & & 4.90%| 2.83%] 3.03% 2.84% 5.11%| 3.74%
+ MaxDiff 7.19%|_6.10%| 6.67%| 4.85% 3.94%| 5.75%
+ MaxDitf + Checkl 3.15%| 2.65% 4.58% 3.11% 2.10%| 3.12%
+ MaxDIiff + Checks 1 & 3 3.23%| 3.20%| 4.77%| 3.89% 3.37%j 3.65%

46

percentage. It should be observed that the cheapest insertion and CH
cheapest insertion algorithms performed especially badly with the larger

sets of cities. However, cheapest insertion with MaxDiff is still competitive.

5.1 Analysis of Checks

For all checks tested, the tour lengths either improved or remained the
same.
Checkl usually resulted in a noticeable improvement when employed
with MaxDiff or any of the existing algorithms. It performed slightly
better when used with Stewart's algorithm than with the CH cheapest
insertion heuristic.
The algorithm for check2 is the same as check1 with the exception that a
city marked for improvement is reinserted back into the tour instead of
removed from the tour (explained in the chapter on checks). The hope is
that check2 will result in tour lengths comparable to checkl and also
find the tours quicker. Although check2 performed as well as checkl in
some of the problems, on the average, checkl resulted in shorter tours.
Check3 performed well with a consistent improvement in tour length
with little additional computing time.
Check4 and check5 were both designed to catch similar problems.
Check4 is much simpler but check5 found more possible improvements.
On the average, check5 usually performed 0.1 - 0.5% better than check4,
Check®8, like checks 1 and 3, consistently produced good tours.

47

Some combinations of checks are more effective than others, and the
success of these combinations depends on the algorithm with which they
are used (i.e. Stewart's or CH cheapest insertion). The three combinations
used in this project were checks 1 and 3, checks 3 and 6, and checks 3, 5,
and 6.

All three combinations were successful to some extent. These
combinations produced better results when used with Stewart's algorithm
rather than with CH cheapest insertion. The combination of checks 3, 5,
and 6 performed better than just the combination of checks 3 and 6 when
used with Stewart's algorithm; but only a marginal difference between
these two combinations occurred when used with CH cheapest insertion.
On the average, all three combinations performed about the same.
Combinations of checks 1 and 3, and checks 3, 5, and 6 each produce a tour

__ which is approximately half the percentage over the optimal as is the

percentage over the optimal for an algorithm without checks.

The behavior of check3 added to checkl together with MaxDiff is
interesting. In problems largel - large5, there is a noticeable improvement
(an average of 3.5% to 3.2% above the optimal) when check3 is added to
checkl and MaxDiff, used with the CH cheapest insertion heuristic. On the
other hand, the addition of check3 with Stewart's algorithm resulted in
worse tour lengths (3.0% to 3.5%). In problems 24 - 28, the reverse is true,
with an improvement using Stewart's algorithm and a reduction in tour
length with CH cheapest insertion, though the differences in percentages

here are not as great as in problems largel - large5.

48

5.2 Analysis of MaxDiff

The most noticeable improvement occurs when MaxDiff is applied to the
cheapest insertion algorithm; cheapest insertion improved from an
average of 16.3% above the optimal to 1.4% above the optimal for problems
24 - 28. Besides this case, MaxDiff performed much better on the average
with the large (500 cities) problems than with the 100 city problems. In the
100 city problems, MaxDiff applied to cheapest insertion produced much
better solutions than cheapest insertion (without MaxDiff). Besides
cheapest insertion, MaxDiff showed Iittie or no improvement as compared
to the original algorithm it was being applied to. Only when MaxDiff was

used in combination with checkl were good tours consistently found.

In the larger problems, the application_of MaxDiff made a. marked

improvement over the 'original algorithms (Stewart's, cheapest insertion,
and CH cheapest insertion). This improvement increased when the checks
were used with MaxDiff, especially checkl and the combination of checks 1
and 3.

MaxDiff doesn't apply td Stewart's algorithm as well as it does to the
cheapest cost algorithms; although in the 500 city problems, MaxDiff
applied to Stewart's algorithm resulted in a shorter tour and a more

efficient algorithm than Stewart's algorithm in all five problems.

49

5.3 Analysis of Computation Times

Table 5.5 and Table 5.6 list the computing times (in seconds) for all 10
problems. The times marked by an asterisk were estimated. Nearest
neighbor and nearest insertion were by far the fastest of the algorithms
tested, with nearest neighbor usually taking a little less than a third of the
time required by nearest insertion. Nearest neighbor tock 6 seconds to find
a solution for the 100 city problems and approximately 2 minutes for the 500
city problems,

The rest of the heuristics took a much longer time, with times of one to
two minutes for the 100 city problems and times of 32 to 58 minutes for the
900 city problems. Most of the time results are not surprising with the

- checks consistently increasing the computation time. Although the checks

did increase the computation time, on the average the time was never
doubled. |

Although check?2 performed faster than checkl as expected (discussed in
the analysis of checks), the difference in time was not significant. Thus,
when checkl removed a city from the subtour, the cost to reinsert the city
was minor. There was also no sign of a termination problem as discussed
in section 4.1. The difference in time between check4 and check5 was very
minor and as detailed above, check5 consistently produced shorter tours
thlan check4.

An algorithm with MaxDiff applied to it is longer than the same
algori.thm without MaxDiff, because instead of calculating and updating

the one edge which satisfies the insertion criterion the best for each city not

50

Table 5.5 Time in seconds for the 100 city problems.

|Algorithm brob 24 |prob 25 [prab 26 |[prob 27 prab 28
Nearest Neighbor 6 6 6 7 7
Nearest [nsertion 19 20 20 20 20
Cheapest Insertion g2 80 73 81 101
+ MaxDiff 57 64 683 63 65
CH_Cheapest Insertion 45 50 50 53 49
+ checkl 93 89 90 86 84
+ check2 82 87 85 85 80
+ check3 57 63 61 59 57
+ check4 52 56 54 54 50
+ check5s 52 57 53 53 50
+ checké 78 80 78 78 74
+ checks 1 & 3 98 97 106" 92 92
+ checks 3 & 6 87 89 gq 84 78
+ checks 3, 5, &6 87 agp 91 85 79|
+ MaxDIif 51 55 52 50 54
+ MaxDiff + checki 85 95 85 87 80
+ MaxDiff + checks 1 & 3 agQ g9 104 93 97
Stewart’'s Algorithm 56 58 76 59 49
+ checki 97 a8 129 g2 83
+ check2 87 95 123 91| 82
+ check3 83 69 88 65 56
+ check4 57 64 79 80 50
+_ checks 57 65 79 59 49
+ checké -1 88 92 85 74
+ checks 1 & 3 101 104 140 99 8%
+ checks 3 & 6 92 86" 101 21 79
+ checks 3, 5, &6 g3 97* 102 92 80
+ _ MaxDitf 74 79 990 78 58
+ MaxDitf + check? 114 114 138 125 101
+ MaxDiff + checks 1 & 3 121 121 143 130 107

51

Table 5.6 Time in seconds for the 500 city problems.

Algorithm larget large2 large3 large4 large5
Nearest Neighbor 121 127 132 137 148
Nearest Insertion 447 453 452 463 474
Cheapest Insertion 53490 3837 4722 4459 4146
+ MaxDiff 1537 1573 15897 1524 1560
CH Cheapest Insertion 1929 2003 1930 1913 1903
+ checkil 3105 3145 3234 3048 3140
+ check?2 2958 3040 3172 2981 2933
+ check3 2275 2380 2517 2512 24886
+ check4 2120 2221 2317 2273 2085
+_ checks 2140 2203 2366 2298 2103
+_ checksé 2896 2957 3059 2905 24964
+ checks 1 & 3 3277 3413 3421 3405 3479
+ checks 3 & 6 2931 2817 3114 3170 3143
+ checks 3, 5, &6 2831 28286 3123 3185 3150
+ MaxDiff 1466 1587 1541 1570 1569
+ MaxDiff + checkl 2448 3279 2482 2639 2502
+ MaxDIff + checks 1 & 3 2478 2422 2518 2649 2540
Stewart's Algorithm 1906 1954 2147 2127 2260
+ checki 3108 3238 3432 32990 3506
+ check2 3027 3121 32086 3287 3325
+ check3 2212 2275 2512 2508 2599
+ checkd 2153 2204 2341 2373 2513
+ check5 2180 2238 2355 2360 2527
+ checks 2941 2985 3195 3182 3351
+ checks 1 & 3 3168 3305 3549 3440 3291
+ checks 3 & 6 2804 3031 3057 3262 2883
+ checks 3, 5, &6 2822 3038 3061 3273 2890
+ MaxDiff 1566 1652 1665 1619 2199
+ MaxDiff + check? 2708 2762 2849 2771 3540
+ MaxDiff + checks 1 & 3 2679 2777 2841 2779 3123

52

in the subtour, MaxDiff requires that two edges must be maintained,
However in this study, MaxDiff applied to a particular algorithm actually
often decreased the computing time. In the 500 city problems where
MaxDiff was applied to cheapest insertion, CH cheapest insertion, and
Stewart's algorithm, the time was reduced in all cases.

The reason for the decreased time is that MaxDiff has a tendency to
reduce the complexity of u}ﬁdating NT (the list of cities not yet in the
subtour). As discussed in the existing algorithmsg section, the worst case
performance can arise during the updating of NT. A brief review is given
here: After every city k is inserted into T (the list of cities in the subtour)
between cities i and j, each city p in NT must determine the edge with
which p fits in the best. Ifp previously fit in edge (i,j) the best, then p must
look at all edges in the subtour; otherwise p needs to look only at edges (i,k)
and (k,j). The first of these two cases leads to the worse case time
complexity.

Figure 5.1 and 5.2 illustrates tour construction by an algorithm not
using and using MaxDiff, respectively. In Figure 5.1(a) and 5.2(a), there
are 11 cities for which edge (ij) is the edge where the city fits in the best.
After the first city is inserted, all remaining 10 cities must look at all edges
in the subtour because each on of the 10 cities pointed to the edge which was
just lost. In the non-MaxDiff algorithm, this process continues where the
remaining cities must look at all possible edges. In the MaxDiff algorithm,
when the second city is added (Figure 5.2(c)), only four cities must look at
all edges in the subtour, while the other 5 cities only need to examine the

two new edges (e.g. (i,k) and (k,j)). When the third city is added (Figure

53

i® -2 i [\, .

(a)) (b))

| /\ J | /\‘ |
(c) (d)

Figure 5.1. Worst case complexity when updating NT.

54

o. &
1= — ; i .
(a) (b) !

(c) (d) J

Figure 5.2. MaxDiff solution reduces complexity of updating NT.

55

5.2(d)), all eight cities will only look at the two edges added last. Thus after
3 cities are added to the subtour in these examples, the MaxDiff inspects all
cities in T 15 times (10 + 5 + 0) while the non-MaxDiff algorithm does 27
times (10 + 9 + 8).

6.0 CONCLUSION

Certain conclusions can be drawn from the results. Nearest neighbor
and nearest insertion should only be used when a lower bound on the
optimal tour is desired. Although these algorithms are fast, neither one of
them produces good solutions.

Cheapest insertion should probably never be used as an ETSP heuristic,
The computation time was similar to that of the other O(n?lgn) algorithms
studied in this research, but the tour lengths were much worse. If
cheapest insertion is to be used, it should definitely be used with MaxDiff
applied. | |

With and without checks, the Stewart algorithm overall performed
better than the convex hull cheapest insertion algorithm. Only in one case
(problem 27) did CH cheapest insertion, without checks, produce a very
good tour. Thus CH cheapest insertion alone is not recommended as a good
tour heuristic. CH cheapest insertion becomes a valuable heuristic when
MaxDiff is applied to it and checks 1 and 3 are added. Although checkl and
check3 used in combination can add 25% to 75% to the computing time, on
the average the additional time results in a 2% to 7% shorter tour.

Table 6.1 lists the most successful algorithms tested in this research (the

best solutions are highlighted). The first column lists the average

56

57

Table 6.1 Summary of the best heuristics,
ALGORITHMS DISTANCES TIME

% _over lavg absolute) Reiative values |% of orig |

optimal value large 1-5 |24 -28 algorithm
Cheapest Insertion 17.39% 5.85 0.0013 0.0712] 100.00%
+ MaxDifi 2.80% 69.59] 0.0164| 1.8223] 54.58%
CH Cheapest Insertion 8.52% 17.48 0.0042 0.5321] 100.00%
+ MaxDiff 3.72% 38.63 0.0148 1.0419 93.15%
+ MaxDiff + check1 2.79% 50.15 0.0115 0.7230] 163.94%
+ MaxDiff + checks 1 & 3 2.64% 47.88 0.0113 0.6606] 174.28%
Stewart 5.22% 24.52 0.0085 0.6013 100.00%
+ checks 1 & 3 2.64% 51.96] 0.0086 0.7035] 168.08%
+ checks 3 & 6 2.76% 50.15 0.0087 0.7827] 150.37%
+ checks 3, 5 & 6 2.64% 51.25 0.0094 0.7816] 151.46%
+ MaxDiff 5.33% 20.92 0.0104 0.3022] 105.50%
+ MaxDiff + check1 2.94% 46.79! 0.0116 0.4698] 170.45%

58

percentage over the optimal for all ten problems. The next column contains
the average absolute values. The absolute value is the inverse of the
percentage over the optimal (although note that the algorithm with the best
absolute value is not the same as the algorithm with the lowest percentage
over the optimal). The relative value, in the next two columns, is the
absolute value divided by the time it took to compute the tour, The relative
value describes the quality of the tour as the length per computing time.
The average computing time of a modified algorithm (i.e. with checks or
MaxDiff) as a percentage of the original algorithm is also listed.

The shortest tours were found by Stewart's algorithm using a
combination of checks 3, 5, and 6, checks 1 and 3, and CH cheapest
insertion with MaxDiff applied and checks 1 and 3 added. The average
increases in time for these heuristics were between 50% and 75%, which is
reasonable for the better solution.

Some of the checks were more successful (i.e. improved tour
construction more) than others. Checkl and check6 were the most costly
and the most successful. Check3 and check5 detected some improvements
in the tour that checkl and check§ did not, and did this very quickly.
Check2 and check4 were not as successful. Check2 was slightly faster than
checkl, but did not detect many of the improvements that checkl did.
Similarly, check4 was slightly quicker than check5, but also missed many
of the improvements that check5 detected.

It is recommended that either checkl or checkG should be used when an
increase in time is not critical, Check3 and check5 should be used with

these checks since they are efficient and usually result in a shorter tour,

59

The algorithms that produced the shortest tours were discussed above.
Table 6.1 also indicates that MaxDiff applied to cheapest insertion is worth
discussion, rating the best in four of the five categories. As mentioned
before, the tables report the best of three runs for cheapest insertion.
MaxDiff applied to cheapest insertion is not recommended unless a number
of runs are made.

In summary, if only one algorithm is to be used, then Stewart's
algorithm with checks 3, 5, and 6 should be used since it is the quickest of
the three best heuristics. It is recommended though, that at least two
algorithms are used, two of them being Stewart's with checks 3, 5, and 6,
and MaxDiff applied to CH cheapest insertion with checks 1 and 3. One
reason for choosing these two algorithms is that when a modified Stewart
algorithm produced a bad tour, a modified CH cheapest insertion algorithm
did well; and when CH cheapest insertion performed poorly, Stewart's
algorithm usually produced a good tour. If a heuristic is needed which
often produces a tour within 4% above the optimal, then MaxDiff applied to
CH cheapest insertion is the best choice because of its speed. This heuristic
was the fastest (along with cheapest insertion plus MaxDiff) of all of the
algorithms tested in this research.

6.1 Further Research

One goal of this project was to determine if further research in MaxDiff

and the use of checks is warranted. MaxDiff can be applied to more

60

algorithms than the oneg listed here. It is not always easy to determine
which algorithms are compatible with MaxDiff and then how to apply
MaxDiff to the algorithm; but we feel that applying MaxDiff to an
algorithm is worth the effort .

The checks in this research could be easily improved. For example, in
section 5.0, it was explained that if one check were successful for any
particular i, k, j, then no other checks would be attempted. This is because
most of the checks modify the edges (i,k) or (kj) when successful, and thus
the edges (i,k) and (k,j) might no longer exist for other checks to examine.
More possible improvements would probably be detected if after any check c
has changed the tour, then all other checks and c itself, are each called
using the new edges Just created (instead of using the edges (i,k) and (k.
as usual).

Another possible check ig to modify check6 so that the cities to be
repositioned in the subtour are instead removed from the subtour as is done
in checkl. As stated above, checkl performed consistently better than
check2 because it removed the cities instead of repositioning them,

Only some of a variety of possible checks are covered in this research.
There are many more checks which could be developed. A good check
detects many improvements while adding very little computation time to
the original algorithm. Through continued research in this area,
hopefully, good checks will develop and thu.s improve the performance of

existing algorithms.

List Of References

Bellmore, M. and G.L. Nembhauser (1968). The traveling salesman
problem: a survey. Oper. Res. 16, 538-558.

Cerny, V. (1985). Thermodynamical approach to the traveling salesman
problem: an efficient simulation algorithm. ma) of imization

Theory and Applications 45, 41-51.

Crowder, H., and M.W. Padberg (1980). Solving large-scale Symmetric
travelling salesman problems to optimality. Management Sci. 26, 495-509.

Eilon, S., Watson, C.D.T., and Christofides, N (197 1). Distribution
Management, Griffin, London.

Golden, B.L., L.D. Bodin, T. Doyle, and W. Stewart, Jr (1980). Approximate
traveling salesman problems. Oper. Res. 28: 694 - 71 1.

Golden, B.L., and W. Stewart Jr, (1985). "Empirical analysis of heuristics."
In The Travelin lesman Problem. Edited by E.L. Lawler, J.K, Lenstra,
AHG. Rinnooy Kan, and D.B. Shmoys. John Wiley and Sons Ltd, Great
Britain,

Garey, M.R. and D .S, Johnson (1979). m rs ang Intr ili
i he Th f NP-Completen » W.H. Freeman and Company,
New York.

Graham, R.L. 1972. An efficient algorithm for determining the convex hull
of a finite planar set, Info, Proc. Lett 1, no. 1, 132-133,

Johnson, D.S. and C.H. Papadimitriou (1985). "Performance guarantees
for heuristics.” In The Trav lin lesman Problem. Edited by E.L.
Lawler, J.K. Lenstra, A H.G. Rinnooy Kan, and D B. Shmoys. John Wiley
and Sons Ltd, Great Britain,

Kirkpatrick S., C.D. Gelatt dJr., and M.P. Vecchi (1983). Opt.imization by

simulated annealing: quantitative studies, rnal of istical Physics
34, 671-680,

61

62

Krolak, P.D., W. Felts, and G. Marble (1971). A man-machine approach
toward solving the traveling salesman problem. Comm. ACM 14, 327-334.

Lawler EL., JK. Lenstra, AH.G. Rinnooy Kan, and D.B, Shmoys (Eds.)

(1985). The Traveling Salesman Problem. John Wiley and Song Ltd, Great

Britain.

Noga, M.T. (1984). "Fast geometric algorithms.”, Ph. D. dissertation,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia,

Norback, J.P., and R.F. Love (1977). Geometric approaches to solving the
traveling salesman problem. Management Sci. 23, 1208-1223.

Park, S.K,, and KW, Miller (1988). Random number generators: good ones
are hard to find. Comm. ACM 31, 1192-1201.

Skiscim, C.C. and B.L. Golden (1983). Optimization by simulated
annealing: a preliminary computational study for the TSP. Proceedings of
the 1983 Winter Simulation Conference, 523-535.

Stewart, W.R. Jr. (1977). A computationally efficient heuristic for the
traveling salesman problem. Proc. 13th Annual Meeting of S.E, TIMS, 75-

given are actually the tours of the most successful algorithm (not including
simulated annealing) for each problem. The last tour listed is of problem 25
produced by simulated annealing, which resulted in a better tour length

than the optimal length reported by Crowder and Padberg [1980].

63

problem 24
length=21480.¢
tour found by
Stewart's

algorithm

checkl and
+ checks 3,5,&6.

178
241
19
53
22
123
161
376
378
252
274
298
198
463
611
738
872
928
929
850
1234
1247
1251
1424
1621
1625
1724
1807
2178
2139
2290
2573
2597
2678
2728
2576
2628
2716
2721
2945
2961
3085
3384
3373

24
341
674
857
987
862
906
825
1048
1240
1420
1513
1810
1670
1384
1325
1559
1700
1766
1846
1946
1945
1832
1728
1830
1651
1642
1711
1619
1806
1810
1969
1830
1825
1698
1676
1479
1432
1482
1622
1605
1528
1498
1646

3447
3510
3683
3911
3955
3950
3874
3520
3113
2991
3479
3756
3822
3854
3888
3875
3913
3893
3815
3640
3416
3022
2863
2936
2848
2519
2542
2588
2573
2599
2574
2586
2484
2421

2097

1917
1795

1787

1393
1380
1115
984
938
742
611
839
1187
1286
1323
1429
1256

1830
1671
1533
1673
1743
1558
1318
1079
885
792
821
882
899
923
666
598
192
102
169
43
143
474
558
337
96
135
236
302
599
901
946
1286
1183
1007
981
687
962
1009
1368
939
1052
965
955
1025
673
620
706
525
280
134
61

1178 100
953 268
776 392
457 334
327 265
Problem 25,

length=22394.5
Tour found by
Stewart's

algorithm

checks 3 & &.

2630
2614
2372
2503
2310
2330
2830
2801
2800
2929
2938
3084
3084

3370

3438
3133
3220
3140
3058
2608
2639
2642
2312
2030
2009
2000
1782
1829
1612
1538
1517
1286
1213
896

844

694

422

20
195
127
352
635
741
775
695
653
485
543
748
774
791
901
1143
1454
1401
1276
1221
1239
1269
1270
1186
1163
1110
995
812
328
224
266
550
910
705
520
552
542

380
468
347
387
61

171
298
399
749
356
376
193

177

563

627

839

782

731

706

962

1182
1090
1423
1490
1526
1697
1794
1729
2132
2191
2426
2408
2489
2741
2937
3114
3245
3317
3453
3417
3507
3515
3611
3782
3834
3675
3858
3904
3876

478
319
252
190
81
514
615
850
920
1056
1018
1210
1323
1390
1817
1513
1261
1355
1462
1741
1925
1895
1853
1652
1322
1123
1612
1924
1589
1498
1432
1579
1851
1747
1520
1583
1568
1629
1828
1966
1998
1808
1851
1892
1968
1865
1827
1522
1472
1444
1165

3918
3896
3938
3829
3684
3821
3595
3292
3162
3123
3060
3017

problem 26
length=20820.4
Tour found by

1088
742
516
513
445
147
111
152
367
217
155
108

Cheapest
Insertion
MaxDiff.

3808
3736
3853
3586
3499
3409
3314
3092
3078
2933
2687
2773
2650
2636
2499
2361
2178
2302
2232
2433
2513
2365
2469
2552
2312
2318
2082
2048
1838
1660

1375
1542
1712
1909
1885
1917
1881
1668
1541
1459
1353
1286
802

727

658

640

978

1127
1374
1538
1572
1649
1838
1909
1949
1925
1753
1628
1732
1556

1533
1357
1327
1362
1183
1544
1307
1027
826
737
693
901
705
554
457
323
43
22
138
185
482
234
86
192
219
396
242
99
40
14
29
213
721
805
812
913
960
1058
1031
1000
834
781
779
868
1097
1410
1774
1779
1868
2049
2221

1780
1905
1893
1526
1391
863
964
1041
1226
1285
1383
1552
1812
1825
1607
1714
1957
1617
1610
1542
1337
1118
1065
1004
898

828

584
536
462
454

6

220

186

272

351

317

303

372
428
457

629

671

777

731

643
307
107
90
197
417
291

65

2576
2781
2990
3099
3124
3249
3297
3278
3174
3213
3394

3564

3806
3939
3835
3646
3704
3635
3729

189

478

214

173

408

378

491

799
1064
1085
1028
676

746

963

1018
1082
1174
1188

problem 27

length=21598.1

Tour found by
CH cheapest
insertion +

checks

1&3

and also +

checks
547
264
278
202
47
240
235
241
401
555
464
80
149
386
394
571
555
1082
811
778
1109

3,5,&6.
25
36
165
233

363
619
1059
1069
980
1121
1302
1533
1629
1616
1944
1982
1753
1561
1295
1282
1196

1009 1001
1021 962
997 942

981 843

1179 969
1264 1090
1393 859
1677 1238
1699 1294
1768 1578
1623 1723
1632 1742
1646 1817
1787 1902
1994 1852
2028 1736
2050 1833
2214 1977
2374 1944
2221 1578
2356 1568
2834 1512
3007 1524
2927 1777
3220 1945
3248 1906
3373 1902
3786 1862
3805 1619
3918 1217
3535 1112
3332 1049
2740 1101
2901 920
2982 949
3023 871

3060 781

2944 632
2993 624
3452 637
3600 459
3599 514
3642 699
3868 697
3935 540
3946 459
3766 154
3538 125
3503 301

3062 329
2995 - 264

2656
2581
2592
2658
2597
2347
2334
2223
2067
1962
1828
1766
1766
1819
1725
1604
1529
1541
1346
1272
1203
1017
931

781

634

460

366

387

128
121
248
360
349
388
523
990
694
389
456
678
692
814
927
706
581
354
408
246
385
333
512
670
294
267
339
199

Problem 28

length=22289.5
Tour found by

Cheapest
insertion +
MaxDiff.

3239
3364
3468
3404
3423
3061
3029
2849
2835
2790
2643
2609
2502
2503

1376
1498
1404
1307
1241
1211
1242
1214
1472
1457
1320
1286
1274
1172

2243
2445
2164
2143
2053
1937
1513
1689
1398
1419
1086
878

765

1034 -

958
920
989
739
618
571
678
198
91
53
106
144
78
285
397
538
382
201
96
48
48
217
374

741

923

876

1067
1280
1628
1782
1878
1754
1668
1741
1806
2081

1332
1820
1874
1611
1461
1400
1646
1223
1100
872
868
715
833
1344
1670
1835
1997
1850
1953
1711
1595
1632
1732
1657
1267
1185
1066
1029
1217
1023
872
693
691
267
154
38

110
146
108
220
371
237
253
93
59
359
658
712
733
1011

66

2186
2502
2753
2779
2823
3019
3035
2977
3048
3232
3230
3431
3527
3941
3972
3613
3393
3477
3479
3430
3502
3803
3825
3796
3702
3551
3646
3548
3359
3326
3104
3083
3105
2916
3098

problem 25
length=22139
Tour found by

766
146
283
435
376
189
152
39

324
380
78
41
258
329
523
782
949
1023
1088
1067
886
1101
1401
1624
1673
1758
1999
1693
1846
1931
1938
1823
1724
1594

Simulated

Annealing.

3140 1401
3220 1454
3114 1629
3245 1828
3317 1966
3453 1998
3417 1808
3507 1851

3515
3611
3782
3834
3675
3858
3904
3876
3918
3896
3938
3829
3684
3821
3595
3292
3162
3123
3060
3017
2630
2614
2372
2503
2310
2330
2830
2801
2800
2929
2938
3084
3084
3370
3438
3133
3058
2698
2639
2642
2312
2030
2009
2000
1782
1829
1612
1538
1517
1286

1892
1968
1865
1827
1522
1472
1444
1165
1088
742
516
513
445
147
111
152
367
217
155
108
20
195
127
352
635
741
715
695
653
485
543
748
774
791
901
1143
1276
1221
1239
1269
1270
1186
1163
1110
995
812
328
224
266
550

896 705

844 520
694 552
422 542
380 478
468 319
347 252
387 190
61 81

171 514
298 615
399 850
376 1018
193 1210
71 1323
177 1390
3 1817
563 1513
731 1741
706 1925
962 1895
1182 1853
1090 1652
782 1462
839 1355
627 1261
556 1056
749 920
1213 910
1490 1123
1423 1322
1526 1612
1697 1924
1794 1589
1729 1498

2132 1432

2191 1579
2426 1851
2408 1747
2489 1520
2741 1583
2937 1568

largel

67

length=50805.¢
Tour found by

Stewart's

MaxDiff +
checkl.

1685
1601
1413
1347
1320
1333
1434
1395
1344
1369
1465
1539
1588
1552
1537
1620
1661
1684
1746
1759
1628
1608
1626
1673
1699
1678
1692
1661
1692
1782
1912
1915
1830
1793
1761
1798
1765
1625
1592
1578
1461
1442
1360
1328
1538

5
139
81
119
128
195
184
342
515
575
296
239
302
405
593
645
652
576
706
719
738
735
881
876
975
1004
1014
1074
1078
1083
1155
1321
1293
1271
1267
1323
1435
1480
1351
1277
1187
1194
1289
1210
1016

+

1503
1497
1423
1392
1294
1350
1163
1139
1092
1068
1122
1140
1101
1076
1037
915
904
769
718
762
625
537
543
540
515
499
427
450
384
513
569
663
693
776
835
901
899
861
998
1138
1230
1195
1004
1170
1176
1191
1142
1082
1016
987
939

847
799
837
846
853
940
1005
946

1017
1105
1117
1173
1196
1253
1163
1064
1239
1121
1033

1016
1043
1054
1079
1028
880
864
734
772
772
755
870
776
689
826
849
913
902
898
821
715
619
543
475
445
374
390
423
459
335

958
1057
1160
1177
1173
964
965
794
801
695
679
666
604
585
612
792
837
771
680
338
527
363
223
146
217
164
119
268
318
453
491
376
445
231

109
109
36
56

78
161
234

20

170
223
369
361
328
314

297
229
214
113
68
65
181
201
165
112
22
119
209
220
274
416
535
589
523
519
356
617
622
545
503
466
414
340
386
451
332
206
127
102
26
285
328
381
480
525

747
815
856
979
1037
930
939
972
997
1195

283
221
188
25
104
47
186
160
179
250
249
256
157
157
159
65
67
293
335
334
511
536
536
587
693
923
1065
1060
940
916
861
788
749
693
677
639
520
494
412
323
316
363
373
45%
556
613
624
710
807
878
895

1333
1353
1302
1227
1362
1421
1433
1596
1612
1663
1687
1730
1775

1816 .

1819
1795
1882

1946

1930

1859

1969

1866

1771

1858

1861

1976

1854
1662

1606

1594

1645

1685

1561

1617

1658

1640

1593

1563

1592

1623

1555

1489

1345

1279

1342

1341

1472

1401

1463

1398

1335

1157
1314
1232
1228
1201
1170
1318
1397
1369
1366
1407
1457
1504
1504
1671
1651
1715
1803
1768
1838
1860
1970
2113
2052
2028
2006
2063
2158
2273
2414
2473
2425
2409
2423
2271
2256
2147
1508
1871
1942
1889
1893
1853
1850
1957
2176
2300
2410
2480
2517
2410

1438
1532
1652
1688
1703
1768
1840
1845
1909
1946
1996
1941
1921
1821
2000
1818
1693
1712
1567
1468
1422
1510
1476
1317
1256
1214
1179
1237
1368
1333
1436
1455
1609
1658
1480
1591
1780
1726
1736
1789
1839
1866
1895
1987
1872
1951
1904
1950
1949
1954
1869

68

2489
2535
2569
2681
2756
2714
2705
2679
2641
2586
2874
2908
2928
2934
3101
3135
3249
3305
3303
3420
3472

3349
3304
3281
3264
3207
3133
3050
3038
3137
3100
3217
3355
3305
3281
3338
3362

3464
3463
3487
3582
3550
3628
3695
3841
3990
3988
3911
3896

1764
1735
1805
1857
1755
1711
1703
1659
1657
1591
1457
1487
1542
1343
1289
1314
1187
1131
1288
1478
1465
1491
1618
1649
1666
1664
1618
1558
1534
1577
1673
1963
1954
1901
1818
1801
1747
1780
1887
1926
1995
1502
1876
1789
1631
1840
1982
1787
1630
1690
1641

3818
3841
3938

3720
3667
3589
3660
3643
3619
3597
3423
3399
3456
3467
3507
3524
3584
3639
3697
3735
3762
3829
3822
3732
3685
3743
3670
3702
3766
3825
3957
3878
3927
3982
3957
3996
3878
3977
3874
3873
3867
3944
3961
3988
3956
3967
3943
3826
3874
3787

1626
1591
1444
1446
1404
1489
1433
1397
1274
1217
1137
1150
1023
1035
984
869
858
747
750
691
704
688
792

865
899
939
962
1044
1171
1152
1135
996
914
849
829
756
614
533
521
477
451
433
434
302
209

36

89
249
405

69

3696 435 2249 1121 2780 222 large2

3704 456 2276 1061 2833 178 length=49259 ¢
3679 581 2224 1010 2789 9 Tour found by
3503 527 2160 1081 2621 80 CH cheapest
3398 528 2118 1093 2524 76 insertion +
3321 457 2086 1087 2441 211 MaxDiff +
3178 429 2078 1059 2410 251 checks 1&3.
3258 239 1990 1043 2296 279 2165 3
3281 259 2048 950 2299 197 2175 101
3411 279 2045 829 2384 119 2095 39
3481 248 2151 726 2458 45 2031 16
3546 197 2216 765 2402 19 2030 41
3517 74 2227 605 2272 10 1966 84
3409 145 2307 519 2138 27 1893 124
3398 in 2374 604 2082 60 1850 79
3359 76 2351 626 2078 65 1716 121
3319 28 2371 716 2107 119 1702 142
3313 6 2333 740 2138 149 1664 62
3013 97 2300 764 2079 144 1622 45
3059 272 2357 804 2023 213 1464 301
3082 428 2353 815 1973 188 1596 321
2924 442 2386 844 1915 221 1767 292
2804 514 2447 976 1959 290 1827 362
2855 o614 2516 947 2130 307 1814 464
2777 722 2565 1073 2300 400 1771 524
2865 749 2609 1030 2226 422 1872 583
2878 812 2671 962 2063 476 1999 552
2893 818 2703 876 2021 435 2074 464
2933 646 2603 808 1935 418 1942 459
3006 542 2497 810 1900 479 1967 282
3124 658 2517 748 1907 483 2030 275
3200 842 2643 692 1969 538 2059 186
3197 845 2502 633 1969 577 2116 178
3187 905 2496 590 1807 522 2169 267
3106 983 2533 572 1843 392 2195 278
3080 940 2544 538 1710 384 2327 187
2998 896 2399 455 1714 383 2371 252
2864 997 2489 431 1772 361 2422 352
3008 1042 2512 394 1790 324 2272 393
2993 1163 2560 343 1811 314 2254 438
2827 1285 2622 362 1867 303 2198 445
2753 1215 2653 376 1749 187 2182 439
2758 1187 2633 404 1899 136 2179 455
2686 1168 2677 458 1869 51 2228 515
2605 1158 2714 425 1813 33 2230 579
2661 1310 2749 314 1794 43 2145 644
2557 1252 2783 324 1770 30 2265 652
2493 1159 2859 284 2257 669
2452 1187 2866 232 2340 768
2409 1180 2865 213 : 2354 743

2363 1095 2817 252 2366 613

2382
2441
2507
2566
2606
2620
2568
2620
2645
2675
2718
2757
2820
2813
2779
2699
2741
2921
2835
2649
2657
2530
2500
2430
2402
2376
2576
2597
2706
2580
2663
2689
2745
2810
2868
2895
3024
3029
3007
3158
3187
3153
3253
3256
3273
3225
3291
3404
3425
3489
3550

645
689
568

523
492
379
413
419
512
477
458
480
507
535
564
611
599
636
771
825
900
861
913
979
1037
1159
1243
1290
998
975
990
1051
1049
932
942
881
882
1115
1104
1058
951
972
914
902
840
877
509
830
740
667

3546
3537
3577
3594
3538
3479
3457
3373
3358
3378
3504
3540
3650
3677
3739
3795
3769
3640
3581
3568
3523
3563
3491
3426
3485
3425
3368
3344
3315
3219
3046
3026
2835
2724
2675
2775
2864
2693
2660
2666
2550
2546
2525
2456
2361
2304
2301
2258
2056
2093
2097

684

755

748

929

906

1005
991

1081
1192
1188
1072
1052
1037
1039
1084
1090
1096
1169
1141
1163
1251
1300
1316
1316
1502
1543
1465
1432
1258
1266
1339
1346
1481
1409
1459
1601
1676
1815
1769
1682
1677
1661
1547
1497
1622
1602
1669
1719
1702
1641
1600

70

2106
2067
2223
2265
2200
2189
2172
2275
2282
2382
2318
2285
2278
2186
2176
2073
2062
2037
2006
1981
1988
2027
2091
2075
2025
1989
1964
1960
1913
1907
1855
1803
1656
1558
1543
1538
1426
1412
1377
1244
1153
1222
1278
1161
1166
1109
1109
1077
1057
1053
1016

1599
1494
1492
1454
1436
1374
1288
1283
1353
1337
1194
1194
1164
1200
1058
1066
1193
1226
1267
1302
1358
1345
1340
1379
1424
1396
1446
1523
1459
1333
1183
1267
1258
1174
1156
1207
1211
1196
1258
1297
1359
1428
1542
1622
1588
1546
1527
1515
1464
1449
1466

984
1043
1020
905
930
917
1165
1284
1312
1290
1269
1316
1560
1550
1532
1528
1587
1783
1976
2134
2130
2082
2034
1804
1823
1680
1657
1549
1555
1520
1499
1486
1474
1355
1337
1310
1289
1199
1167
1117
1059
1022
983
892
847
825
932
937
853
918
946

1452
1360
1332

1361

1276

1123
1087
1031
966
941
909
852
949
916
857
757
795
879
923
884
851
858
839
772
694
627
615
673
522
467
496
491
529
710
742
748
766
777
622
806
890
751
740
882
941
693
696
541
442
334
272

1005
1133
1176
1211
1261
1255
1223
1256
1265
1146
1085
988
963
945
905
817
802
664
727
761
861
789
641
581
608
631
630
623
626
559
530
458
358
315
252
258
341
341
275
279
104
51
13
71
96
245
301
399

422
373

375
306
463
437
392
334
241
181
139
27
13
118
111
183
104

75
151
162
183
283
315
591
544
495
498
484
436
394
368
223
62
183
210
353
228
140
87
98
13
41
285
302
478
674
583
492
468
485
358

396
540
504
541
573
654
709
692
626
578
606
464
329
185
261
127
130
42
45
125
171
238
214
122
77

50
110
233
161

49

38
229
274
324
342
347
421
456
548
912
835
705
667
605
453
370
570
626
657
747

730

721
784
765
750
749
795
891
877
1046
946
1085
1073
899

997
1016
1115
1215
1223
1315
1351
1324
1295
1342
1426
1515
1725
1831
1808
1869
1990
1970
1915
1895
1833
1872
1886
1986
1887
1828
1770
1717
1612
1433
1394
1252
1235
1448
1622

71

776

879

896
1005
1006
1077
1085
1275
1334
1546
1443
1462
1444
1414
1441
1544
1513
1558
1641
1637
1800
1769
1655
1793
1853
1741
1826
1892
1989
1991
2106

2149
2190

2219
2277
2493
2519
2569
2694
2698
2773
2853
2999
3102
3093
3037
3006
3027
3100
3240
3241

1576

1585

1613

1671
1822
1780
1817
1937
1993
1857
1774
1634
1536
1518
1388
1343
1461
1644
1603
1566
1530
1647
1772
1805
1798
1939
1924
1988
1957
1901
1985
1940
1966
1866
1847
1996
1959
1938
1647
1960
1994
1876
1991
1974
1859
1749
1733
1693
1681
1525
1593

3236
3268
3240
3297
3299
3330
3433
3454
3472
3556
3682
3589
3648
3707
3781
3814
3867
3972
3951
3948
3754
3777
3671
3669
3881
3929
3978
3869
3866
3927
3901
3909
3853
3769
3768
3816
3779
3806
3890
3995
3982
3931
3959
3937
3895
3857
3857
3940
3973
3947
3892

1698
1745
1775
1505
1767
1720
1744
1624
1642
1716
1712
1954
1996
1922
1973
1994
1924
1906
1834
1766
1604
1566
1440
1376
1462
1382
1242
1190
1080
1014
882
861
880
907
780
774
722
652
671
636
562
463
336
326
296
208
182
163
89
36
56

3718
3693
3618
3668
3564
3484
3488
3433
3421
3293
3295
3248
3144
3145
3072
3182
3079
3032
3027
3155
3170
3227
3086
3138
3062
3010
2988
2954
2938
2908
2936
2867
2815

12801

2836
2805
2846
2701
2703
2600
2618
2575
2422
2386
2353
2365
2318
2197

108

208
414
496
520
479
333
311
498
557
635
782
728
620
525
499
349
217
278
268
134
123
15
39
27
80
103

‘140

230
327
374
380
283
203
188
31
127
189
207
168
120
80
123
108
89
15
12

large3

72

length=4782¢.5
Tour found by

Stewart
checks
2873
2818
2705
2642
2604
2584
2478
2439
2285
2201
2280
2313
2420
2365
2321
2193
2221
2235
2279
2310
2343
2422
2454
2464
2531
2584
2626
2736
2663
2618
2718
2819
2829
2864
2808
2702
2673
2621
2615
2639
2555
2482
24067
2270
2236
2238

's 4+

3,5,&6.
0

252
257
245
169
78
61
23
3
10
78
99
261
347
377
278
412
489
530
543
515
456
366
273
249
340
304
357
443
594
594
660
729
795
808
845
823
892
985
1047
1027
1185
1281
1117
1009
987

2213
2263
2233
2325
2272
2278
2256
2167
2128
2170
2029
1921
1792
1805
1850
1793
1789
1704
1654
1655
1597
1464
1427
1420
1494
1602
1620
1662
1637
1617
1685
1711
1725
1841
1847
1847
1864
1953
1947
1956
2042
2021
1932
1736
1695
1789
1820
1829
1653
1623
1560

966
924
832
733
653
637
632
632
666
1070
1162
1085
1047
1064
1134
1196
1318
1427
1473
1568
1625
1386
1364
1342

1252

1222
1168
1160
1049
974
919
853
832
872
815
771
548
516
454
311
213
170
140
105
112
318
316
396
372
346
405

1530
1509
1540
1643
1669
1494
1540
1611
1577
1498
1423
1435
1434
1366
1422
1429
1336
1389
1374
1366
1277
1269
1207
1203
1180
1113
1096
1028
991
1023
1015
959
913
677
699
694
761
726
653
597
530
451
430
352
70
53
24
54
39

377
376
580
582
661
677
737
784
829
919
964
939
781
689
514
511
455
38
43
71
97
190
268
323
370
334
361
332
321
196
91

106
23
81
178
348
529
441
259
308
246
302
418
123
140
140
269
275

2 384

160

571

130
29
63
20
74

179

208

249

339

380

443

480

607

714

610

568

463

479

544

463

486

393
378
294
252
211

287

332
342
305
290
198
156
119
14
39
116
133
175
81
21

154
72
69
104
82
21
248
359

657
699
769.
824
953

867

818

763

789

735

765

602

630

785

759

735

860

869

984
1047
1104
1085
1090
1139
1213
1186
1168
1029

979
959
932
1028
1056
1082
1122
1180
1268
1287
1346
1393
1414
1437
1513
1588
1634
1677
1738
1784
1852
1999

569
497
365
478
408
493
477
504
334
333
341
486

548
530
538
666
732
847
901
508
883
820
892
915
927
915
944
887
929
939
1165
1084
1157
1208
1031
1037
1028
1165
1218
1304
1127
1086
1030
1086
1026
955
972
976
976
923

1952
1898
1786
1709
1643
1599
1528
1480
1432
1382
1387
1362
1386
1306
1240
1151
1212
1282
1277
1294
1292
1108
1016
990
865
857
777
725
592
534
472
481
590
668
789
861
1061
1140
1138
1189
1243
1241
1274
1365
1411
1492
1469
1616
1626
1647
1703

73

907
869
887
834
798
777
735
748
663
629
660
664
695
823
501
943
980
927
1051
1116
1117
1127
1197
1232
1254
1234
1214
1340
1432
1496
1507
1514
1427
1482
1744
1864
1992
2101
1956
1976
2021
2001
1880
1923
1984
2073
2069
2103
2115
2136
2084

1696
1567
1555
1474
1502
1495
1552
1618
1649
1717
1737
1770
1810
1982
1911
1914
1929
1835
1814
1823
1750
1707
1696
1594
1463
1703
1790
1706
1589
1671
1703
1821
1813
1905
1937
1983
1980
1984
1806
1795
1708
1684
1546
1502
1513
1575
1526
1466
1438
1418
1385

2149
2096
2174
2255
2218
2250
2322
2378
2335
2202
2221
2310
2388
2446
2631
2687
2591
2501
2467
2416
2449
2506
2538
2635
2656
2713
2757
2761
2764
2844
2842
2761
2715
2723
2639
2577
2645
2718
2735
2792
2816
2827
2808
2849
2955
2954
3137
3161
3167
3194
3201

1321
1252
1278
1317
1357
1390
1438
1448
1513
1507
1685
1867
1868
1981

1832
1824
1742
1625
1592
1565
1418
1444
1429
1320
1263
1200
1157
1105

1330 .

1336
1466
1487
1579
1606
1607
1671
1706
1671
1639
1650
1763
1794
1965
1974
1962
1878
1867
1951
1911
1881

74

3353 1955 2915 1227 3607 476 large4

3382 1993 2921 1143 3672 384 length=48767.5
3403 1873 2931 1119 3711 366 Tour found by
3314 1845 2987 1083 3678 457 CH cheapest
3294 1831 3054 996 3671 518 insertion +
3228 1770 3095 896 3692 551 MaxDiff +
3140 1809 3083 868 3720 680 checks 1&3.
3129 1644 3026 879 3813 729 2417 7
3042 1598 3033 814 3850 698 2368 164
2988 1559 3066 720 3906 757 2421 202
3160 1575 2996 649 3898 801 2456 126
3271 1560 2972 623 3938 813 2503 141
3323 1578 3055 651 3938 754 2501 156
3340 1513 3142 628 3910 587 2553 250
3436 1618 3165 732 3920 532 2430 304
3513 1670 3189 718 3922 491 2296 398
3513 1524 3244 702 3941 428 2331 226
3495 1434 3334 589 3967 230 2250 226
3583 1499 3437 592 3893 157 2108 100
3576 1604 3312 653 3795 222 1974 50
3733 1803 3312 684 3777 94 1865 74
3732 1840 3373 744 3671 24 1995 195
3806 1976 3390 827 3569 27 1924 189
3877 1933 3500 838 3473 4 1785 248
3817 1827 3384 989 3637 123 1776 344
3853 1777 3378 989 3651 125 1738 271
3861 1708 3348 921 3561 155 1687 271
3886 1662 3262 932 3481 309 1639 393
3984 1605 3267 951 3426 366 1610 385
3966 1518 3304 1010 3528 413 1592 218
3955 1507 3281 1030 3467 444 1624 123
3849 1447 3260 1026 3403 470 1518 125
3770 1363 3214 1148 3336 450 1492 74
3775 1353 3299 1268 3288 398 1278 223
3830 1232 3331 1260 3264 366 1299 262
3743 1212 3375 1158 3149 453 1384 235
3734 1276 3348 1114 3113 393 1395 269
3709 1331 3441 1097 2967 389 1370 312
3549 1353 3461 1115 2990 363 1342 304
3584 1290 3487 1075 3066 338 1349 440
3601 1259 3505 1010 3301 255 1359 565
3547 1138 3574 1028 3161 135 1373 589
3436 1355 3565 1107 3141 7 1208 528
3403 1363 3619 1070 3002 72 1092 546
3229 1359 3678 1013 2978 52 1081 549
3197 1322 3652 974 2884 21 1081 624
3148 1285 3665 924 1038 679
3058 1381 3717 836 946 552
3081 1230 3698 831 930 487
3010 1216 3621 778 982 431

2967 1216 3681 686 1024 328

1060
1115
1162
1171
1216
1199
1170
1015
1008
989
910
943
701
748
803
813
870
746
708
662
709
658
556
498
544
392
405
329
356
305

- 248

169
159
67
138
157
62
148
59
15
34

252
207
204
287
363
369
381
348
425

300
232
241
247
78
88
74
14
142
177
250
317
342
299
246
136
54
77
53
67
121
120
208
200
297
289
228
99
69
53

35
132
167
202
302
324
384
560
560
688
663
629
557
514
307
424
515
587
616
667

501
530
528
521
633
841
784
725
657
755
753
790
836
891
740
710
748
707
601
556
515
490
268
225
425
342
223
129
18
16
57
102
150
180
251

191
139
76
232
271
279
366
442
372
369
371
465
372
354
378

652
571
548
482

524
564

717
741
823
910
1087
1191
1296
1206
1138
1006
1004
855
818
735
851
874
978
1074
1126
1055
1218
1309
1368
1287
1302
1404
1498
1609
1711
1818
1823
1947
1835
1765
1800
1813
1743
1743
1686
1622
1554
1520
1428

75

337
439
550
576
611
612
615
689
607
522

630
628
632
803
880
914
995
869
894
1015
1199
1204
1189
1354
1269
1209
1259
1397
1451
1436
1527
1679
1646
1739
1623
1631
1694
1698
1674
1611
1634
1669
1627
1506
1563
1574
1561
1549
1481
1431

1301
1292
1301
1341
1350
1415
1460
1610
1609
1725
1711
1778
1818
1894
1986
1786
1758
1760
1698
1489
1515
1583
1613
1712
1689
1753
1905
1906
1993
1957
1934
1894
1821
1736
1613
1581
1559
1346
1241
1197
1075
1048
1031
979
1023
1172
1310
1318
1316
1585
1488

1316
1283
1253
1165
1163
1061
1050
970
951
972
1087
1128
1266
1252
1176
1165
1040
1118
1155
1185
1392
1443
1487
1497
1599
1626
1658
1713
1846
1882
1839
1831
1840
2007
2079
2071
2078
2096
2137
2118
2169
2201
2356
2431
2502
2591
2650
2672
2684
2688
2683

1420
1340
1215
1324
1330
1278
1307
1341
1303
1206
1166
1071
1056
915
858
835
841
783
704
676
77
890
780
772
756
652
630
875
857
585
552
487
419
452
382
410
514
579
602
641
625
573
589
511
649
476
569
638
676
758
762

2650
2622
2413
2386
2355
2320
2357
2300
2250
2319
2402
2234
2199
2238
2211
2120
2080
2067
2130
2073
2181
2182
2107
2157
2097
1948
1975
1980
- 1954
1855
1840
1766
1917
1904
1735
1771
1830
1856
1909
1961
1966
2013
2031
2130
1875
1865
1924
1831
1790
1960
1990

821
850
880
836
892
892
920
1033
1097
1128
1184
1229
1212
1319
1374
1351
1359
1337
1277
1104
1045
1023
931
828
710
823
852
916
900
967
981
1021
1058
1115
1207
1268
1289
1298
1357
1414
1406
1410
1434
1482
1578
1632
1669
1777
1936
1930
1929

2003
2215
2280
2273
2268
2345
2395
2520
2470
2565
2613
2630
2612
2751
2759
2841
2901
2937
3064
3129
3206
3261
3439
3588
3605
3683
3732
3851
3845
3822
3606
3620
3687
3755
3884
3901
3949
3898
3953
3932
3984
3907
3855
3843
3713
3641
3661
3686
3716
3787
3739

1921
1890
1768
1761
1744
1760
1848
1879
1766
1773
1745
1837
1856
1982
2000
1925
1816
1719
1782
1908
1971
1862
1928
1922
1870
1944
1991
1959
1840
1816
1789
1730
1732
1690
1752
1734
1620
1577
1534
1397
1268
1196
1203
1218
1096
1043
1079
1103
1221
1333
1410

76

3654
3600
3602
3597
3549
3488
3498
3425
3330
3307
3280
3307
321
3177
3150
3109
3229
3303
3434
3503
3465
3419
3405
3284
3279
3253
3282
3220
3212
3145
3007
3024
2913
2930
2919
2961
2979
2986
3017
2982
2820
2809
2871
2899
2858
2753
2739
2688
2426
2555
2645

1491
1442
1376
1372
1338
1376
1453
1535
1582
1658
1581
1563
1513
1515
1504
1309
1337
1293
1288
1239
1162
1181
1132
1063
1042
1078
1150
1200
1191
1157
1128
1024
1085

1172

1219
1233
1306
1363
1393
1437
1401
1477
1521
1597
1569
1599
1565
1595
1563
1455
1409

2660
2537
2495
2536
2557
2571
2643
2778
2812
2835
2866
2873
2921
2910
2917
2782
2888
3036
3060
3110
3149
3214
3198
3267
3324
3336
3460
3513
3382
3346
3271
3261
3122
3102
3142
3227
3227
3314
3393
3443
3507
3517
3536
3599
3641
3694
3833
3851
38%4
3972
3946

1319
1183
1084
1024
1039
1057
1048
1049
1073
992
947
847
814
776
715
618
607
575
680
699
641
498
389
374
456
486
470
502
584
599
719
750
765
753
892
934
927
847
308
971
847
857
865
833
889
725
824
945
966
950
913

3933
3960
3934
3950
3575
3894
3798
3718
3670
3585
3589
3680
3720
3781
3891
3714
3713
3525
3517
3378
3385
3420
3370
3281
3275
3226
3023
2997
2933
2950
2959
3008
3072
3032
2928

2928
2857
2748
2745
2665
2714
2860
2801
2714
2646
2625
2588

839
730
585
351
487
382
637
568
521
501
456
436
362
271
61
55
116
196
269
323
207
166
113
58
119
241
152
159

36

199
229
283
317
340
340
410
457

337
294
252
209
241
193
100

106

13
37

larges
length=49091.4
Tour found by
Stewart's
MaxDiff +
checkl.

1299
1350
1330
1226
1105
1049
1061
916
885
845
611
699
679
807
799
829
887
848
942
877
806
715
653
643
630
612
477
540
520
414
342
232
274
204
183
93
31
11
97
84
90
76
77
73
125

5
94
123
169
164
203
22
66
9
91
52
178
264
319
273
264
203
350
462
430
397
399
447
420
294
300
336
247
130
72
59
81
236
338
351
255
232
269
390
505
508
554

691
586

+

77

273
237
314
366
473
440
395
377
503
562
676
768
837
889
878
716
707
681
543
597
800
803
874
853
780
746
725
659
651
647
638
596
614
512
508
475
446
289
226
378
365
253
315
282
97
142
T
20
100
1
22

550

464

467

409

524

553

586

671

635

550

503

592

648

640

973

915

960

947

961

1044
1057
1176
1196
1266
1282
1332
1214
1171
1207
1267
1368
1394
1441
1551
1278

1233 -

1336
1371
1250
1149
1139
1079
975
897
921
1012
1008
1030
1084
1191
1322

16
29

113
165
139
209
289
145
111
130
108
110
67
202
239
296
422
534
511
452
563
565
604
604
612
609
628
643
642
733
699
730
753
917
985
964
1032
1055
1037
1046
976
930
883
857
845
793
932
789
385

1382
1381
1452
1411
1402
1440
1470
1489
1571
1600
1572
1632
1680
1764
1881
1953
1883
1790
1672
1787
1793
1955
1938
1909
1875
1838
1730
1700
1633
1605
1568
1711
1781
1971
1994
1923
1971
1879
1891
1817
1774
1733
1778
1789
1789
1782
1693
1661
1534
1413
1365

975
1094
1191
1232
1256
1276
1461
1355
1292
1275
1265
1140
1098
1275
1380
1482
1448
1504
1668
1697
1592
1603
1601
1601
1521
1573
1737
1816
1827
1855
1863
1870
1935
2020
2027
1888
1870
1804
1649
1967
1542
2018
2172
2374
2402
2175
2263
2371
2305
2308
2221

1325
1376
1360
1271
1234
1284
1356
1492
1547
1575
1780
1899
1984
1997
1981
1934
1901
1822
1873
1759
1741
1703
1583
1577
1472
1475
1440
1412
1382
1244
1331
1346
1438
1447
1544
1672
1674
1766
1892
1921
1945
1977
1879
1986
1857
1652
1649
1605
1525

1375

1285

2317
2340
2482
2516
2555
2546
2614
2666
2630
2623
2599
2643
2677
2743
2781
2833
2839
2780
2793
2841
2916
3035
3101
3046
3061
3170
3261
3283
3272
3267
3285
3313
3449
3431
3412
3388
3324
3192
3147
3231
3211
3181
3161
3095
3101
3014
2978
2789
2807
2901
3030

1288
1196
1306
1208
1235
1281
1316
1249
1211
1135
1065
1026
1027
965
1062
982
911
875
852
862
839
811
854
763
703
728
766
790
681
659
678
683
550
740
797
806
867
921
984
1024
1133
1222
1217
1192
1151
1039
1172
1195
1201
1234
1337

78

3033
3145
3176
3252
3113
3114
3054
2978
2804
2763
2739
2663
2630
2571
2609
2714
2685
2579
2681
2749
2867
2948
2810
2936
2992
3158
3288
3073
3081
3157
3192
3167
3205
3262
3307
3320
3385
3546
3636
3804
3944
3996
3854
3767
3770
3748
3660
3639
3733
3754
3897

1336
1395
1396
1479
1490
1488
1457
1497
1418
1489
1436
1470
1508
1606
1679
1686
1773
1848
1904
1952
1979
1876
1809
1773
1644
1591
1622
1744
1834
1797
1831
1941
1950
1925
1900
1826
1794
1732
1897
1980
1925
1748
1726
1767
1753
1634
1628
1538
1545
1487
1530

3815
3771
3927
3945
3903
3815
3821
3777
3681
3634
3524
3509
3392
3504
3626
3622
3538
3505
3545
3635
3643
3706
3701
3741
3883
3944
3925
3903
3985
3916
3936
3895
3974
3964
3809
3813
3835
3742
3695
3652
3542
3518
3426
3331
3465
3457
3552
3723
3588
3569
3439

1391
1366
1279
1167
1018
1047
1094
1059
1132
1178
1178
1184
1203
1025
999
919
929
857
849
847
764
712
745
822
830
834
737
634
554
502
466
392
203
191
229
186
145
18
92
213
107
115
21
33
156
289
298
448
524
414
371

3319
3260
3234
3216
3167
3169
3174
3208
3183
3020
2928
2867
2849
2765
2698
2689
2737
2800
2872
2875
3033
3089
3043
2984
2912
2781
2775
2713
2550
2616
2484
2493
2419
2387
2301
2178
2131
2167
2285
2326
2333
2158
2079
2084
2010
2022
1940
1924
1749
1746

1849.

354
392
275
270
301
364
434
571

600
534
483
476
583
593
510
523
467
343
339
449
300
267
238
67
95
79
41
157
320
300
270
245
147
16

123
296
345
311
392
420
468
331
181
%1
99
124
180
187
311

1875
1799
1764
1757
1883
1992
2064
2107
2246
2208
2170
2247
2204
2453
2500
2553
2687
2587
2580
2443
2446
2324
2229
2168
2166
2142
2213
2205
2202
2070
2084
1962
1971
2005
1799
1769
1737
1708
1562
1455
1479
1554
1657
1755
1576
1498
1367
1387
1366
1296
1292

490
460
506
578
586
692
662
379
627
674
752
814
814
764
676
723
701
776
909
919
987
995
1077
1092
1109
1096
907
875
842
836
885
934
1006
1096
967
1037
1184
1178
1034
932
885
865
793
740
721
689
741
778
829
867
933

79

1257
1263
1119
974
938
1004
1011
1078
1147
1062
1073
1183
1139
1059
995
1089
1154
1147
1181
1324
1314
1317
1288
1338
1394
1468
1475
1541
1609
1624
1615
1635
1615
1612
1585
1659
1625
1705
1628
1595
1601
1513
1383
1477
1439
1477
1420

928
1039
1213
1213
1064
1065
1070
933
892
794
784
781
667
675
618
476
413
379
336
361
492
523
576
540
524
483
545
559
488
433
416
401
397
395
347
234
209
124
113
81
116
226
234
126
68
14
35

80

	TR-89-30a.pdf
	TR-89-30b.pdf
	TR-89-30c.pdf

