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A BSTRACT

Most existing approaches to reasoning in uncertainty and with incomplete information .
appeal to formal theories, with relatively little attention to the phenomena they are intended to
capture. This has had two major consequences. First, it has led to spurious disputes, in which
participants criticize alternative approaches in the belief that they are competing, when in fact
they are investigating different aspects of related phenomena, and should ultimately be viewed
as cooperative efforts. Second, it has led 1o wasted effort of models which fail to reflect impor-
tant aspects of kinds of reasoning which they are trying to capture, because the representational
requirements have not been adequately spelled out. This paper delineates several different
kinds of reasoning in uncertainty, establishes some distinctions within the field, and attemplts 1o

begin setting some ground rules for representational adequacy.

Section 1: INTRODUCTION

Most proposed systems for default reasoning rest their appeal on formal developments in
logic, statistics, decision theory, or some other technical field. These discussions usually place
little emphasis on analyzing the phenomena to motivate their approaches, but instead plunge di-
rectly into technical developments, and argue for one view over another on the basis of formal re-
sults. When we compare these discussions to those in other fields of artificial intelligence, the
lack of artention to the phenomena which the model is trying to capture springs sharply into

focus.

The most difficult part of developing an approach to default reasoning may lie not in coming
up with an appropriate formalism, but in understanding precisely what distinctions and intui-
tions we would like our systems to capture. There are many different kinds of reasoning in uncer-
tainty. It follows that there are many possible models, which differ without conflicting, once

their appropriate domains of application are understood.

But this does not mean that the game is wide open, or that any coherently developed formal

system has as much claim to validity as any other. Tn the heat of theorem proving and argument
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pressing, it is easy to forget the significance of the theorems — what they are intended Lo estab-
Iish. Almost every formalism for reasoning these days is presented with soundness and com-
pleteness theorems, as if the existence of such a theorem by itself validated using inference en-
gines based on them. Soundness and completeness are not properties of inference engines. They
reflect a relationship between an inference engine and a formal semantics. Soundness at its most
essential level says that 21l inferences are warranted by the semantics; completeness says that all
entailments that the semantics warrants can be inferred. There are two different ways that either
of these could fail: the inference engine could be defective (perhaps necessarily so, if the logic is
second or higher order, for instance), or the semantics could be inappropriate. Because we are
computer scientists, concerned with writing correct inference engines, we naturally focus on the

first. But when developing models, it is at least equally important to look at the second.

A model of reasoning in uncertainty is useless unless it captures at least the most basic
properties of some form of actual uncertainty reasoning. It follows that the conditions of truth
which the formal semantics specifies must reflect important aspects of the real conditions under
which we would want to claim that generalizations of the kind we are trying to model are true or
false. Likewise, unless the definition of logical implication provided by the semantics reflects
the actual criteria which determine whether one thing follows from other partial or uncertain in-

formation of the intended kind, soundness proofs become irrelevant.

In other words, formal systems must be analyzed in terms of the phenomena they model, and
that they are representationally adequate or inadequate insofar as they do or do not reflect the
structure of these phenomena. To be an adequate model of some aspect of reasoning in uncertain-
ty, a formal model must provide a semantics which preserves both truth conditions and implica-
tions when we go from the motivating phenomena to their correlates in the model. In particular,
the interpretation of non-universal generalizations in the formalism must preserve the truth and
implication conditions of some interesting set of actual non-universal generalizations, or the for-
malism has no clear realm of application. It is this fact that makes distinctions among kinds of
generalization so important: formalisms for reasoning in with them will be expressively adequate
only insofar as they preserve those distinctions. This paper establishes some distinctions within
the realm of reasoning in uncertainty, and then describes requirements on systems of defaunlt
reasoning as knowledge representaiions, based on those distinctions and on the natures of the

different tasks involved.
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The paper is structured as follows. Section two discusses the difference between decisien
theory and logic, and argues that trying to locate decision theory in logic, whether for default
reasoning tasks or for any other ones, is a mistake. It establishes what tasks belong to each or
these portions of a default reasoning system, and what criteria apply to each. Section three es-
tablishes distinctions among four kinds of generalization, which will be used to structure the
discussion of different kinds of default reasoning systems. Section four discusses other distinc-
tions which at least some knowledge representation systems for different default reasoning tasks
will want to retain. Section five discusses additional requirements for various kinds of logics of
uncertainty and incompleteness, and section six provides conclusions and some preliminary re-

marks toward unifying the different kinds of default reasoning.

Section 2: DECISION THEORY VERSUS LoGicC

In contexts of incomplete information or uncertainty, we are often faced less with answers
than with choices. There are at least two tasks which a system reasoning in contexts of uncer-
tainty could be expected to perform. First, we want it to identify the reasonable candidates.

Second, whenever possible, we would like an adjudication among the various options. This section

argues that these are distinct tasks, to such an extent that they actually belong to different parts
of the system altogether. Logic gives us alternatives; decision theory selects among them. We

argue here that although many hold that the decision theory is the heart of any logic for reasoning

in uncertainty, there are sound reasons for keeping it strictly separate from the logic.

2.1 How they are different

A logic is a formal system for telling what follows from what, and how to establish that. A
decision theory is a substantive theory giving grounds for choices among options, when none can
be shown to follow. The difference may be seen in either of two ways. On one view, decisien theo-
ry is to uncertain situations as logic is to certain ones. That is, in situations allowing certainty,
logic “selects” the options that follow (certainly); it is not necessary to ask which it selects, be-
cause all the possibilities that actually follow will be consistent with one another, if the initial
description of the situation was coherent (that is, if the premises were consistent). In situations

which do not allow certainty, logic is baffled, and decision theory picks up where it leaves off.
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The problem with this view is that logic is not baffled in situations of uncertainty. Logic
can tell us exactly what follows from our given situation. It can even demonstrate what the alter-
natives are, which of them are compatible with one another, and which are not. The difference
lies not in what logic can do, but in what we want from it. In contexts of uncertainty or incom-
plete information, we will often have to choose among options none of what are entailed, and which
often conflict. What we really need, in these cases, is an adjudication not of what follows from
what we already believe (have already committed ourselves to), but of what further commitments
we ought to make. Decision theory has “ought” built into it at the lowest Tevel: it is a preferential

L.

evaluator. Logic works rather from “is

2.2 Why to keep them different

It could be argued that the above distinction is not really important. That is, in contexts of
incomplete or uncertain information, we want to know what “reasonable conclusions™ can be
drawn from the partial or uncertain information on hand; and this is close enough to what logic
does that the same engine responsible for drawing entailments in contexts where that is possible
should be doing this work. What is wrong with this, essentially, is that the engine by its nature
is a single-criterion decider. When dealing with more familiar inferential contexts, that criteri-
on is entailment. The natural impulse, then, is to extend the concept of entailment so that it will
make our decisions for us in uncertain or partial contexts as well. But there are strong reasons

not to do this.

2.2.1 Multiple decision criteria depending on context

The single most important reason not to leave a single-criterion engine in charge of decision
theory is that decision-making is not a single-criterion procedure. There are many possible cri-
teria for making decisions, and which criterion should take precedence depends very much on the
circumstances. Suppose, for instance, we are working with a medical consulting system. Do we

necessarily want it to choose the most probable diagnosis when faced with a new case?

Suppose that a patient has a sore throat, white spots on the tonsils, nausea, diarrhea, and
vomiting. Consider two hypotheses: (A) the patient has a strep infection; (B) the patient has a
strep infection and a gastrointestinal virus, Hypothesis A is necessarily the more probable of
the two: the probability of a conjunction is always smaller than the probability of either conjunct
(unless one entails the other or the probability of one of the conjuncts is zero, neither of which

holds in this case). But surely hypothesis B is the better diagnosis.
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From this example, we might conclude that what we want is really the best explanation,
which we might define as the highest probability hypothesis which covers all the symptoms. But
is this really true? Suppose a patient has & set of symptoms which could simply reflect a minor
infection, but which occasionally indicate an early cancer. Would you want your doctor always to
diagnose the infection, without checking for the cancer, just becanse it explains as many symp-

toms and has a higher probability?

In cases where being wrong can have serious costs attached, we probably want our decision
theory to accommodate that. That is, we want cost of error to be a criterion, as well as probability
and coverage of information. It could be argued that such a decision theory could be built into an
inference engine, so that its “single criterion” is in fact a balanced sum of factors. But things are

more complicated than that,

Suppose that instead of making decisions about “real life” cases, our system is trying to do
something like scientific discovery. The inferences we are interested in are now things like ar-
riving at a scientifically interesting hypothesis to explain data. Cost of being wrong is not a fac-
tor here. We don’t want the system to make infer the safest hypotheses; we want it to infer the
most fruitful ones. Measures of fruitfulness include such things as range of new phenomena ex-
plained, range of experimental investigations suggested, and so on. Some of these issues can be
formalized more easily than others; but whatever the formalization winds up looking like, the cri-

teria will be nearly disjoint from those of the medical consultant system above.

Now consider an economic forecaster/decision maker for a business organization. They
aren’t looking for fruitfulness, but neither do they simply want to minimize risk. Minimum risk
schemes rarely make money. They are interested in minimizing risk subject to maximizing

profit.

In other words, the criteria for making decisions vary from application to application.
Worse yet, they vary within applications. There are times when doctors don’'t bother to get pre-
cise diagnoses at all: most frequently, when they are confident that the problem is an essentially
harmless virus about which they can’t do anything anyhow. In fact, the decision whether to de-
cide is itself subject to all the considerations of decision theory: sometimes, it is better to wait
until more information is available; other times, no decision may ever be worth the cost of getting

it, and the best thing to do is never to decide (or to toss a ¢oin, and then ignore the outcome).
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Decision theory is a large and complex substantive field. Even as applied to the tasks of a
single application area, the decision theoretic issues may greatly exceed anything that could rea-
sonably be tied to a single concept of uncertain entailment, however complexly defined. The idea
of trying to model such an entailment concept formally and use that model as a basis for sound-

ness and completeness proofs is nightmarish. This just is not what logic does.

2.2.2 Knowledge-based decision criterion choice

Furthermore, there are positive advantages to be obtained by separating out the decision
theoretic issues from the logic. In particular, suppoese that the decision theory principles are
themselves present in the knowledge base, in a form accessible to the inference engine. Then the
system can use its inference engine and its representation of decision theery to infer whether
this is a case that needs deciding, and if so, what criteria should be applied with what priorities.
To put it differently, people faced with decision making tasks often reflect consciously on the
decision making principles, and may decide among them on the kinds of grounds sketched above.
To get systems to do the same things, we would have to provide them both with information about

the kinds of situations they face and with explicit information about what matters to decision

making in different situations.

The idea here is that decision meaking should ideally be a knowledge-based activity, and se-
lecting decision criteria should be done on the basis of knowledge about criteria and situations.
To make this possible, though, it is necessary to separate the decision theory from the inference
engine. In other words, I am arguing here that logics of uncertainty and incomplete information
should not choose among conflicting alternatives. Rather they should provide an architecture for
reasoning about the alternatives which when combined with knowledge-based application of an
explicit decision theory can let the knowledge about decision making and about the situation

guide the selection among alternatives.

Logic is not about making commitments. It is not about premise selection. It is only about
what follows from commitments if made. Decision theory is about making commitments. Iis con-
siderations are different from those of logic, and it operates at an entirely different level. We

should not be confusing the one with the other.
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2.2.3 Decision criterion = knowledge; application = inference

The model which this section argues for, then, is a stratified model, in which logic lies
below decision theory, and applies it to provide choices in uncertain sitwations. The distinction
between the two is sharp. The logic lies in the inference engine. It is not explicit knowledge on
the part of the system; it is rather the system’s competence in dealing with knowledge, The deci-
sion theory, on the other hand, is knowledge, in the most straightforward sense, It is represented
as explicit rules in a2 knowledge base, which give the criteria on which decisions are to be based.
To infer the appropriate decision in a given situation, the inference engine works on the domain
knowledge base, the given information about the current situation, and the decision theory, to re-
sult in an application of the decision theory’s principles to the current case. That is the infer-
ence that we are looking for. The rest of this paper discusses aspects of reasoning in uncertainty
which pertain to the structure of the logic portion of this reasening apparatus. While many ex-
isting approaches fold the decision theory also into the inference engine, this paper will largely

ignore those aspects of the approaches.

Section 3: DIFFERENT KINDS OF GENERALIZATION

In English, “all” rarely means “every single thing without exception™. When it doesn’t mean
that, there are several different things it can mean, and these different meanings can lead to very
different patterns of reasoning., In this section, we present four different kinds of generaliza-
tions, pointing out the salient distinctions from the standpoint of reasoning with them. We make
no claims to completeness: there almost certainly are numerous possibilities that this discussion
misses. This analysis also makes no prior judgment as to the desirability of modeling any of the
four kinds of generalization discussed here. Our point here is that the four are different, and
sufficiently different to require distinct handling in inference systems. Hence it should not be
expected that & technique adequate for handling one kind of generalization to handle the others as

well.

3.1 Universal generalizations

Universal generalizations (UGs) are the kind Aristotle handles in his logic, and which mod-
ern logic deals with using universal quantifiers. These are claims which, if true at all, are true
of every individual in their domains. In developing artificially intelligent systems, we can mno

lenger ignore the issue of how the domain of a particular UG is identified. However, assuming
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that it has been identified by the time information is represented in a data base, the representa-
tion of UGs presents no problem for systems capable of storing and manipulating the information

contained in predicate calculus style propositions.

Brachman {Brachman 1985] argues persuasively that A.L. systems must represent genuine UGs
— that is, UGs which cannot be overridden by “exception” clauses — if they are to be able to en-
code definitions. That is, if we always treat “all” as permitting exceptions, we can wind up stor-
ing nonsense like non-elephant elephants. The point here is that at least some aspects of defini-
tion require “real live” universals. This is even clearer if we want to provide a system with a
definition of subset on the basis of membership, for instance, and allow the system to infer things
like, if x € A and A £ B then x € B, then for the definition of subset had better not allow excep-

tions.

In additiom, if all generalizations allow exceptions, then finding VxP(x) and ~P(a) only in-
dicates an exception. It does not indicate a comiradiction. The problem with this is that consis-
tency maintenance can be used as a constructive constraint, but only if inconsistencies are de-
tected as such. Hence it seems necessary to encode UGs in knowledge representation systems.

However, this necessity at least prima facie presents no special problems.

3.2 Statistical generalizations

Statistical generalizations (SGs) are generalizations based on some interpretation of proba-
bility. In these generalizations, “all” means most, the majority, on the average, in the expected
case, or some similar claim. Probabilities can be reported with varying precision, depending on
the Ievel of knowledge and interest. Measuring them forms the subject matter for an entire disci-
pline, and so clearly goes beyond the scope of the present report. But because these form a very
important class of generalizations which has deservedly rececived a great deal of attention in AI,
it seems appropriate to go into some depth on their nature and a few important aspects of their

behavior.

The philosophical nature of probabilities matters less for AI purposes than what kinds of
phenomena classical and Bayesian probability analyses model. However, given the vehement dis-
putes on this issue, a few observations may be useful. Statistics begins investigating probabili-

ties in any particular instance by defining (at least loosely) a space of outcomes, that is, mutual-
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ly exclusive observations of test results. Events are sets of outcomes from that space. When
probability theorists refer to probabilities, they typically mean event probabilities, that is, the
likelihood that the outcome of a particular test will belong to the set which defines the event.
This likelihood is traditionally defined in terms of frequency: given a “sufficiently large” num-

ber of tests, what proportion of all outcomes fall in the event set?

The frequency view has been attacked for centuries; a recent criticism can be found in
[Cheeseman 1985]. Probably the most persuasive argument against the frequency view from an Al
standpoint is that on that view, each event has exactly one correct probability. But for AI pur-
poses, such a probability is neither attainable nor in some cases even interesting. Rather, we are
interested in the probability of an hypothesis givern the current evidence. Critics further object
that the frequency theory “restricts probability to domains where repeated experiments (e.g.
sampling) are possible, or at least conceivable” [Cheeseman 1985). In addition, the concept of “long
run frequency” has bothered people for centuries. How long? How do you know? Why should

“large numbers” (how large?) have special properties?

These objections can be met without deserting a frequency-based approach. The probability
of any hypothesis on the basis of the current evidence can be — and in normal statistical practice
is — interpreted as the conditional probability of the hypothesis given the conjunction of events
which that evidence reflects. In other words, in addition to a single, well-defined probability for
every event over the space, the frequency view also provides a way to represent precisely the rel-
ativized probabilities we are most interested in (and these are exactly the probabilities that stat-

isticians investigate).

Classical statistics texts also contain chapters on game theory and decision theory which
describe techniques for estimating probabilities on the basis of very small samples (see e.g.
[Freund and Walpole 1980] Chapter 9, or almost any other freshman text). So not only does classical
statistics recognize that this can be dome, the theory instructs the interested in how to do it

only, it also warns not to place great faith in the accuracy of such estimates.

The hardest question to meet is the philosophical question of the significance of the Law of
Large Numbers: what does it mean to talk about “long run” frequencies? Classical statistics pro-
vides some tests for whether an actual sample is large enough; but that cannot answer the philo-

sophical question. The best that can be said here is that other approaches have their own philo-
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sophical questions that they cannot answer, but none of these philosophical questions seem to af-

fect AI.

The classical alternative to the frequency view is the subjective probabilities view, which
derives from the views of the 18th century English clergyman Thomas Bayes. On this approach;
probabilities measure certzinty levels. Two options here should be distinguished. The first is
well-defined, and clearly subjective (as philosophers use the term): the probability of an event
given the current evidence is the measure of the degree to which a particular specific “real live”
individual believes that the event will occur on the basis of that evidence. The problem here is
evident: people will believe all sorts of things, and different things at different times, for differ-
ent reasons or none at all. There is no reason to suppose that one person’s “probability” in this

sense will match another’s, and no grounds for a science of probability at all,

It is unlikely that many supporters of subjective probabilities ever meant that, though they

often seem to say if:

. the following definition is put forward as one that withstands all previous eriti-
cisms: The (conditional) probability of a proposition given particular evidence is a
real number between zero and one, that is a measure of an entity’s belief in that prop-
osition, given the evidence. (ICheeseman 1985); emphasis in original)

The alternative, and the view that is actually held, is that probabilities measure how much an
ideal rational subject ought to believe that an event will occur, given the evidence. This option
makes probabilities relative (to evidence), but not really subjective: no actual subjects are in-
volved any more. This approach has two difficulties, both as obvious and as pressing as the prob-
lem the frequency theory has with understanding the long run. First, what makes someone an
ideal rational subject? Probability cannot be considered well-defined on this view until that is
spelled out. Second, how other than by measured frequencies can we establish the degree to

which such a subject ought to believe that a given event will occur?

The mathematics for measuring probabilities is the same on both these competing defini-
tions: Bayes’s Theorem is a theorem of classical statistics, for example. The significant differ-
ences come in questions of when it is legitimate to apply the formulas, and what they can be taken
as establishing. In this regard, it seems that the frequency analysis has an advantage: designers
of Al systems generally care less whether their systems “ought” to believe their answers than

how often those answers are right. For systems whose judgments have practical consequences, we
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should measure and maximize that if we measure anything. But whatever philosophical view of
probabilities we take, the mathematics always agrees with long run frequency expectations in all

situations in which we can make sense of them.

Finally, some simple properties of probabilities should be noted. Events zre independent
provided that whether an outcome belongs to one does not affect how likely it is to belong to an-
other. The joint probability {probability that all events will occur) for independent events is the
product of the probabilities of the events. Since all probabilities lic between zero and one, the
joint probability of several independent evenlts-is always smaller than the probability of any one
of them, unless all but one have probability one or at least one has probability zero. For depen-
dent events, the joint probability is at most the minimum of the individual event probabilities,
and it reaches that level only if the corresponding event entails all the others. The joint proba-
bility for dependent events may be zero even though none of the individual probabilities is (it
will always be so if at least two of the events are mutually exclusive). More subtly, the joint
probability of, say, six events may be zero even though ne two of them are mutually exclusive, if,

say, five of them together exclude the sixth.

Similarly, the probability that an outcome will fall into at least one of severzl independent
events (the probability of their disjunction) is the sum of the probabilities of the events in gues-
tion. If they are dependent, it is at least the maximum of the individual probabilities, and at

most their sum {or one, whichever is smaller).

It is common in Al contexts to assume independence in the absence of information showing
otherwise. A false assumption of independence never underestimates the probability of disjune-
tions, and usualiy overestimates it. For conjunctions, the situation is more complicated. If the
events involved are dependent and mutually supportive (the probability of any increases the
probabilities of the others), a false assumption of independence always underestimates the prob-
ability of the conjunction. If, en the other hand, the events are mutually antagonistic (the proba-
bility of any reduces the probabilities of the others) a false assumption of independence overes-
timates the probability of the conjunction. If some are mutually antagonistic and others mutually
supportive, how the actual joint probability is related to the one derived from a false assumption
of independence is anybody’s guess. In a long chain of reasoning invelving disjunctions and all

three kinds of conjunctions, these offsetting errors may prove very hard to detect and isolate.
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In addition to these problems, combining statistical inference with ordinary logical infer-
ence involves some nasty complications. Statistical measures do not combine truth functionally,
and hence do not follow the rules of standard first order logic. That is, if P(A) is the probability
of A, P(B) is the probability of B, and P(A A B) is the probability of A A B, there is no function f
such that f{P(A),P(B)) = P(4 A B). In English, the probability of a conjunction is not a function of
the probabilities of the conjuncts. We can see this immediately from the remarks above on the
behavior of probabilities of conjunctions. Different functions are needed io compute the proba-
bility of A A B depending on whether they are dependent or independent, and the functions for
deriving the probability in the case of dependent events require not only the probabilities of A

and of B but the conditional probabilities of A given B and of & given A also.

This absence of truth-functionality becomes even clearer when a causal relationship is
sought or presumed. In this case, probabilities become inextricably Iinked to the theoretical
context, and in some sense take on a different meaning. Given one set of results R, the probability
of R will differ depending on the hypothesis relative to which it is computed. More importantly,
what changes tends to be not the probabilities of individual occurrences, but precisely the proba-
bilities of cobecurrences. That is, the probability of the conjunctions changes, without that of the

conjuncts changing.

Saying that the probability of A A B is not z function of the probabilities of A and of B, does
not mean that it is not a function ¢f A and B themselves. Given A and B and sufficient information
about them, we can calculate the probability of A A B. To calculate prohabilities of complex
propositions on the basis of their logical form, though, we would need a well-defined function re-
flecting the relationship between the probabilities of A and of B and that of their conjunction.
But none exists. It remains only to note that this problem affects not only conjunction, but all

connectives except negation.

The problem strikes even deeper. Traditional statistics does not even measure or combine
probabilities for propositions. It measures probabilities of events, where an event is defined as a
set of sample points in a sample space, whose points are taken to represent mutually exclusive
outcomes of tests. By the conventions of ordinary propositional and predicate Iogic which form
the basis for both the deductive and the formal semantic rules, no two atomic propositions are
mutually exclusive. Hence atomic propositions do not reflect outcomes, so do not correspond

straightforwardly to points in a sample space. Nor can non-atomic propositions be viewed as
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events over a sample space of propositions, unless we are extremely careful to restrict those

atomic propositions to outcomes in the statistical sense, say by including the necessary axioms.

This is not to say that no systematic rules for determining complex event probabilities
exist. On the contrary, the discipline of statistics has formulared such rules very precisely. The
claim here is that to do so in an A.I. system, statistical laws must be implemented directly. Not
only does logic provide no short cut here, it cannot even be combined with statistical operations

in the obvious ways.

3.3 Generalizations arising from degree-of-applicability claims

A different kind of uncertainty centers on the extent to which a given property applies to
an individual. This is the issue of vagueness, and the kind of inferences justified on the basis of
degree-of-applicability are different from those based on other kinds of uncertainty. These are
claims that involve “mushy quantifiers” like “sort of”, “rather”, “not very”, “-ish”, and the like,

as for instance in the proposition “Fred is a youngish man”,

The most common models for these degree-of-applicability claims (DACs), fuzzy set theory
and fuzzy logic, look superficially a great deal like probabilities. In fact, however, DACs de not

work like probability. Consider the following two claims about Oscar the Ostrich:

(i) Oscar is a (typical) bird at 0.6
(ii) Oscar is male at 0.5

Claim (i) says that Oscar is not very birdlike (ostriches aren’t), although he is more birdlike than
a lot of other non-birdish things (Oscar is more than 0.5 birdlike, because, for instance, he is
more like a bird than, say, reptiles are.) This is the sort of claim fuzzy set theory was originally
developed to handle; it tries to measure the extent to which an individual falls in the bounds es-
tablished by a fuzzy concept. Claim (ii) is a probability claim, reflecting that the system doesn’t
know whether Oscar is male but does know that Oscar is 2 bird, and that half of all birds are
male, making the chances that Oscar is male 50-50. That is nof to say that Qscar is half male: the
system can consistently hold (ii) and also hold that any given bird is either completely male or

not at all.
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The claims look superficially alike, but they cannot be taken the same way: (i) says that
Oscar is not a very typical bird; (ii) does not say that Oscar is not a very typical male. The claim
which (i) embodies does not really reflect incomplete information at all; it reflects a fundamental
fact about how Oscar relates to a vague concept. In case (ii), the information is incomplete and
can be completed by a single experiment (look at Oscar and see). If no difference in representa-
tion reflects this basic difference in content, the system will reason incorrectly a good part of the

time. Translations of DACs into probabilities do not preserve inferences.
3.4 Generalizations as abbreviations

Generalizations as abbreviations (GaAs) are generalizations whose intuitive meaning is “If x
is of kind K, then x has P unless I know of some problem preventing that.” A GaA is a short cut,
in place of actually stating a (perhaps cumbersome) list of known exceptions. Any GaA can be
transformed into a correct UG as follows. Let Trepresent a “quasi-quantifier” for “in general”.
Suppose the GaA has the form Tx¢(x), and the known exception conditions are ¢I x),..., ¢n(x).

Then Vx(~{¢1 (x)v..v ¢n(x)] — §(x)}is logically equivalent to I'xd(x),

The Closed World Assumption (CWA) is a global assumption about a data or knowledge base
to the effect that all true positive ground facts are known [Reiter 1978]. GaAs are naturally related
to the CWA and hence have many useful applications in fields like intelligent data bases. If ex-
ceptions to generalizations all took the form of positive ground facts (or could all be proved from
them), then the CWA would entail that all exceptions to a given generalization are known. GaAs
go well beyond the bounds of the CWA, since they do not restrict the form of possible exception-
causing propositions (the ¢i need not be either positive ground facts or provable from them); but
the spirit is similar. GaAs also have a great deal in common with the spirit of PROLOG, which
does not include true negation, but does have negation by failure. That is, in PROLOG, there is a

sense in which you cannot say “If ~¢ then y”, but you can say “If I don’t know ¢, then .

Since GaAs are assumed to have equivalent formulations in standard first order logic, and
since these formulations can ex hypothesi be recovered from the knowledge base, their existence
and use do not require us to formulate a new logic. We can simply treat them as the abbreviations
they are, within a standard first order predicate logic. That is, they may be implemented in ways
that are very different from implementing their equivalent universals. But insofar as that imple-
mentation can be shown to allow the same inferences as the formulation in genuine universals

would, we can use first order logic in determining issues like soundness and completeness. This
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is not to claim that within A.I. systems, adding GaAs introduces no new behavior. But when we go

to justify the conclusions of the systems in logical terms, we need nothing beyond standard logic.

There is an important sense in which GaAs are closer to UGs than to SGs. Suppose our
knowledge base contains a generalization which says “In general, things of kind K have property
P,” and suppose it can show that x is of kind K and none of the exception clauses holds of x, but
it also contains the proposition that x does not have property P. If the generalization were statis-
tical in nature, this would simply say that an unusual thing has come to pass; but if it is a GaA,
then the knowledge base contains an inconsistency. GaAs do not allow unknown (or unprovable)
exceptions. Discovering something which cannot be proven to be an exception but which nonethe-
less is comnstitutes reason to worry. Something is wrong. If any exceptions exist which are not

demonstrable by means of information in the data base, then the GaA is false.

3.5 Typicality-based generalizations

The generalizations of the fourth kind, which we will call typicality-based generalizations
{(TBGs), are subtly different from any of the foregoing kinds. These generalizations are based on
something like a prototype notion (see for instance [Rosch 1975], [Rosch and Mervis 1975], and
fRosch et al. 1976]). They report facts which typically hold for members of a given class (or objects

answering a given description, or so on).

TBGs encode things it is reasonable to presume: they warrant not inferences, but presump-
tions. Inferences show what follows from what. TBGs do not tell you that something follows; they
tell you that it might be reasonable to suppose something. They do not add conclusions; instead
they suggest presumptions. This warrant of presumption, however, transmits across propositions
the same way that inferences do: presumability is inherited truth-functionally. If there is rea-
son to suppose that A, and there is reason to suppose that B, then there is reason to suppose that
A A B -—although there may be better reasons not to suppose the conjunction, as for example when

it proves logically false.

TBGs are neither statistical claims nor abbreviations for UGs with known deviations. Rather
they reflect situations of genuinely partial knewledge, in which the information present warrants
making certain presumptions, without warranting their actual assertion. Because TBGs are often

hard to tell from other kinds of generalization, we contrast them with each class individually.
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3.5.1 TBGs versus UGs

[Brachman 1985] explains this distinction clearly. To use his example, if we say that all ele-
phants are mammals which are gray and which have four legs, and if we treat “all” as indicating
genuine universality, then we have no way to talk about Clyde the unfortunate amputee elephant
with only three legs (or about more natural examples like albino elephants). On the other hand,
suppose we always treat “all” as indicating a non-universal generalization. Then we can talk
about Clyde the three-legged elephant, but unfortunately we can talk with equal ease about Clyde

the non-mammalian elephant, or even about Clyde the non-elephant elephani.

In other words, if both non-universal generalizations and UGs are to be dealt with, they
must be clearly distinguished. A.I. systems must either implement genuine UGs or abandon defi-
nitiens altogether. At the same time, if we want to be able to deal with situations which are atyp-
ical in unpredictable ways, we must incorporate in our systems some form of TBG in addition to

and distinct from UGs, so as to provide for atypicality without ruling out lawfulness.

3.5.2 TBGs versus §Gs

TBGs cannot be treated like statistical claims either, although the difference here is more
subtle, and the need to avoid confusion harder to argue. Most people realize that over half the
population is female. Yet in the absence of information concerning a person’s sex, one does not
usually presume that the person in question is female (indeed, the presumption tends to go the
other way). On the other hand, the number of flightless birds {emus, ostriches, kiwis, penguins,
and so on) is hardly negligible. Yet we feel justified in presuming of birds in general that they

fly.

Pace Cheeseman [Cheeseman 1985] and many, many others, not all that is not universal is prob-
abilistic. For instance: if, as Cheeseman claims, the by now tormented example “Birds fly” really
means “Most birds fly”, then birds don’t fly in the spring. In nesting season, baby birds outnum-
ber adults. Baby birds don’t fly. Hence in nesting season, “Most birds fly” is false. (By the way,
we can do even better with “Birds lay eggs,” which is out-and-out false year round of at least half
the population: none of the males do.} 8o if Cheeseman is right, anyone who says in the spring

that birds fly or at any time that birds lay eggs is mistaken. This is nonsense.

“Birds fly” must be decoded with respect to typicality. If typicality can be modeled by any

statistical concept, it is category cue validity, not probability  [Resch 1975; Rosch and Mervis 1975;
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[Rosch et al. 1976]. “Birds lay eggs,” on the other hand, is not statistical at all. It is shorthand for a
genuine, accept-no-substitutes universal — but not for “Feor all x, if x is a bird, then x lays
eggs”. Instead, it is in a class with the non-universal generalizations “Mammals bear young
alive” (duck-billed platypi lay eggs) and “Reptiles and fish lay eggs™ (garter snakes and sharks
bear live young). By the way, these generalizations cannot be translated straightforwardly into
probability claims counting over species instead of individuals: no species either bears live

young or lays eggs; only (female) individuals belonging to species do.

TBGs usually represent cansal claims, albeit masked and incomplete ones. Most birds fly,
not by accident or coincidence, but because the features which distinguish something as a bird
evolved to facilitate flight. There are exceptions to the rule (birds that don’t fly) because evolu-

tion did not always stop at that point. But in general the rule holds, and for a2 good reason.

Statistical claims are frequently (though not always) assumed to be related to some causal
fact. The difference is that statistical claims are evidence for, rather than embody, a causal
claim. Furthermore, many statistical “facts” result from accident: we accept as supporting causal
claims only certain statistical evidence. In particular, the evidence must show a persistent trend
among data concerning phenomena which there is independent reason to suppose might be rele-

vant to one another.

For example, I recall reading somewhere that for many years, the membership rolls of a
bakers’ union in New York City precisely paralleled the births and deaths in a town in India.
Whether this actually happened is not important here; my point is, it could happen, and if it did,
no reasonable person would take it as anything more than a striking {and somewhat humorous) co-

incidence.

A particularly dramatic difference between the logic behind TBGs and the logic behind SGs
lies in the transitivity of truth-functional inferences based on generalizations. Presumability
can be inherited through truth-functional inferences; but statistical relationships are far more

complex, and statistical inferences follow utterly different rules (see section 3.2 above).

This distinction between judgments based on prototypicality and 8Gs is not new. Rosch’s
group [Rosch etal. 1976] relates prototypicality to category cue validity, and then points out (page

384) that “category cue validity is not a probability ... it does not have the same set theoretical
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properties as a probability.” The following passage is a long footnote to that remark.

Were category cue validity a true probability, the most inclusive category would al-
ways have the highest validity. This follows from the fact that if category A includes
category B, the probability that x belongs to category A always exceeds the probabili-
ty at [sic] x belongs to category B. Category cue validity refers to a psychological fac-
tor — the extent to which cues to category membership are available at all (attributes
common to the category) and the extent to which those cues are mot misleading (at-
tributes which do not belong to other categories). This measure disregards the base
rate probabilities of membership in categories — as do most people.... [p. 384-385]

I belabor this point, because there is a strong temptation o view all non-universal generaliza-
tions, and especially TBGs, as a sort of SG. Generalizations are naturally associated with degrees
of certainty or uncertainty, bounded below by known-false and above by known-true. Any prop-
erty of propositions which can reasonably be measured on a continuous scale bounded below and
above has a tendency to be assimilated to probability. This tendency is dangerous: the laws of

probability distribution cannot be arbitrarily extended to other domains.

3.5.3 TBGs versus DACs

The difference betweenr DACs and typicality is subtle but real. Typical birds fly. But how
typical a bird Tweety is does not measure how well Tweety flies, or how even how likely Tweety is
to fly (hummingbirds are atypical in many ways, but spectacularly good fliers). DACs are based
on vagueness: they measure the extent to which an individual falls under an inherently vague
concept. Typicality can be viewed as a sort of vague concept, and the idea of measuring typicality
itself by a DAC is within limits tempting. But typicality-based generalizations are not simply
estimates of how typical an individual is. Rather they are generalizations which indicate what
other properties — vague or otherwise — things of a certain kind tend to have. The degree of typ-
icality does not translate to a degree of having these other properties, or even to a likelihood of

having any particular one of them (the second would bring us back to $Gs).

3.5.4 TBGs versus GaAs

GaAs can be rephrased equivalently as universal implications whose antecedent says that no
exceptions occur. The question, then, is whether TBGs can also be rephrased in this way. How
could that fail? There are two reasons why such a list of exceptions may not be possible. First, it
may not be possible to predict exceptions: this is a failure in our knowledge. Second, it may be
that no such list is possible, regardless of the state of our knowledge, because of the nature of the

concepts involved. We take up these two problems separately,
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If we knew everything there was to know about every individual in every domain which our
system would ever deal with, then c¢learly we would not need any kind of generalizations —— in-
cluding universal ones — although they might Prove convenient as abbreviations. The CWA is not

the only assumption under which TRGs collapse into GaAs.

Consider the following “quasi-closed-world” principle: the sysiem knows all rules relevant
to its domain, and has procedures which let it identify, obtain, and verify all currently unknown
individual facts. Under this assumption, TBGs would collapse inte GaAs. However, in many do-
mains, this assumption is very nearly as unrealistic as the “pure” closed world assumption, since
it requires us to identify all possible exceptions to any generalization and determine in fact
whether or not they are exceptions before we make any inferences using the generalization. But
in that case, two things follow. First, before we use any generalization, we must be able to deter-
mine the truth value of its unquantified version for every legitimate instantiation. This is not
practical. Second, if we must in fact make all those determinations before we may use the gener-
alization, what good is it? Why not simply determine the case one is interested in and be done

with it?

Let me call the “open world assumption” the view that the system’s knowledge is essentially
incomplete, in the sense that there may always be relevant information which the system lacks
and cannot obtain (indeed, may not even be able to identify). If the open world assumption holds,
then no version of GaAs will handle Clyde-like cases, and so TBGs constitute a separate class of

generalization,

The feregoing difficulty is essentially practical: it relates to the difficulty of acquiring ad-
equate information. There is a further problem, which is not practical but theoretical in nature.
It may seem that generalizations result from imprecision, and that to eliminate them we need only
obtain sufficient knowledge and then state our actual knowledge precisely. But even ignoring all

practical difficulties, this is not always true.

In some cases the range — not the identity, but the range of possible identities — of “patho-
logical” examples (flightless birds, white ravens, three-legged elephants, etc.) cannot be whelly
determined a priori. Second, and more impertantly, we may need to deal with cluster concepts

(sce e.g. [Wittgenstein 1953); Rosch [Rosch 1975] cites this as a forerunner to her view of prototypi-
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cality), for which persuasive arguments have been made that precise definitions are in principle

impossible,

The classical example of such a concept is “game”. Many games involve more than one play-
er, but some do not. Many games involve teams, but some do not, Many games involve boards, or
balls, or cards, but seme do not. It has been argued that in fact, there is nothing that all games
have in common, beyond simply being games. What holds the class together is a sort of “family
resemblance”, not specific shared traits. If this view is correct, and if we cannot express TBGs as

opposed to GaAs, we could hardly say anything about games that was true.

It remains only to note that many concepts seem to act like cluster concepts. While precise
definitions in terms of UGs may be possible, they are surely very difficult to find, and we should
not count on being able to find adequate ones. A system which includes no TBGs, and which does

not want to make frequent false assertions, could say very little in such cases.

In summary, there are at least four kinds of propositions involving “all”: genuine UGs, SGs,
GaAs, and TBGs. To capture ordinary reasoning appropriately (and to avoid conclusions which are

not justified by the data on which they are based), these must be distinguished.

3.3.5 Problems TBGs raise

Perhaps the most commonly approach to implementing TBGs takes the form, “in the absence
of evidence that ~A, you may infer A” (see e.g. [Reiter 1980, [McDermott and Doyle 1980] and
[McDermott 1982]). This kind of default is implemented as follows. When the system is asked “A?”
and finds the default rule, it attempts to derive ~A. If it fails to do so, it then returns A as the
answer (depending on the details of the system in question, it may also build A into the data
base). Hence systems augmented by this kind of rule can take advantage of a version of non-uni-

versal generalizations. So far, so good.

But this procedure only looks reasonable for what I call TBGs so long as we deal with ques-
tions like “Can Roger the bird fiy?”. Then, saying “Of course, he’s a bird” seems unobjectionable,
but only because nothing depends on the answer. If we don’t care what the answers to our ques-
tions are, there is little motivation to implement any form of reasoning with TBGs. If we don't

care, we just say “I don’t know”,
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But suppose that we do care what answer we get. For instance, consider a medical consulting
system. Suppose that for a particular syndrome S, treatment x is generally very beneficial, but
that in exceptional cases treatment x kills. Now if Smith has syndrome §, we do not want to rec-
ommend treatment x just because we don’t know that Smith is exceptional. On the other hand, if
syndrome § can itself prove fatal, neither do we want to say that we don’'t know anything about

what to do for Smith.

What we would like the system to do in this kind of case is give a guarded response: that is,
say something like, “Treatment x usually helps in cases like this,” or “Presumably treatment x

helps.” A better answer would tell the user directly what the counterindications are; but at the
very least, a responsible system should warn the vser that the information results from a pre-
sumption, and not an inference. Once the system has issued the warning, the user can pursue it

with further questions.

Another way to put the point is this: the implementation described here captures GaAs.
These it handles adequately, because exceptions are already known and demonstrable. But it can-
not handle TBGs, precisely because of the differences between them and generalizations as abbre-

viations, Hence this implementation models a real sense of “all”, but not TBGs.

Much of the unhappiness over the existence of multiple extensions in systems such as
Reiter’s [Reiter 1980] or McDermott and Doyle's [McDermott and Doyle 1980] [McDermotr 1982] can be
traced to a combination of this strategy with equivocation between GaAs and TBGs. The strategy
for producing inferences owes much to GaAs; the recognition of inconsistent extensions arises
from dealing with TBGs. Insofar as these logics model GaAs, inconsistent extensions are inappro-
priate; but in that case, the entire formalism becomes unmotivated, since standard first order
predicate logic can accommodate GaAs (see section 3.3 above). Insofar as they model TBGs, incon-
sistent extensions are not only well motivated but necessary; but the strategy, which uses logic to
choose among them, now seems inappropriate, forcing decision theory into the wrong domain (see

section 2).

A further difficulty with TBGs lies in deciding what it means for them to be true or false.
“If Roger is a bird, then presumably Roger can fly” can be true even if Roger is a bird, but Roger
can not fly. Indeed, “Presumably Roger can fly” can be true even though “Roger can fly” is false.
That is the whele peint of saying “presumably”: it protects the speaker from saying something

false when the facts go the “wrong” way. On the other hand, the generalizations do mean some-
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thing: it follows that it must be possible for them to be false.

In other words, the truth value of TBGs cannot be a simple function of the truth values of the
component propositions: TRG operators are not truth functional. Furthermore, there is good rea-
son to despair of logic ever giving an adequate account of how the truth values of propositions in-
volving TBGs depend on their components. TBGs make sense because they reflect non-logical con-
nections among their constituents. The missing information guarantees that their content cannot
be 2 simple funcrion of the contents of the components. But then we should not expect to be able

to give a purely logical account of TBGs (see [Istael 1980] for a discussion of this point).

Section 4: INFORMATION TO BE RETAINED

Of course, the distinctions between different senses of “all” do not exhaust the distinctions
important to reasoning in uncertainty. Not only are there many other important issues, there are
important distinctions which do not fall neatly into the boundaries of any one kind of generaliza-
tion, but affect several or even all. Some of these place comstraints on acceptable knowledge rep-

resentations, in that they indicate differences which representation schemes must reflect.

One important distinction.is grounds of doubt. While all of the substantial information in
any system may be open to some degree of doubt, it will not as a rule all be subject to the same
kind of doubt. There may be differences among kinds of doubt which go beyond what can effec-
tively be reflective by numeric measures, however complex. We take this up in section 4.1.
Section 4.2 concerns the difference beiween results of default reasoning (presumptions) and re-
sults of more standard logical reasoning (which for the moment I will call inferences), and argues
that this difference and the manner in which it is represented have effects not only on what is be-
lieved, but on what is expressible. Section 4.3 makes a further distinction between making infer-
ences and presumptions on the one hand, and committing to premises on the other. Section 4.4
looks at the distinction between uncertainty and incompleteness, and section 4.5 discusses the
distinction between uncertainty which results from the state of our knowledge and uncertainty

which results from inherent properties of the state of affairs.
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4.1 Differing grounds of doubt

Consider the following argument. In any non-trivial field, the best information available
always contains errors. The real difference between UGs, GaAs, and TBGs lies in the degree of
confidence they reflect and command. Since nothing commands absolute confidence, why single
these out? Why not just associate confidence levels with all statements, work out laws for their

combination, and implement some version of belief revision to recover from detected anomalies?

TRBGs need a separate logical treatment, because they are logically different from other
sources of doubt. When I ask how confident T am of A » 1 could mean any of the following: (1) how
certain am [ that A is true? (2) how good is my evidence for 4 ? (3) how likely is A on the basis of
my evidence and theories? The first two questions, frequently confounded, are in fact distinct.
My confidence in A reflects psychological phenomena which may be completely independent of
my evidence for A. I can be highly confident of A despite strong evidence against A, or in the
complete absence of evidence one way or the other, simply because for some reason, A appeals to
my less rational nature. On the other hand, the strength of my knowledge as evidence for A is (at
least arguably) an objective fact, subject at least in principle to some sort of determination. It is
important to note, though, that all the evidence we have (including all the evidence for our evi-

dence) is rarely compelling, since we are rarely certain of our premises.

However, it is possible to make certain that given our premises, our conclusions are not
merely likely but certain. That is, we can make sure that our conclusions are no worse than our
premises -—— but only if we either outlaw all generalizations or distinguish them carefully from

UQGs.

If a system contains false premises, we cannot protect it from drawing false conclusions, by
logic or by any other means {except by preventing it from asserting anything at all). But we can
protect our systems from drawing false conclusions from true premises., TBGs represent a very
special kind of doubt, namely the doubt concerning a conclusion which arises when we know that

even if all our current beliefs are true, they only suggest, and do not entail the conclusion.
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4.2 Inferences versus presumptions

When we talk about systems that reason in contexts of uncertainty, we may have either of
two very different things in mind. We may be talking in short range terms about systems dealing
in very limited ways with very limited domains, and with “tame” uncertaintics: tame in the sense
that we understand at system design time the nature and range of the kinds of uncertainty the
system will be called upon to deal with. This is the situation with systems which we might antic-
ipate actually using (as opposed to doing research on) in the next five to ten years. So long as
this is the case, we can with reasonable safety tailor special purpose algorithms which, while
they may have severe shortcomings relative to the general problem of uncertainty, are safe enough

within the context of the system’s intended application.

On the other hand, we may be talking in long range terms about target systems of a more
open-ended kind. Their domains may be undetermined as yet; and the kinds of uncertainty they
need to deal with may be far from tame. But we do know some of the things we want them to be
able to do, and these desired functions place constraints on the mechanisms they can use for rea-

soning in uncertainty that can be used to guide research.

We want these systems to receive new information, store representations of it, perform in-
ferences using new information, and report the results of all these operations in some reasonable
fashion. They should be able to reason with generalizations in situations of incomplete informa-
tion. At least in principle, they should be able to represent any information in their domains in
which a human might be interested, and form Propositions expressing that information. What “in
principle” means to current research is that while our curreat prototypes lack these abilities, we
know that we want them, and we anticipate adding them to our Systems, although it will generally
take research to find out how. One thing such systems will need is a distinction between pre-
sumptions and inferences, because systems without such a distinction cannot support the capaci-

ties listed above, even in principle.

Suppose that we start out in situation §, with information (including both unqualified be-
liefs and generalizations) which supports conclusion € without strictly entailing it. For in-
stance, we know what birds are, and we know that Roger is a living unplucked bird. This informa-
tion supports the conclusion that Roger flies, but we know that this might fail. This is situation

S, and “Roger flies” is C.
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Now suppose that we learn something new which contradicts our previously supported con-

clusion. In our example, we might learn that Roger is a kiwi. Call the new situation S*

Supporters of most nonmonotonic? approaches would describe the situation as follows. § en-
tails C, § does not entail ~C, §* entails ~C, and §* does not entail C. This set of entailment rela-
tions provides a consistent basis for stating whether or not, to the best of our current knowledge,

Roger flies. But it is not a sufficient basis for all of our relevant knowledge in either § or §*.

In situation §, a careful speaker would not say “Roger flies,” but rather something like “It is -
reasonable to suppose that Roger flies,” or “There is reason to believe that Roger flies.” These
qualifications would not be placed on the front of all conclusions about Roger: for instance,
“Roger has feathers” is justified absolutely by our beliefs in S, We may be mistaken that Roger is
a living unplucked bird, but if we are not mistaken about that, we cannot be mistaken about his
having feathers, since by virtue of the biclogical definition of birds, they all without exception

have a genetic disposition to produce feathers,

The relationship between our knowledge and the conclusion that Roger has feathers is fun.
damentally different from the relationship between our knowledge and the conclusion that Roger
flies. This has to do with the difference between UGs and TBGs (see section 3.5.1). People are
frequently interested in this kind of difference: questions like “Are you sure?” would not other-

wise be 50 common. There is an important distinction between expectations and knowledge.

But nonmonotonic approaches treat the telationship in both cases as entailment. Worse,
they produce exactly the same conclusion in situation § as they would in situation $**, where we
add the information that Roger is a mature parrot, uncrippled and in normal health, and that he
had enough liberty when young to learn how to fly. But we know that Roger the parror flies,
whereas we only suspect that Roger the bird flies. And we already know in situation S that this
uncertainty exists. This is the first shortcoming of nonmonotonic approaches: they lose the dis-
tinction, present in the “real life” situation, between justified beliefs and justified presump-

tions. (For more on this point, see section 3.5)

T In all standard logics (and most non-standard ones), if a prepesition C follows from a set of
propositions S, and if § is a subset of §', then C also follows from §*. That is, adding informa-
tion without eliminating any cannot eliminaie entailments. This property of a deductive sys-
tem has been called monotonicity,
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In situation S* there is a further loss of information. When we have found out that Roger is
a kiwi, we don’t just know that he doesn’t fly, We know that
(a) Roger is a bird; so
(b} there is reason to believe that Roger flies; but in fact

(¢)  Roger is a kiwi, so
(d) he doesn’t fly after all,

Notice that (b) and (d) not only do not contradict one another, they contain substantial informa-
tion: they tell us that an expectation has failed. A nonmonotonic setting forces the difference be-
tween justified belief and justified presumption intc the logic instead of leaving it in the sen-
tences themselves (so that “presumably Roger flies” becomes the Same proposition as “Roger
flies™). In that setting, (b) and (d) represent an out-and-out contradiction. To maintain consis-
tency in the logic, one of them is rejected. As stated above, $% entails ~C (“Roger does not fly”)
and does not entail C (“Roger flies” — which under a nonmonotonic approach is the same as

“Presumably Roger flies™).

So in situation §% nonmonotonic approaches can not support inferring that presumably-C
and ~C., But this is certainly information a human might be interested in. This problem arises
explicitly from nonmonotonicity. The information lost in §* is precisely what is known in §. If
that information is not lost, then adding premises can not cause conclusions to be rejected, and

the logic is by definition monotonic.

Hence we have two kinds of information which nonmonotonic approaches fail to support,
First, they fail to support the distinction at the propositional level between knowledge and sup-
position. Associating a measure instead of a truth value with propositions cannot do the work
needed here, especially if the metric is taken as measuring probability or confidence: the proba-
bility that a single fair toss of an unbiased coin will land heads is 0.5; and of that fact we are
very confident. Knowledge of probabilities is irself knowledge which may be either justified
completely by other knowledge or only suggested. In any case, TBGs are not statistically based.
Second, because nonmonotonic approaches fail to support the distinction between knowledge and

supposition, they also fail to support reports of failed expectations.
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Consider the following two descriptions of birds.

(a) Felix is a bird who lives in North America. He is under four feet tall, he flies,
and he travels slowly on the ground.

(b) Oscar is a bird who lives in Africa. He is over four feet tall, he can’t fly, but he
travels rapidly on the ground.

Which of these birds do we know more about? Felix could be almost any North American bird
(except a road runner). Oscar is an ostrich, and couldn’t be anything else. Yet both descriptions
give only the continent they live on, their height in vague terms, whether they fly, and their
speed on the ground. How do we come to have so much more information about Oscar than about

Felix?

When generalizations hold, that fact doesn’t tell us much. But when they fail, their failure
conveys a lot of information. Oscar’s height, flightlessness, and speed on the ground are all atyp-

ical features; together, they pin down his species. (If he were Australian, he’d be an emu.)

Salience has been described as the key to a major problem of natural language gemeration:
what and how much to say (see e.g [Conklin and McDonald 1982]). Most techniques for determining
salience depend on either marking particular properties for a class of objects or determining dif-
ferences between a pair of objects when that is specifically asked for (see the above, [McCoy 19821,
and [McKeown 19821). Neither of these techniques will let us get a system to produce all of para-
graph (b) when asked to describe Oscar but produce only the first sentence of paragraph (a) when
asked to describe Felix. However, the following is a simple rule for determining salience. If an
object or event x belongs to kind K, and members of kind K typically have property P bui this one
does not, that is interesting and should be reported. A representation and underlying logic
which distinguish “Presumably A” from “A” and allow deducing “Presumably A, but not A"
should extend to support this rule for determining salience (depending how easy it is to general-

ize over things having properties). But the logic of such a system will be monotonic.
4.3 Performing inferences versus adopting Premises
There are two separate motivations for trying to formulate alternatives to monotonic logic.

First, we may want to warrant conjectures in situations of incomplete information. Seccond, we

may want to model belief spaces — as opposed to knowledge spaces — in which some believed
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propositions later become disbelieved.

Notice that these are different in several ways. In the first case, we may or may not be try-
ing to model a system of truths {as opposed to beliefs; that is, a system which tries, successfully
or otherwise, to model some domain other than a human belief system), but in either case, the
conjectures which we want ro add are known to be conjectures, which may or may not be in error.
If, as 1 have proposed, they are actually guarded assertions, then they are different assertions
from their unguarded versions. Hence unlike the second case, in which a single proposition is at
one point believed and at another disbelieved, in the first case, if the conjecture is in fact over-
ruled, the unguarded form of the denial is in the end asserted alongside the guarded claim. The
result is something like, there is reason to believe A, but in fact not A. Notice that this contains

no contradiction.

Systems which try to simulate human belief may be very different from systems which try
to capture known truths about some domain. For instance, people can and frequently do hold in-
consistent beliefs, even after the inconsistency has been pointed out. (This is one form of irra-
tional behavior, which people manifest with deplorable frequency.) So inconsistency may be tol-
erable in a system which tries to model human behavior. But it is surely intolerable in a system
which .tries to capture truths gbout some domain, since it infallibly indicates that at least one do-
main assumption embodies an error.

For a proposition to be believed, to be true, and to be justified are three different things
(albeit they are generally held to cooccur in the case of knowledge). In developing a logic, it is
important to keep straight what ir is that our semantics is supposed to model. This is normaily
taken to be truth conditiens, not belief states, and not the presence, absence, or degree of justifi-
cation. Should a logic attempt to use its semantics for some other purpose, its formulaters will
have to rethink the entire purpose of the logic, and the burden will be on them to show what the
logic does, since it can no longer characterize entailments or provide a mechanism for deducing

valid arguments.

The point here is that it is one thing to build in error recovery, and quite another to claim
that no error was made. Standard logic is monotonic, because additional information cannot dis-
rupt entailments. It can show that something which before was reasonable to presume is in fact
false; but that is quite different from saying that the original premise set entailed the conclusion
while the expanded premise set does not. If nonmonotenic logics are trying to model truth, then

to say that truth changes with evidence simply represents a confusion. It amounts to trying to
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recover from a mistake without admitting that it ever took place.
4.4 Incomplete versus uncertain knowledge

Authors frequently use the expressions “reasoning in contexts of incomplete information”
and “reasoning in uncertainty” virtually interchangeably. When we design systems for reasoning
in these kinds of contexts, it is important to notice that the expressions mean different things.
Not all uncertain knowledge is incomplete; and while incomplete knowledge may generally lead to

uncertainty, it is not the same thing as uncertainty.

To say that a situation provides incomplete information is to say that information is miss-
ing. The usunal “Does Tweety fly?” problem is one of incomplete information. There is a specific
piece of information about Tweety that is missing; if that piece of information were suﬁplied, the
uncertainty in the situation would vanish. The problem is not that our context is uncertain; it’s

just that there’s something we don’t know.

But the “Does Tweety fly?” case can be looked at from another angle, from which genuine
considerations of uncertainty arise. This is the case when we move from asking what we know
about Tweety to asking what we know about birds. It has long been argued that knowledge often
resides not with individuals, but with the classes to which they belong. But when we talk about
knowledge about classes. we very early encounter things like “Birds fly” — that is, much knowl-

edge about classes takes the form of TBGs.

The status of TBGs is not really a question either of incomplete knowledge or of uncertainty
in the most obvious everyday sense. Even quite young children have complete enough information
to know that some birds don't fly; on the other hand, not only do we readily agree to the TBG that
birds fly, we are guite certain of it — as a TBG., The uncertainty lies not in the generalization it-

self, but in the way in which we understand it as applying to individual cases.

TBGs (as opposed to GaAs) can themselves result from either of two cases. First, we may
have a situation in which we know all conditions which would cause a TBG to fail, although we may
not know for a specific case whether any of those conditions hold. This is like analyses of “Birds
fly” which hold that we know what could keep a hird from flying (belonging to species like pen-

guins that don’t; being too young; being injured; having clipped wings; being tethered to some-
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thing too heavy to lift; etc.), although we may not know of a given bird whether its wings are
clipped, or so on. On the other hand, we may have a situation like the one described in section

3.5.4 regarding the definition of “game”, the classic example of a cluster concept.

If we are to represent knowledge about individual games at the level of “game” at all, such
knowledge must reside in TBGs. This is true, not because we don’t know all the facts about indi-
vidual games that would let us tell whether they are exceptional, but because the fundamental
principles themselves necessarily apply to games only uncertainly. To put this another way:
when we run into a flightless bird, it is reasonable to ask for an explanation why it doesn’t fly.
But when we run into a game which is untypical in some regard, say for instance in having only
one player, it is not necessarily reasonable to ask for an explanation. It simply is atypical in
that way. For cluster concepls, the assumption of a causal connection between TBGs and their

success or failure when applied to individuals becomes far more tenuous, and may vanish entire-

ly.

Arguably the most extreme cases of uncertainty are those that are inherently statistical. If
modern physics is anything like on the right track, no amount of information we could ever get
would let us predict exactly when a radioactive atom will emit an alpha particle. We can give
probability estimates describing the overall behavior of lumps of radioactive matter in the pro-
cess of decay, but we will never be able to make more than a probabilistic estimate of the behavior
of any particular atom, because the only laws governing the atom’s behavior —known or otherwise
—- are probabilistic. Similarly, it will never be possible to know the precise location and velocity
of any elementary particle. Not because we don’t know how to measure that precisely, or because
we lack a piece of information which could be filled in, but because the problem is inherently un-

certain.

In less extreme cases, while the phenomena involved may not be inherently uncertain, our
models may be. Any model that is essentially statistical has uncertainty built into its deepest
levels, and that uncertainty results not from incomplete information, but from the nature of the
information, even when it is complete. Incompleteness is, relatively speaking, a simple matter.
All systems have always dealt with incomplete information (either by confessing ignorance or by
ignoring it). Standard logic has no problem with incompleteness. It is excellent at detecting at,
It just doesn’t tell us what to do with it. By contrast, there is no place in standard logic for un-

certainty: there is ne way to say, “We rather think that this might be so, but we aren’t sure.”
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There are many kinds of uncertainty, many of which behave very differently from one an-
other. Confusing different kinds of uncertainty can already lead to problems: adding in a confu-
sion between uncertainty and incompleteness raises the noise level to a point where it is unclear

that a useful signal could get through.

4.5 Uncertain knowledge versus inherently uncertain propositions

The foregoing discussion made use of a distinction which we may also be interested in,
which has to do with the locus or origin of uncertainty. On the one hand, our knowledge may be
uncertain, because (for instance) we do not have a deep encugh understanding of the principles of
a domain to state its laws as true UGs. On the other hand, a domain’s laws, correctly and deeply
understood, may themselves be uncertain, for instance by being essentially statistical. Modern

physics claims this to be the case relative to phenomena at the quantum level.

If a system has knowledge involving both these kinds of uncertainty, but views them in the
same way, its explanations will tend to be confused at best. Notice that explanations are needed
most when the user is least confident of what the system is saying. One way to trigger low confi-
dence in a user is for the system to express uncertainty. Hence when the system reports uncer-
tain results as uncertain, we may expect a particularly great need for clear and precise explana-
tion. Sources of uncertainty will form an important part of this explanation. One thing users
may want to do is look (outside the system) for information which, when added, will eliminate the
uncertainty. If the uncertainty is inherent and irreducible, it would certainly save time and ef-

fort if the system could explain that.

4.6 Errors versus atypicality

There is a difference between discovering that something has an atypical feature and dis-
covering that you have been wrong. Much of the discussion about reasoning in uncertainty fails to
distinguish clearly between the need to deal with unusual cases and the need to repair mistakes
which arise from going beyond the state of the system’s knowledge. It should be noted that
standard legic can always deal with error recovery, by identifying the culprit assumption and
noting that it fails. Recording that ostriches are unusual birds because they fly has nothing to do
with error recovery. There is an essential difference between noting exceptions to TBGs on the
onc hand, and repairing bad conclusions on the other. Failure to make the distinction can once

again lead to very confused explanations.
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Section 5: ADDITIONAL REQUIREMENTS FOR LOGICS OF INCOMPLETENESS AND
UNCERTAINTY

The distinctions discussed in the pPrevious two sections do not exhaust the issues surround.-
ing logics for reasoning in contexts of uncertainty or incomplete information. - On the contrary,
there are many more concepts a logic may to capture than just those discussed here. Each kind of
Teasoning pattern which we attempt to reproduce will place its own requirements on the funda-
mental representation underlying any proposed inference mechanism. This section goes through

a few established classes of such logics and points out some of the tequirements in each case.

5.1 For logics of evidence

One interesting potential class of logics of incomplete information is the class of logies of
evidence. Most work in this domain to date has been more suggestive than anything else. The
fundamental idea is that of a non-numerical scheme for reasoning about information which is both
incomplete and uncertain (not in the inherent sense, but in the sense that it may contain both er-
rors and inconsistencies). Cohen’s early work falls into this class [Cohen and Grinberg 1983; Cohen 1985].
While there is relatively little substance in this area as yet, it is both attractive enough and sug-

gestive enough to raise several specific issues,

5.1.1 Weights versus Cohen-style endorsements

It is common to speak of weighing evidence. In Al applications, concepts like “weigh” tend
to be interpreted as numerical measures to mind. In his early papers (see e.g.
[Cohen 2nd Grinberg 1983]), Cohen argued strongly that representations of evidence can not be reduced
to simple numerical measures. e gave essentially three reasons for this. First, using simple
numerical measures as degrees of belief does not allow different sources of evidence to be treated
differently. Second, a single source of information might be more reliable in some contexts than
in others. If the system only has a number, it cannot know which numbers to change which it
switches contexts, let alone how to change them. Third, Cohen argues that certainty is best judged

relative to tasks. Numerical measures will not relativize in any obvious way.

Thus reasoning with endorsements places several constraints. The first and most obvious,
peinted out clearly in [Cohen and Grinberg 1983], is the need to represent richer evidentiary infor-
mation than numerical measures of degree-of-belief (Cohen calls this information endorsements).

These endorsements must be able to capture everything we would want to know about the sources
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for “given” information in our knowledge base.
g

Second, there must be ways of ranking endorsements. In the simplest case, this means that
the system must have enough information to let it determine the relative strength of its variocus
sources of information. This permits ranking the information given explicitly in the knowledge

bhase.

Third, there must be some representation for the source of derived material which lets the
system also rank beliefs which arise from inferences. This means essentially that the system
needs two things. It needs to be able to represent that a given fact was derived on the basis of in-
formation from several sources, all of which in part support this particular item. Second, it
needs to be able to rank the belief level of the item in question relative to other items in the sys-
tem (this corresponds to combination rules for propagating simple numerical measures in mea-
sure based systems). This combination is likely to be more complex for Cohen than for a normal
measure-based system, for two reasons. The first is that if the weight assigned to any single
source can change, then this ranking will change with ii, in rule-governed ways. In some sense,
we want a formula rather than an answer. Second, it is unclear how to reflect issues like how

heavily a given piece of information relies on one source rather than another.

Fourth, if we are to reason about endorsements as Cohen proposes, the endorsements them-
selves must be objects of knowledge, and we must be able to represent about them the kind of in-
formation on the basis of which we might establish rankings among different endorsements or
alter rankings based on context or task. To date, little detail on these issues has heen forthcom-

ing, perhaps because of their innate complexity.

5.2 For logices of likelihood

Logics based on some concept somehow resembling probability (likelihood, certainty, etc.)
generally fall into two categories. First, there are those which draw their concepts at least pri-
marily from the field of statistics. Second, there are those which work with various other kinds

of measures, which are not claimed to be the same as probabilities. We take these up separately.

5.2.1 Statistical approaches
These again break into three classes. First, there are relatively straightforward applica-

tions of statistical theory (either classical or Bayesian) to a given domain. Second, there are the
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Dempster-Shafer [Shafer 1976] [Dempster 1968] based approaches. Third, there are attempts at statisti-

cal logics. Each of these has its own requirements.

I have discussed the several overall requirements for applying statistical analyses at some
length elsewhere [Nutter 1987]. These include above all the knowledge to analyze the domain into an
outcome space, define appropriate events, determine base distributions, determine event depen-
dence and independence for at least the most important events, and of course come up with reli-

able numbers (especially for Bayesian approaches).

People find the Dempster-Shafer approach, as opposed to classical or Bayesian ones, attrac-
tive because it appears to palliate the last of these requirements. That is, the use of ranges in-
stead of point probabilities appears to reflect not only uncertainty but se-called second order
uncertainty, that is, our degree of confidence {or lack of it) in our probability estimates. It
should be neted that this appearance only reflects some reality to the extent that we have good
reason to believe that our estimates of our confidence in our gucsses are any better than our
guesses themselves. The evidence on the subject (see e.g. [Kahneman et al. 1982]) does not bear out
any such optimism. It is also not clear that any of the usual propagation rules reflect a sensible
interpretation of what happens to second order uncertainty as we reason with uncertain probabil-
ities. At the very least, the propagation'rules musi insure that in the degenerate case (both lim-
its the same), we actually compute probabilities, and that insofar as we can project ranges onto
single-valued probabilities at all, the projection of the result of combining several ranges is the
same as the result of combining their projections in normal statistics: that or admit that the SyS-

tem is not dealing with probabilities, and provide principled explanation of what it is up to.

Statistical logics like Kyburg’s ([Kyburg 1987}, {Kyburg 1983a], [Kyburg 1988b]) and Pearl’s work on
dependency graphs ([Pearl 1987], {Peazl and Verma 1987] are especially interesting because they attempt
to combine logical with statistical reasoning in ways that respect the technical weork in both
fields. That is, their probabilities really act like probabilities, their (logical) inferences really
act like (logical) inferences, and they are trying to approach the difficult problem of how to com-
bine the two, given the difficulties outlined in section three above. The main requirement here is
that the systems actually deliver on the promise of keeping the statistical aspects really statisti-

cal. Because of the complexity of the work, further details lie beyond the scope of this article.
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3.2.2 Certainty factors, eic.

On the one hand, many problems plague traditionally statistical approaches, ranging from
the difficulty of analyzing domains to the intractability of determining event dependencies to the
difficulty of combining statistical with logic-like reasoning to the classic problem of getting the
numbers. On the other hand, some find probabilities unsatisfying even supposing they could get
them, for example because if A is evidence against B, it seems odd that we should express this by
assigning a positive conditional probability to B given A. On the other hand, these same re-
searchers nonetheless want numerical measures to use in ranking their system’s beliefs. This
constellation of issues has given rise to measures which are numerical, and which -are said to re-
flect in one sense or another the plausibility of (or warrantedness of, or level of commitment to,

o1 so on) propositions without modeling probabilities in the sense of statistics.

The best known such measures are probably the certainty factors used in MYCIN
[Shortliffe and Buchanan 1975]. Rich [Rich 1983] has proposed a similar but less well articulated measure
which she calls likelihoods. The certainty factor approach has numerous well-known difficulties.
From the point of view of knowledge representation issues, two of these stand out sharply. First,
while Shortliffe and Buchanan provide a set of formulas for manipulating their certainties, and in
that sense have a well defined theory, the interpretation of that theory is far less evident, The
origin of their numbers lies in the responses to questions like “On a scale of -10 to 10, how sure
are you of that?” The elicitation process is more sophisticated than is shown here, but ultimately

the initial certainty factors are people’s estimates of their personal sense of conviction.

There are data on how people’s senses of conviction behave (see e.g.
[Kahneman et al. 1982]), and Shortliffe and Buchanan did not use them in formulating their theory.
This may be just as well, since the data show (among other things) that the behavior is not consis-
tent. Unfortunately, this raises two specters. The first is that the initial data may be meaning-
less. The second is the question, given that Buchanan and Shortliffe’s formulas jointly compute
some function, of exactly what that function models, of whether the initial values are reasonable
inputs, and of whether given reasonable inputs, we should place credence or reliance on its out-
puts. That is, without some non-mathematical theory that links the mathematics of certainty fac-
tors {or any other nonstatistical numerical measure) with some actnal property of propositions
that we care about and that should influence our willingness to accept them, certainty factors are

magic numbers. That is the first problem.
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The second problem is one of representational inadequacy. On the certainty factor ap-
proach, positive numbers are intended to represent a measure of how much the system believes a
proposition, while negative numbers are intended to represent a measure of disbelief {or belief in
the negation). This would appear to leave zero to represent agnosticism. Unfortunately, agnosti-
cism can take either of two forms. First, the system may be agnostic because is has no evidence
on the subject at all. Second, it may be agnostic because it has conflicting evidence that balances

out.

There are important differences between ignorance and conflict, especially in terms of
deciding whether to resolve the situation or to let the sleeping dog lie. In addition, if the system
has to resolve the question, what it should do may well differ depending on whether it is just ig-
norant or whether it already has mixed results. Also, if the system has to explain why it did not
reach a given hypothesis, surely its explanation should be different if it had no relevant evidence
from the explanation it would give if it had mixed evidence. For that matter, one would hope —
especially in a system making diagnoses! — that the system would treat mixed but mild evidence
differently from the way it would treat very strong indicators which are in conflict., Ignorance is
not necessarily a motivation to further investigation. Given an arbitrarily chosen patient, a doc-
tor may have no evidence as to whether that patient has, say, lung cancer. With no reason to sus-
pect it (and assuming that the patient is having routine c¢hest X-rays on the normal schedule),
there is also no reason to go looking for it. But if there is strong evidence in favor, then even if

there is also evidence against which cumulatively balances it, it would be well to make sure!

In computer science in general, and in AI in particular, there is a strong and justifiable
tendency to be impressed with working programs. If a program computes a well-defined function
from prepositions into numerical measures, it is tempting to think it is doing something useful.
In this regard, we should bear two points always in mind. First, suppose we take a program that
computes a well-defined function, and change it as follows. If the leading digit of the original re-
sult was even, we add the number of flower species on the endangered species list divided by the
number of buildings over ten stories tall in Manhattan. If it is odd, we subtract the same amount.
The result is also a well-defined function, and so what? We need more than an internally consis-
tent mathematics to guarantee meaningful results. Second, numerical measures summarize evi-
dence. Summaries lose information. It is important to know what information we are losing, and
to be sure that we can recover anything important, and more subtly, that we can tell when we need

to initiate recovery.
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5.3 For logics of vagueness

There are essentially two established approaches to vagueness, both due to the work of Lotfi
Zadeh. Stemming from his early work [Zadek 1965; Zadeh 1968] in the theory of fuzzy sets, one ap-
proach models properties in its domain as fuzzy sets, implements fuzzy set operations to model
unions, intersections, relative complements, and the like, and hence works in a more or less im-
mediate model of a vague domain. The second approach uses fuzzy concepts to formulate a seman-
tics for a first order fuzzy logic, then uses fuzzy logic propositions and inference rules to reason

in and about a domain. We take these up separately.

5.3.1 Fuzzy sets and their application

To apply fuzzy sets to a domain directly, the primary requirements are that the domain be
finite and that measure functions be known for all predicates on the domain (i.e. for those sets
which will be intersected, unioned, complemented, and so on to produce the results). The domain
must be finite, because in this model there is no analog to guantifier reasoning. Measure func-
tions are given extensionally. That is, for any “basic” set, the system needs a list of pairs, each
consisting of an object in the domain and a value between 0 and 1, such that every object occurs in
exactly one pair. The only effective way to give extensions is by listing them, and the lists must
therefore be finite. They must also be complete, or the combining functions will not be well de-

fined.

The obvious problem is getting reasonable data for the measure functions. This is not as se-
vere a problem as it is for probabilities, since the granularity is not so fine, nor the system so
sensitive. On the other hand, the results are no more sensitive, and reflect no higher granularity,
than the system can represent. This means that this technique can not produce as many distinc-
tions (or as reliable ones) as statistical techniques can when they can be applied. It should also
be noted that the distinctions it does produce are not differences in event probabilities. They are
Ievels of applicability of concepts. While fuzzy set theory is a reasonable model of vagueness, it

is not only an unreasonable model of probability but also a mathematically inaccurate omne.

5.3.2 Fuzzy logic
The fuzzy logic approach ([Mamdani and Gaines 1981]) has different and more subtle problems.
Fuzzy logic admits of a continuum of truth values in the closed range {0,1], ultimately derived

from measure functions on sets which serve as the extensions of predicates, but not in simple or
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obvious ways from fuzzy set theoretic combinations. Several questions immediately arise. First,
every “assertion” in the data base must have an associated fuzzy truth value: where are we to get
these from? For atomic sentences, this reduces to having measure functions; but what about
quantified ones? For that matter, on this view, what is the natural interpretation of material im-

plication?

Second, how are the truth values of propositions related to those of their components, and
how are the truth values of conclusions related to those of the premises of the demonstration in
question? So far as I know, no progress has been made on the “complex proposition vs. compo-
nent” question. There are some preliminary results with regard to premises and conclusions (see
[Aronson et al. 1980]), which boil down to the unsurprising claim that the conclusions are no better
than the premises, but also on the whole no worse (where “better” is interpreted as numerical
“greater than”). Tt is significant that this is already non-trivial to establish, Third, how do we
deal with the apparent resuolt that different demonstrations of the same proposition “establish”

different truth values? For more on resolution and fuzzy logic, see [Lee 1972].

But the largest problem, in my opinrion, lies in the irresistible temptation to view these
fuzzy truth values as probabilities. Fuzzy logic is not a logic of probabilities.  The mathematics
of fuzzy truth values does not match that of probabilities. But researchers who advocate this ap-
proach do associate fuzzy truth values with probabilities. The tendency is encouraged by the
need to assign what, in context, ook much like Bayesian prior probabilities to the propositions in
the data base. Zadeh has attempted to make fuzzy logic the basis of what he calls a theory of pos-
sibilities [Zadeh 1978; Zadeh 1981; Zadeh 1985]. While “possibilities™ is not the same as “probabilities”,
the inherent temptation to confusion is powerfal, and it may also be deliberate. As a nonstatisti-
cal numerical approach, Zadeh’s possibilities in fact shares all the “magic numbers” problems

that plague confidence factors, likelihoods, and the rest.
5.5 Forlogics of typicality

One of the more delicate tasks in assessing approaches to reasoning in uncertainty is dis-
tinguishing logics of abbreviation with error recovery from logics of typicality. Many of the
schemes for reasoning in uncertainty seem to be representing GaAs, reasoning from them, and
then allowing “fixes” in case the system in fact does not have the abbreviation right. The diffi-
culty is that these seem to be motivated by TBGs, and further that the elaborateness of their

“fixes” seems to go beyond what would be needed in a GaA-based system.
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There is a large class of theories that seem, at least prima facie, to have aimed at TBGs, but
to have fallen between TBGs and GaAs, perhaps because they failed adequately to distinguish the
two targets. Theories falling into this general category, at least for me, include Reiter’s default
logic [Reiter 1980}, the nonmonotonic logic of McDermott and Doyle [McDermott and Doyle 1580;
[McDermott 1982], and most work on inheritance hierarchies with exceptions (see e.g.
[Etherington and Reiter 1983], {Htherington 1987] oT [Horiy etal. 1987]). 1 am even more hesitant in categorizing
work on circumscription ({McCarthy 1980], [McCarthy 19861}, which at present looks more like this to me
than like striking either target squarely, but which may in fact be aiming at another altogether,
which I simply haven’t seen. In any case, none of these theories explicitly preserve the
distinctions discussed in section four (particularly inferences versus presumptions and per-
forming inferences versus adopting premises) or adequately separate decision theory from logic
(see section two), and so suffer from the shortcomings discussed earlier. For more complete re-
marks on the shortcomings of several of these as theories of TBGs, see [Natter 1982], [Nutier 1983a],

and [Nutter 1983b].

I have published elsewhere [Nutier 1983b; Nutter 1983¢c] & proposed monotonic logic for reasoning
with TBGs, which distinguishes explicitly from propositions (“Tweety flies”) and related war-
ranted presumptions ("Presumably Tweety flies”), and which distinguishes between the logic of
defaults and the decision theory which their use entails. This approach has the potential to meet
all the requirements discussed here, but at present it has two grave shortcomings. First, while
the semantics is sufficient to prove soundness, it is unappealing in several fundamental ways (for
details, see the publications). A new semantic founding, based on a semantics for relevance logic,
would be a major improvement. Work in this direction is ongeoing, but too preliminary to report
any results at present. Second, until some of the relevant decision theory has been worked out, it
will not be clear that the architecture will actually support it. I continue to prefer this approach

to the others I have seen, but that may be personal prejudice.

Section 6: Conclusions

The single strongest message of this paper is that reasoning in uncertainty and in contexts
of incomplete information is not a monolithic phenomenon. There are lots of different kinds of
uncertainty, lots of different kinds of incompleteness, and lots of different kinds of reasoning

with each that would be desirable in our systems. There are three separate morals.
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* Different kinds of uncertainty of incompleteness are associated with different Teasoning
patterns. Because many of these patterns of reasoning are desirable and useful, it fol-
lows that there is no such thing as “the correct approach™ to reasoning in uncertainty.
We should be cooperating, not fighting.

» Different kinds of reasoning place different requirements on the systems that model
them. Before formulating a theory of reasoning in uncertainty or with incomplete infor-
mation, it is critical to determine what kind of reasoning the system will try toc model.
Otherwise, we risk aiming at nothing and hitting what we aimed at,

»  Ultimately, of course, we want systems that can do it all. That makes it particularly im-
portant not only to foster diversity, but to pay attention to the various diverse efforts
with an eye toward what might allow unification; lest we find ourselves with a full set of
working parts, no two of which can work together.

In this paper, I have tried to outline some of the different kinds of reasoning we will eventually
want to model, and to sketch out a few of the ground rules associated with each. With time, it may
prove as important te progress in this very difficult area that we have as many clear, specific,

agreed ground rules for the various subareas as that we have potential solutions in any one.
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