A Comparison of Selected Conceptual Frameworks
for Simulated Modeling

By E. Joseph Derrick, Osman Balci
and Richard E. Nance

TR 89-27

Technical Report TR 89-27t

A COMPARISON OF
SELECTED CONCEPTUAL FRAMEWORKS
FOR SIMULATION MODELING

by

E. Joseph Derrick
Osman Balci
Richard E. Nance

Department of Computer Science
and
Systems Research Center
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

04 August 1989

T Cross referenced as SRC-89-002, Systems Research Center,

T Appears in Proceedi

ngs of the 1989 Winter Simulation Conference (Washington, D.C., Dec. 4-6),
pp. 711-178.

ABSTRACT

The purpose of this paper is to compare thirteen Conceptual Frameworks (CFs) selected from
among several categories of applicability to discrete-event simulation modeling. Each CF is briefly
reviewed to provide the background information required for the comparison. Based on the
insights gained in applying the CFs to the modelin g of a complex traffic intersection system, the
CFs are compared relative to their distinct characteristics and capabilities. Comparative comments
are grouped according to the design guidance and implementation guidance features of the CFs.
Conclusions highlight the inadequacies of the CFs and the importance of research in CF
development.

CR Categories and Subject Descriptors: D.2.1 [Software Engineering]:
Requirements/Specifications ~Methodologies; D.2.10 [Software Engineering]:

Design -Methodologies; Representation; 1.6.0 [Simulation and Modeling]: General;

L.6.1 [Simulation and Modeling]: Simulation Theory -Model classification; Types of
simulation (continuous and discrete); 1.6.2 [Simulation and Modeling]: Simulation Languages;

General Terms: Design, Languages

Additional Key Words and Phrases: Conceptual frameworks, discrete-event simulation,
model specification, simulation strategies, world views

~1i-

1. INTRODUCTION

A fundamental human limitation, called the Hrair Limit, indicates that a human being cannot
handle more than 7 * 2 entities simultaneously (Miller 1956). Although this has been known for a
long time, its implications for simulation model development have not been fully recognized.
Simulation is used mostly for stochastic systems containing many simultaneous activities. The
modeler needs conceptual assistance in representing complex systems and in successfully
analyzing simulation models to effect system improvements.

The essential assistance is expected to be provided by the simulation model development
environment (SMDE) currently being constructed following the automation-based software
paradigm (Balci and Nance 1987a, 1987b). The conceptual guidance to be provided within the
SMDE is currently being investigated. As part of this research, a comparison of thirteen conceptual
frameworks 1s reported in this paper.

A Conceptual Framework (CF) is an underlying structure and organization of ideas which
constitute the outline and basic frame that guide a modeler in representing a system in the form of a
model. "Simulation strategy,” "world view,” and "formalism" are other terms used in lieu of CF.

The purpose of this paper is to compare the CFs selected from among several categories of
applicability to discrete-event simulation modeling. Each CF is briefly reviewed in Section 2.
Section 3 presents a comparison of the CFs based on their distinct characteristics and capabilities.
Conclusions in Section 4 highlight inadequacies of the CFs and the importance of research in CF

development.
2. REVIEW OF FRAMEWORKS

2.1 The Classical Conceptual Frameworks

Popularized by a wide variety of Simulation Programming Languages (SPLs), Event
Scheduling (ES), Process Interaction (PI), and Transaction Flow (TF) are perhaps the most well-
known CFs used for simulation model implementation. Less predominant in the U.S. but well-
accepted and recognized in the UK., are Activity Scanning (AS) and its extension, the Three-
Phase Approach (TPA). Balci (1988) employs a comparative exercise to bring out details in the
differences among these CFs.

2.1.1 Event Scheduling
When using ES, the modeler considers the system of interest to be described in terms of
events. Each identifiable event is associated with an event routine which is "a set of actions that

may follow from a state change in the system™ (Pidd 1984). This approach specifies that "some
event is to take place at a determined time in the future” and can be scheduled (Kiviat 1969).
Events that occur at a known future time are determined events (Nance 1981b). The scheduling of
event routines is managed during implementation by the maintenance of the event list, a list of
event notices or records which are ordered by time. Event routines contain the creation and
destruction of event records (e.g., arrivals, departures, and other determined events), the
scheduling of determined events (e.g., the bootstrapping of arrivals), and logical checks for
contingent events (Nance 1981b). The occurrence of contingent events (sometimes called
conditional events (Fishman 1973)} depends upon the satisfaction of some set of conditions which
cannot be predicted in advance. The explicit scheduling of events results in an efficient model
execution for a large class of models. Including checks for contingent events reduces the number
of event records for processing and also improves efficiency. Yet, as Kreutzer (1986) points out,
the model logic becomes fragmented (with the scattering of scheduling commands and the insertion
of checks for contingent events) as the number of event routines and their potential interactions
increase. Fragmentation makes the implementation less readable, less understandable, and harder

to debug.

2.1.2 Activity Scanning

AS, prominent in the U.K., requires that the modeler identify the various types of objects in
the system to be modeled, the activities which the objects perform, and the conditions under which
these activities take place. Beyond Pidd (1984) and Kreutzer (1986), good descriptions are
accessible (Fishman 1973; Zeigler 1976; Hooper 1986a, 1986b). AS uses a test set of boolean
conditions, or testhead (Pidd 1984) to enable the determination of the state change that can initiate
an activity. The testheads serve to link the various activities together and to produce the state
transitions of the model objects and the interactions among them, In this way, the model is made
up of modules or activity descriptions (testheads and associated resulting actions which await
execution at the appropriate time.

Implementations of AS include a two-phase monitor or executive which performs a time scan
(to ascertain the time increment or update to the system clock) and an activiry scan (a check of all
testheads to determine which of the activities are to be next executed (Pidd 1984)). Inits purest
implementation, AS uses the fixed-time increment time flow mechanism; the activity scan of
testheads is strictly a scan of state conditions (Kiviat 1969; Balci 1988). This state-based approach
is sometimes mixed with a time-based approach to increase implementation efficiency by attaching
time cells 1o model objects or activities (Pidd 1984; Kreutzer 1986). The time cells hold activity
occurrence times and enable the use of the variable-time increment method for updating the system
clock.

[

2.1.3 The Three-Phase Approach

The Three-Phase Approach (TPA) is a modification of AS which improves execution
efficiency. The approach categorizes activities as B-activities or C-activities (Tocher and Owen
1961; Tocher 1963). The B-activities are the bound-to-occur or book-keeping activities that
represent the unconditional state changes (unconditional events) which can be scheduled in
advance. The C-activities are the conditional or co-operative activities that represent the state
changes which are conditional upon the co-operation of different objects or the satisfaction of
specific (compound) conditions. Because B-activities become due at a determined time, their
testheads may be dropped and they can be scheduled using an events list technique (O'Keefe
1986). Since the traditional, repetitive activity scan and testhead checks do not need to be done on
the B-activities, unnecessary scans are removed and efficiency is improved. C-activities with
testheads must enter the usual, repetitive activity scan of their testheads. Comprehensive
descriptions of the TPA are available in current literature (Crookes 1982; Pidd 1984; O'Keefe
1986; Balci 1988).

2.1.4 Process Interaction

Instead of the event or activity, PI (Kiviat 1969; Fishman 1973; Pidd 1984) uses the process
as its basic building block. The process represents a sequence of events and interspersed activities
through which a specific object moves. As the object moves through its process, it may experience
certain delays and be blocked in its movement. Delays can be time-based and determined (e.g.,
service times, arrival times) or state-based and contingent (e.g., wait-until situations). Objects
experience periods of activity during process execution and periods of inactivity or delay, When
an object experiences a delay in its process and becomes "passive,” another model object is
allowed to become “active” (Franta 1977) initiatin g or resuming its process. Such delays are
incurred and execution is shifted (to another object) at inferaction points (Kiviat 1969). An object
process returns to an active state following such interaction at its reactivation points. Pl enables the
modeler to clearly grasp a model's structure since each object or class of objects can be represented
by a single, coherent process rather than through multiple event routines (Kiviat 1969; Fishman
1973).

2.1.5 Transaction Flow

TF handles the time and state relationships of the model in exactly the same manner as the PI
CF. Several different and distinct characteristics are noted. "Transactions” are created and moved
through the blocks, executing specialized actions that are "associated" with each block. The block
structure generates a rigid structure which limits the "examination and communication” among
system components (Shub 1980). In addition, as objects (transactions) pass through these blocks,

“predefined processes” are activated which are hidden to the modeler. Statement languages with
their lower level primitives provide generality and flexibility to the modeler. Tocher (1965)
characterizes SPLs as machine or material-oriented. He further defines transactions to be material
or temporary objects. In a machine-oriented view, servers (machines) are the dominating and
active influence in the model (Kreutzer 1986). They obtain the material objects (transactions),
operate on them, and place them in (or remove themn from) queues. TF promotes material-oriented
maodels in which the transactions are the dominant objects. Servers, now passive, are "acquired,
held, and released again” by the transactions which flow from machine to machine (Kreutzer
1986).

2.2 Other Discrete-Event Conceptual Frameworks

Conceptual frameworks offering direct application to the field of discrete-event simulation
and modeling have emerged within the last decade. These frameworks are the System Theoretic
Approach (STA), the Conical Methodology (CM), and the Condition Specification (CS).

2.2.1 System Theoretic Approach

Under the STA (Zeigler 1976, 1984), a modeler can identify the static and dynamic structure
of the model. The STA, based upon set theory and the systems modeling formalism, provides a
comprehensive, yet general, model repres.entation and allows hierarchical decomposition and

abstraction. A system model can be informally represented by describing its:

® components - "the parts from which the model is constructed,”

® descriptive variables - "tools to describe the conditions of the components at points in
time," and

@ component interactions - "the rules by which components exert influence on each
other, altering their conditions and so determining the evolution of the model's
behavior over time."

The Discrete Event System Specification (DEVS) (Zeigler 1976) is a formal specification for
discrete-event models which incorporates these concepts and provides for a variable-time increment
time flow mechanism. DEVS provides the static structure of the model. In addition, model
dynamic structure is obtained via the rules of component interaction. DEVS is developed from a
more general formalism, the Systems Modeling Formalism (Zeigler 1984), which also contains a
continuous time base. Although the formalisms of the STA make its direct use cumbersome,
recent work surrounding the development of a PC-based environment (PC-Scheme) is helping to

improve the modeler's ability to build model specifications based upon DEVS and the STA (Zeigler
1987).

2.2.2 The Conical Methodology

The CM (Nance 1981a, 1987) divides model representation tasks into two stages: model
definition and model specification. The CM is based on the object-oriented paradigm and seeks to
achieve five primary objectives (Nance 1987): model correctness, testability, adaptability,
reusability, and maintainability. CM mandates a strict separation between model representation and
model execution. Top-down definition and bottom-up specification techniques are at the core of its
procedural guidance. Top-down model definition produces a static model representation and is
accomplished through a hierarchical decomposition of the model into successive submodels. At
each level of decomposition, attributes, includin g attribute dimensionality and range of values, are
assigned (to the particular submodel associated with that level) and are classified by type in
accordance with Nance's (1987) taxonomy tree. Bottom-up specification produces a model
representation which contains the necessary information for model dynamics. Specification,
"...the process of describing system behavior so as to assist the system designer in clarifying his
conceptual view of the system™ (Barger 1986), is started at some base-level submodel in the
decomposition hierarchy and is performed at successively higher levels until the model level is
reached. The time flow mechanism to be used in building the model is not dictated.

2.2.3 The Condition Specification

CS produces a model specification that can be analyzed to: "detect potential problems with
the specification," "assist in the construction of an executable representation of the model," and
“construct useful model documentation" (Oversireet and Nance 1985). The CS, attributed to
Overstreet (1982), is the principal target form for bottom-up specification within the CM. The CS
provides a representational foundation upon which additional analysis can be conducted for
efficient model implementation (Overstreet and Nance 1985; Nance and Overstreet 1987). The
analytic and diagnostic capabilities of the CS are an extremely desirable and significant strength.
The principal components of the CS are the interface specification, the specification of model
dynamics, and the report specification (Overstreet and Nance 1985). The input and output
attributes of the model are described within the interface specification. The specification of model
dynamics consists of a set of object specifications and a transition specification. The object
specification is a complete listing of all objects and their attributes. A valie range is given for each
attribute. The transition specification contains the description of model dynamics in the form of
condition and action pairs (CAPs). The report specification is defined for the data output or model

results.

2.3 More Generic Conceptual Frameworks

The following conceptual frameworks have applications within and beyond the domain of
discrete-event simulation and modeling. The first two presented in this section, the Entity-
Relationship-Attribute (ERA) and the Entity-Attribute-Set (EAS) frameworks, have their
conceptual underpinnings from the field of database design. Yet, ERA is closely akin to EAS
which has roots in the popular SPL, SIMSCRIPT (CACI 1983; Kiviat, et al. 1983). Finally, the
Object-Oriented Paradigm (OOP) plays a significant role within software engineering and
progrémming methodology and finds its origins in the early development of SIMULA.

2.3.1 Entity-Relationship-Attribute

ERA is based upon the Entity-Relationship (ER) model of Chen (1976). The ER model is a
data model which is rooted in set and relation theory. Chen introduces the ER model through the
context of levels of logical views of data, and develops the ER model for two of these levels: the
conceptual level ("information concerning entities and relationships which exist in our minds” and
the representational level (an information structure or organization of information in which data
represents entities and the relationships which exist among them). We are concerned with the
conceptual view of the model (of entities, their relationships, and their values) as it exists in our
minds at the first level. Entities may be grouped into entity sets. Relationships may also specify
similar groupings called relationship sets. Entity and relationship information is maintained within
sets which contain values (called value seis). Entities and values are linked to one another by
attributes. In addition to entities, relationships can also have attributes. Successful application of
ERA relies on the proper identification of set membership and semantics, definition of value sets
and attributes, and organization of data into relations.

2.3.2 Entity-Anribute-Set
The terms énu’ty, attribute, and set are concepts central to EAS (Markowitz, et al. 1983):

@ entity - "some concrete or abstract 'thing’ represented by the simulation,”
@ attribute - "some property or characteristic of the entity," and
® set - "an ordered collection of entities.”
In EAS, entities of interest in the system are maintained in a database. The database also

maintains complete information on a particular entity to include attribute and value data, the
identification of the sets to which the entity belongs or which it owns, and the membership of the

sets which it owns. A key characteristic of EAS is that sets are ordered. This ordering may be
strictly on a first-in, first-out (FIFO) basis or in some other determined order. Hierarchical
decompositions and tree-like structures of the system are easily defined. Set ordering provides the
ability to represent imed events and a system state can be represented in a database. A function
can be determined which ransforms the database from state to state. Model dynamics are difficult

to represent.

2.3.3 The Objecr-Oriented Paradigm

The QOP is viewed as a framework for system design. According to Meyer (1987), "object-
oriented design may be defined as a technique which, unlike classical (functional) design, bases the
modular decomposition of a software system on the classes of objects the system manipulates, not
on the functions the systemn performs.” Functions tend to change in order to adapt to changing
needs whereas objects remain more or less constant (Meyer 1987). The paradigm is principally
characterized by two features: (1) encapsulation of data and operations and (2) an inheritance
mechanism for developing object hierarchies. - An object can be considered to be "encapsulated”,
an "armor-plated” entity (Cox 1986) with "private data and a set of operations that can access that
data.” The use of objects therefore improves the reliability and maintainability of system code.
Additionally, by inherent abstraction, the object improves the view of the system by introducing a
higher level perspective and promotes reusability of code. The principles of modularity, abstract
data typing, and information hiding are accommodated. Inheritance is the ability to define new
objects from existing objects by extending, reducing, or otherwise changing their functionality. |
New instances of an object class can be easily created which automatically inherit the attributes of
that class definition. Inheritance supports hierarchical structures that are commonly found in the
real world and provides substantial benefit to the user by improving his understanding and view of

the system.
2.4 Frameworks with Applications Potential

We conclude our review of conceptual frameworks with coverage of Structured Modeling
(SM) and the Process Graph Method (PGM). Both frameworks, active in other fields, show
promise for applications to discrete-event simulation model development.

2.4.1 Structured Modeling

SM (Geoffrion 1987, 1989) secks to provide not only a generic framework for model
representation but also an environment to meet total model developmental needs throughout the
model life-cycle. SM can be used in a top-down model design strategy that embodies a stepwise

refinement approach and which results in a well documented, easily communicated design. SM
aims to be broadly applicable and technique independent (mathematical programming, database
theory for data models, conceptual graphs and knowledge representation). The SM framework for
model representation uses "a hierarchically organized, partitioned, and attributed acyclic graph "for
model semantic and mathematical structure. The framework can be decomposed into elemental,
generic, and modular structures.

Model elemental structure is generated through the formation of model elements of five types
(primitive and compound entity, attribute, function, and test) into a directed graph in which the
nodes represent the elements. The construction of an elemental structure (Geoffrion 1987) is
intended to completely capture "the definitional detail of a specific model instance.” Table
Tepresentations of the elemental structure, elemental detail tables, contain instance data and low-
level model information which is necessary for a complete model specification.

The generic structure accomplishes the grouping of elements accordin g to "natural familial"
boundaries. The generic structure thus provides the modeler with a natural view of the system
under study. The modular structure (Geoffrion 1987) is a further refinement on the generic
structure. The modular structure is created in order to bring into play the concepts of data
abstraction and information hiding. "Modules" are formed by grouping the genera "into conceptual
units ... according to commonality or semantic relatedness.” Modules, themselves, can then be
grouped into higher order modules. In this way, complex models can be simplified into a
representation which will be better understood. A modelin g language, SML, supports the central

concepts of SM.

2.4.2 Process Graph Method

The PGM is derived from the parallel computation model which was suggested by Karp and
Miller (1966) and later improved upon by the U. S. Navy (Kaplan 1987). PGM is used primarily
for the development of signal processing models. The basis for the PGM is the process graph, a
directed graph of nodes and arcs which is classified as a data flow model. Three of the primary
benefits of the process graph are its parallel computation capabilities for greater throughput, the
case at which modelers can perform top-down design, and portability of applications. Each node
in the process graph represents a primitive function (some type of computation or process) or may
alternatively represent a subgraph which 1s itself a process graph. Such a convention allows the
modeler to use abstraction and modularity to represent complex models in a fashion that is more
easily understood. Arcs represent quenes which contain the input and output data needed by nodal
primitive functions for execution. Nodes execute only when the data necessary for execution are
available at the input queues. Such a node execution scheme allows multiple computations to be
performed in parallel thus generating greater throughput.

3. COMPARISON OF FRAMEWORKS

In this section, the selected CFs are compared on the basis of their application to a real-world
traffic intersection (TT) modeling problem (Derrick 1988). The Tl is selected because it offers
complexity of model component interaction unlike that found in the usual textbook examples. The
TT contains a single traffic Hght with north, south, east, and west directions which controls
vehicular traffic in each of the intersection's eleven lanes. The central intersection space is _
conceptually divided into thirty-five blocks through which the vehicles travel. The blocksina
vehicle's path are used as locators for that vehicle as it moves thron gh the intersection and enable
the representation of a smoothly flowing traffic pattern. Care is taken to be circumspect in drawing
conclusions from these applications under such a restricted domain. The intent, however, is to
develop a starting point for discussion by accomplishing a thorough investigation under a single
problem domain.

Two basic types of guidance can be provided by the CFs in constructing model
representations. First is implementation guidance (algorithmic, managerial, supervisory) which
directly impacts the subsequent executable form of any model representation. Secondly, CFs can
provide design (structural, existential, skeletal) guidance. Here, the modeler is aided in his
definition of the model's static and dynamic structure as he identifies the objects (components,
entities}, their attributes, and their rules of interaction. We explore the comparisons of the CFs with
regards to the types of guidance that each explicitly makes available to the modeler. Grouping our
comparisons by gnidance type (implementation or design) improves the clarity and meaningfulness
of our comments. We caution the reader to avoid generalizing the comparisons to all problem
domains.

3.1 Implementation Comparisons

The classical CFs provide implementation level guidance to the modeler. This guidance may
be considered to assist the modeler in the mode of sequencing and in the method of sequencing.
The mode of sequencing reflects the world view or Weltansichz (Lackner 1962), the view
promoted by the CF that effects model transformation from state to state. Viewin g the model as
being composed of events, activities, or processes influences the programming task and determines
the coding format (event routines, activity descriptions, or process descriptions). The method of
sequencing is the guidance perspective relating to the algorithmic nature of the CF, e.g., whether
by explicit scheduling of events, scanning of conditions, or by concurrent control of object

interactions.

3.1.1 Comparing Mode of Sequencing

Within event routines, we note that the burden is placed on the modeler 1o include all
conditional testing (on conditions other than time). As the complexity of model interaction
increases, the modeler is less able to accurately make such determinations and maintain consistency
in the model. The programmed model becomes error-prone, hard to modify, and difficult to
debug. In addidon, the model logic surrounding the occurrence of a particular event can become
fragmented and scattered throughout the code, making the code hard to read and understand.

Activity descriptions free the modeler from having to explicitly specify the interactions and
relations among events (Laski 1965; Kreutzer 1986). Under AS or the TPA, the programmed
model is readable and simple, primarily due to the clarity achieved through the grouping of the
conditional tests (Kiviat 1969; Kreutzer 1986).

The ability to apply an object-oriented approach and confine all information pertinent to a
single process description improves readability and understanding, naturally enhances
maintainability, and reduces problems in debuggiﬁg. PI requires that a modeler signal an object’s
activation and passivation and explicitly control the queueing and competition for resources.
However, TF automatically accomplishes many of these tasks within its block structure. Support
of the modularity principle, afforded by both the activity-oriented (grouping by state conditions)
and the process-oriented (grouping by object process) frameworks, speed application
development.

3.1.2 Comparing Méthod of Sequencing

Under ES, the direct determination of event selection, execution, and clock update through
the use of the events List produces an efficient execution when the model is composed of less
interactive, more independent objects (Kiviat 1969; Nance 1971; Birtwistle, et al. 1985; Hooper
1986b). Under the same conditions, AS produces a less efficient representation for execution
since with an increase in the number of independent components, the number of repetitive,
redundant, and unnecessary scans also increases. However, whenever a model is characterized by
a large number of primarily dependent and interactive components, AS demonstrates improved
execution efficiency (Nance 1971).

The TPA improves execution efficiency while retaining the advantages of AS. With the use
of reactivation points and ability to effect concﬁrrency among objects, the process-oriented
frameworks (PI and TF) are able to simplify a programmed model. They are preferred when the
model is composed of a balance of independent and dependent components (Hooper 1986b).

Table 1 summarizes the comparative features just discussed, giving a panorama of the key
characteristics of the classical CFs when used to build models like the TT which have many

10

Table 1: Characteristics of Classical Conceptual Frameworks

CONCEPTUAL

—

ES AS TPA Pl F
FRAMEWORK
CONDITIONS Independent Dependent Independent or Balance of Balance of
FOR Objects Objects Dependeat Independent and Independent and
MAXIMUM Chbjects with Dependent Objests | Dependent Cbjects
EFFICIENCY resource
competition
BURDEN ON High Low Low Moderateft Low
MODELER
BURDEN ON Low High High High High
EXECUTIVE
Fragmented Conditional logic { Conditional logic | Concentrated in Concentrated in
throughout, concentrated at coneentrated at modules of modules of
MODEL LOGIC event routines | testheads testheads and process block
DESCRIPTION . determined logic descriptions segrnents
concenirated ag '
B-activities
MAINTAINABILITY Low Hight Hight High§ High§
NATURAL
REPRESENTATION Poor Good Good Excellent Excellent
CAPABILITY
DEVELOPMENTAL
TIME, EFFORT Very high Low Low High Low
REQUIRED
APPLICATION
LINES OF 1312 —_ — 1778 443
CODEt
_—

= s e -

Due to localization of state w
Due 10 localization of object
Due to modeler responsibiliti
Lines of source code for even
applications {Derrick 1988]

collection

ith grouping of conditional testing
and modularization of process descriptions

es in activation, Passivation, and queueing for resources
t routines or process descriptions;
orly; does not inciude code for init

applicable to research
ialization or statistics

11

components and component interactions. The ES, AS, TPA, PI, and TF CFs provide a wide
range of implementation guidance characteristics, compared and discussed above.

3.2 Design Comparisons

- CFs other than the classical CFs provide design guidance. We compare them relative to their
ability to effectively assist the modeler in his design of the static and dynamic structure of the
model. Additionally, the identification of relationships (how the objects are bonded or related to
one another) is also of concern.

3.2.1 Model Startic Structure
The CFs discussed here provide limited guidance for the identificarion of objects and their
artributes and coerce the modeler to perform this identification task.

@ OOP - The OOP conceptually stipulates that all information for a given object
(including attribute information) is encapsulated within that object's description.

® PGM - Object and attribute informarion is contained in variable attribute and queue
attribute tables.

® ERA and EAS - Both ERA and EAS derive their conceptual basis from the objects
{entities) and attributes that make up a given model.

® (M- CM, an extension of the OOP, very clearly guides the modeler in a top-down
definition of model objects and attributes.

® SM - The elemental and generic structures enable a full designation of objects and
their attributes.

® (S - The object specification includes provision for object and attribute identification
and establishes the static structure of the model but focuses on the specification of
model dynamics.

® STA - Model components and descriptive variables relate object and attribute
information.

3.2.2 Model Dynamic Structure

The relationships and rules of dynamic design guidance, once specified, provide the motive
force for affecting the state changes among the model objects. Therefore, this aspect of guidance is
critical to producing a working, accurate model representation. The CS, STA, and CM provide
explicit support, albeit limited, for accomplishing this task. We note that the dynamic design
guidance provided by these CFs is independent of mode of sequencing,

12

The transition specification of the CS guides a modeler for this purpose. The transition
specification, however, only provides limited guidance in format and syntax to the modeler for
developing dynamic relationships. The STA via the DEVS formalism also provides dynamic
design guidance. The "necessary equipment” to specify model dynamics is available to the
modeler in the form of the time advance and transition functions, Similar to the CS, the STA
provides only limited guidance in format and syntax (notation). Set theoretic notation and the
intricate details of the DEVS formalism makes"using the equipment” a difficult task for the
modeler. Bottom-up specification of the CM enables the specification of model dynamics but is
much less structured than the CS and STA. It has been conjectured (Geoffrion 1987) that SM can
accommodate the dynamic relationships of discrete-event models but this applicability is yet to be
shown.,

3.2.3 Model Relationships

A hierarchical decomposition capability supports the definition of -7 or 1:m relationships
among objects. Hierarchical decompositions (from an object or entity viewpoint) are possible
when the model is influenced by OOP, PGM, ERA, EAS, CM, SM, or STA CFs. The inheritance
features of the OOP and PGM described in their applications allow hierarchical decompositions.
The use of entity and relationship sets enable ERA to easily handle hierarchical decompositions; the
entity-relationship diagram makes it easy to define the 7:m relationships. In a similar manner, the
use of sets in EAS makes such decomposition possible. Both CM (with its OOP orientation) and
SM (with its hierarchically organized structures) provide the flexibility of hierarchical
decompositions. The set orientation of the STA allows the establishment of object hierarchies.
Since CS can be extended to include sets, hierarchical decompositions should be possible.

Although our experience from applications to the TI system is limited concerning abilities of
the CFs for m:n relationships, we offer the following perceptions:

® ERA offers the most straightforward approach for m:n relationships when assisted by
the entity-relationship diagram, '

® (M and SM suggest excellent capabilities for m:n relationships based on the
experience gained from the literature review and in performance of the TI
applications. Ease in use of the SM for accomplishing this within the SML is
currently limited.

® EAS, STA, and CS allow definition of m.:n relationships but without the direct,
natural clarity of the above approaches,

® OOP and PGM should permit designation of m.n relationships since an object may

represent a set of objects and a process graph node may represent an underlying
network of process graph nodes.

13

Table 2 summarizes the comparisons of CFs based on design guidance. Each CF that has
been considered in this section provides a level of design guidance that is sufficient to adequately
define model structure. Depending on the aspect, certain CFs maintain a clear advantage for the

modeler. Table 3 lists the CFs according to the type of guidance they provide.

Table 2: Comparisons Based on Design Guidance

CONCEPTUAL
FRAMEWORK | OOP| ERA EAS CM$§ SM§ CS§ STAS

PGM§

OBJECT AND
ATTRIRUTE Yes Yes Yes Yes Yes Yes Yes
NAMING

Yes

CAPABILITY FOR
DYNAMICDESIGN | No No No | Limited No | Limi Limited
SPECIFICATIONS mied |

No

CAPABILITY FOR
ONE-TO-MANY | Yes | Yes Yes | Yes Yes | Yes: Yes

RELATIONSHIPS

Yes

CAPABILITY FOR
MANY-TO-MANY | Yest | Excellent | Yes? | Excellent Good | Limited {Limited
RELATIONSHIPS

Yest

¥ Not observed
+ With set extension
§ Includes documenting features

14

Table 3: Types of Guidance Provided by the
Conceptal Frameworks Under Review -

wrsvevTaron | SN | PEY

ES EAS M
AS ERA S
TPA ™M STA
PI SM
TF Q0P

PGM

CS

STA

4. CONCLUSIONS

Thirteen selected CFs for discrete-event simulation modeling are briefly reviewed and
compared. The review introduces the fundamentals of four groups of CFs: (1) the classical
(execution-oriented) group, (2) emerging discrete-event CFs, (3) CFs with demonstrated viability
to other than discrete problem domains, and (4) CFs exhibiting potential for discrete-event
simulation modeling. The comparison contributes a detailed and instructive discussion of the

characteristic differences among the CFs, based upon their individual application to a complex real-

world traffic intersection system.

15

ACKNOWLEDGMENT

This research was sponsored in part by the Naval Sea Systems Command and the Office of
Naval Research under contract N60921-83-G-A165 through the Systems Research Center at VPI
& SU.

REFERENCES

Balci, O. (1988). The Tmplementation of Four Conceptual Frameworks for Simulation Modeling
in High-Level Languages. In: Proceedings of the 1988 Winter Simulation Conference
(M.A. Abrams, P.L. Haigh, and J.C. Comfort, eds.). Institute of Electrical and Electronics
Engineers, Piscataway, New J ersey, 287-295.

Balci, O. and Nance, R.E (1987a). Simulation Model Development Environments: A Research
Prototype. Journal of the Operational Research Society 38, 753-763.

Balci, O. and Nance, R.E. (1987b). Simulation Support: Prototyping the Automation-Based
Paradigm. In: Proceedings of the 1987 Winter simulation Conference (A. Thesen,
H.Grant, and W.D, Kelton, eds.). Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey, 495-502,

Barger, L.F. (1986). The Model Generator: A Tool for Simulation Model Definition,
Specification, and Documentation. Unpublished M.S. Thests, Department of Computer
Science, Virginia Tech, Blacksburg, Virginia.

Birtwistle, G., Lomow, G., Unger, B., and Luker, P. (1985). Process Style Packages for

Discrete Event Modeling: Experience from the Transaction, Activity, and Event
Approaches. Transactions of the Society for Computer Simulation 2, 27-36.

Chen, P.P. (1976). The Entity-Relationship Model- Toward a Unified View of Data. Association
for Computing Machinery Transactions on Database Systems 1, 9-36.

Cox, B.J. (1986). Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley,
Reading, Massachusetts.

Crookes, J.G. (1982). Simulation in 1981. European Journal of Operational Research 9, 1-7.

CACI, Inc. (1983). SIMSCRIPT II.5 Reference Handbook. CACI, Inc.-Federal, Los Angeles,
California.

Derrick, E.J. (1988). Conceptual Frameworks for Discrete-Event Simulation Modeling.
Unpublished M.S. Thesis, Department of Computer Science, Virginia Tech, Blacksburg,
Virginia.

Fishman, G.S. (1973). Concepts and Methods in Discrete Event Digital Simulation. John Wiley
and Sons, New York.

Franta, W.R. (1977). The Process View of Simulation. North Holland, Amsterdam.

16

Geoffrion, A.M. (1987). An Introduction to Structured Modelin g. Management Science 33, 547-
588. '

Geoffrion, A.M. (1989). The Formal Aspects of Structured Modelin g. Operations Research 37,
30-51.

Hooper, 1.W. (1986a). Activity Scanning and the Three-Phase Approach. Simulation 47, 210-
211,

Hooper, I.W. (1986b). Strategy-Related Characteristics of Discrete-Event Languages and
Models. Simulation 46, 153-159.

Kaplan, D.J. (1987). The Process Graph Method, An Iconic Method of Controlling Networks of
Processors. In: Proceedings of the 1987 Summer Computer Simulation Conference
(J.Q.B. Chou, ed.). The Society for Computer Simulation, San Diego, California, 219-
227.

Karp, R.M. and Miller, R.E. (1966). Properties of a Model for Parallel Computations:
Determinacy, Termination, Queueing. SIAM Journal on Applied Mathematics 1 4. 1390-
1411.

Kiviat, P.J. (1969). Digital Computer Simulation: Computer Programming Languages.
Memorandum RM-5883-PR, The Rand Corporation, Santa Monica, California.

Kiviat, P.J., Markowitz, H., and Villanueva, R. (1983). SIMSCRIPT II.5 Programming
Language. Revised. CACI, Inc.-Federal, Los Angeles,California.

Kreutzer, W. (1986). System Simulation: Programming Styles and Languages. Addison-Wesley,
Reading, Massachusetts.

Lackner, ML.R. (1962). Toward a General Simulation Capability. In: Proceedings of the AFIPS
1962 Spring Joint Computer Conference. National Press, Palo Alto, California, 1-14.

Laski, J.G. (1965). On Time Structure in Monte Carlo Simulations. Operational Research
Cuarterly 16, 329-330.

Markowitz, H.M., Malhotra, A, and Pazel, D.P. (1983). The ER and EAS Formalisms for
System Modeling and the EAS-E Language. In: Entity-Relationship Approach to
Information Modeling and Analysis: Proceedings of the Second International Conference
on Entity-Relationship Approach (P.P. Chen, ed.). North Holland, Amsterdam, 29-48.

Meyer, B. (1987). Reusability: The Case for Object-Oriented Desi gn. Institute of Electrical and
Electronics Engineers Software, 50-64.

Miller, G.A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. The Psychological Review 63, 81-97.

Nance, R.E. (1971). On Time Flow Mechanisms for Discrete System Simulations. Management
Science 18, 59-73.

Nance, R.E. (1981a). Model Representation in Discrete Event Simulation: The Conical

Methodology. Technical Report CS81003-R, Department of Computer Science, Virginia
Tech, Blacksburg, Virginia,

17

Nance, R.E. (1981b). The Time and State Relationships in Simulation Modeling.
Communications of the Association for Computing Machinery 24, 173-179.

Nance, R.E. (1987). The Conical Methodology: A Framework for Simulation Model
Development. In: Proceedings of the Conference on Methodology and Validation (O. Balci,
ed.).The Society for Computer Simulation, San Diego, California, 38-43.

Nance, R.E. and Overstreet, C.M. (1987). Diagnostic Assistance Using Digraph Representations
of Discrete Event Simulation Model Specifications. Transactions of the Society for .
Computer Simulation 4, 33-55.

O'Keefe, R.M. (1986). The Three-Phase Approach: A Comment on “Strategy-related
Characteristics of Discrete-event Languages and Models'. Simulation 47, 208-210.

Overstreet, C.M. (1982). Model Specification and Analysis for Discrete Event Simulation. Ph.D.
Dissertation, Department of Computer Science, Virginia Tech, Blacksburg, Virginia.

Overstreet, C.M. and Nance, R.E. (1985). A Specification Language to Assist in Analysis of
Discrete Event Simulation Models. Communications of the Association Jor Computing
Machinery 28, 190-201.

Pidd, M. (1984). Computer Simulation in Management Science. John Wiley and Sons, New
York.

Shub, C. M. (1980). Discrete Event Simulation Languages. In: Proceedings of the 1980 Winter
Simulation Conference 2 (T.I. Oren, C.M. Shub, and P.F. Roth, eds.). Institute of
Electrical and Electronic Engineers, Piscataway, New fersey, 107-124.

Tocher, K.D. (1963). The Art of Simulation. English Universities Press, London.

Tocher, K.D. (1965). Review of Simulation Languages. Operational Research Quarterly 16,
189-217.

Tocher, K.D. and Owen, D.G. (1961). The Automatic Programming of Simulations. In:
Proceedings of the Second International Conference on Operational Research, (J. Banburg
and J. Maitland, eds.). John Wiley and Sons, New York, 50-68.

Zeigler, B.P. (1976). Theory of Modelling and Simulation. John Wiley and Sons, New York.

Zeigler, B.P, (1984). System-Theoretic Representation of Simulation Models. JIE Transactions
16, 19-34.

Zeigler, B.P. (1987). Hierarchical, Modular Discrete-Event Modelling in an Object-Oriented
Environment. Simulation 49, 219-229.

18

i WL 8

SECUTTY D_ASSIFHATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB8 Na. 0704-0188

la REPQRT .S,E.(:_.URG&’C%SASSIEL TION

ST

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE

Untimited

4. PERFORMING QRGANIZATION REPORT NUMBER(S)
Systems Research Center SRC-80-002

5. MONITGRING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL

63. NAME OF PERFORMING ORGANIZATION
{If applicabie}

Systems Research Center

7a. NAME QF MONITORING ORGANIZATION
Naval Surface Warfare Center

6c ADDRESS (City, State, and ZIF Code)
320 Femoyer Hall
Virginia Tech
Blackshurg, Virginia 24061-025]

7b. ADDRESS {City, State, and ZiP Code)
Dahlgren, Virginia 22448-5000

8h. OFFICE SYMBOL

8a. NAME OF FUNDING /SPONSORING
(if applicable}

ORGANIZATION
Naval Surface Warfare Center

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Coce}

Dahlgren, Virginia 22448-5000

10. SOURCE OF FUNDING NUMBERS

TASK WORK UNIT

NO.

PROGRAM PROJECT
ELEMENT NO. NG,

ACCESSION NO.

31, TITLE (Include Security Classification)

A Comparison of Selected Conceptual Frameworks for Simulation Modeling

12. PERSONAL AUTHOR(S)
E. Joseph Derrick, Osman Balci, and Richard E. Nence

et B rarar wian,

i3a. TYFE OF REPORT 13b. TIME COVERED
Interim — Technical FROM 1/B TO

t4. DATE OF REPCRT (Year, Mgonth, Day) 115, PAGE COUNT
1889 August 4 18

16. SUPPLEMENTARY NOTATION

o rearnn

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS {(Continue on reverse if necessary and identify by block number)
Conceptual frameworks, discrete event simdation, model specification,

similation strategies, worid views

CF development.

3. ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this paper is to compare thirteen Conceptual Frameworks {(CFs)
selected from among several categories of applicability to discrete-event simulation
modeling. Each CF is briefly reviewed to provide the background information
required for the comparison. Based on the insights gained in applying the CFs to the
modeling of a complex traffic intersection
their distinct characteristics and capabilitie
according to the design guidance and implementation guidance features of the CFs.
Conclusions highlight the inadequacies of the CFs and the importance of research in

system, the CFs are compared relative to

s. Comparative comments are grouped

U b o

zo.é)ismraunomrAmeAaruw OF ABSTRACT
UNCLASSHFIEDAUNLIMITED [} SAME AS RPT.

{ oTic USERS

21. ABSTRACT SECURITY CLASSIFICATION
‘ %Jnclassz_f' ied .

22a. NAME OF RESPONSISBLE INDIVIDUAL

22b. TELEPHONE {include Area Code} | 22¢. OFFICE SYMBO.

DD Form 1473, JUN 86

Previous editions are chsolete.

SECURITY CLASSIFICATION OF THIS FAGE

Unclassified

