An Optimal Boundary
to Quadtree Conversion Algorithm

Mark Lattanzi and Clifford A. Shaffer

TR 89-16



AN OPTIMAL BOUNDARY TO QUADTREE CONVERSION ALGORITHM

Mark Lattanzi
Clifford A. Shaffer

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

ABSTRACT

An algorithm is presented for converting a boundary representation for an image to its region quad-
tree representation. Qur algorithm is designed for operation on the knear quadtree representation,
although it can easily be modified for the traditional pointer-based quadtree representation. The
algorithm is a two phase process that first creates linear quadtree node records for each of the
border pixels, This list of pixels is then sorted by locational code. The second processing phase fills
in the nodes interior to the polygons by simulating a traversal of the corresponding pointer-based
quadtree. Three previous algorithms [Same80, Mark85a, Atki86] have described similar conversion
routines requiring time complexity of O(n - B) for at least one of the two phases, where B is the
number of boundary pixels and n is the depth of the final tree for a 2" x 27 image. A fourth algo-
rithm [Webb84] can perform the border construction of this conversion in time O(n + B) with the
restriction that the polygon must be positioned at comstrained locations in the image space. Qur
algorithm requires time O(n + B) for the second phase, which is optimal. The first phase can be
performed using the algorithm of [Webb84] for total conversion time of O(n + B) with constrained
loeation, or in time O(B log B) using a simple sort to order the border pixels with no restriction
in polygon location.

Keywords and phrases: quadtrees, linear quadtrees, hierarchical data, structures, chaincodes, poly-
gon filling, traversal, image processing,

May 10, 1989



1. INTRODUCTION

The region quadtree [Same89a, Same89b] is a hierarchical data structure used for efficient
representation of raster images. The region quadtree divides a 27 x 27 image array into four equal
quadrants if all pixels within that array are not the same color. The image is further subdivided into
subquadrants, sub-subquadrants, ... until each block is homogeneous (see Figure 1). The resulting
block decomposition may then be represented either as a tree structure describing the decomposition
process, or as a list of block descriptions. Recent advances in the use of quadtrees for computer
cartography and computer graphics have made efficient algorithms for conversion between the
region quadtree and other image representations more important than ever. This paper describes
a chaincode to quadtree conversion algotithm for linear quadtrees [Garg82], an implementation
variant of the quadtree. Converting a boundary representation to a region representation requires
polygon filling. Figures 2 and 3 provide an example of the conversion Process.

Four previous algorithms for chaincode to quadtree conversion have been presented (related
work may also be found in [Hunt79a]). The first [Same80] converts a chaincode to a pointer-
based quadiree representation (i.e., a quadtree representation in which an explicit tree structure
representing the block decomposition is stored, complete with pointers linking a parent node to its
children as shown in Figure 1d). This algorithm works by first building a quadtree in which each
border pixel derived from the chaincode is inserted as a BLACK node. The tree is constructed by
progressing along the chain of boundary pixels, using neighbor finding operations as the chaincode
is processed. A second phase then traverses this quadtree in order to 1l the polygon bordered by
the chaincode. The order of complexity for this algorithm is O(n - B) where B is the number of

border pixels on the chaincode and n is the depth the tree for a 27 x 2"image

The second algorithm [Garg84, Atki86] converts a chaincode to a linear guadtree. The
linear quadtree [Garg82] replaces the explicit pointer-based tree structure with a list containing
only the leaf nodes from the original tree. These leaf nodes correspond to the blocks illustrated

i



by the image decomposition in Figure lc. Traditionally, this list is sorted using a key derived by
interleaving the bits of the row and column coordinates of the upper left pixel for the corresponding
block in the image. This bit interleaved address will be referred to as the Morton code for the node.
The resulting records (when sorted by Morton code) appear in the list in the same order as the
corresponding blocks would be visited by a traversal of the pointer-based quadtree for the same
image. The linear quadtree as used in [Garg82, Atki86] stores only the BLACK leaf nodes (i.e.,
those nodes representing blocks within the regions of interest of a binary image). We prefer to
define the linear quadtree such that the node list contains all leaf nodes from the image. Note that

the algorithm presented here can easily be implemented using either definition.

The algorithm of [Atki86] begins with a list of linear quadtree records corresponding to the
-border pixels derived from the chaincode. This list of nodes is not sorted by Morton code. Each
border pixel contains information about which edges of the pixel are adjacent to WHITE pixels
(i.e., those edges of the border pixels that are adjacent to the chaincode border). The initial node
list is processed by a recursive procedure that splits the list into four bins depending on which
quadrant of the image each node is in. The procedure is then re-invoked for each of the resulting
sub-lists, which are in turn subdivided based on which subquadrant of the image the corresponding
pixel appears in. After n subdivisions for a 2" x 2" image, each sublist now contains at most
four nodes, corresponding to siblings within a 2 X 2 sub-hlock of the image. This process can be
viewed as a recursive radix sort on the border node list. The values of these sibling nodes and
their border states determine the values of any missing siblings, and also determine if the four
siblings may be merged to form a single node. The resulting node sublist is then passed back as
the recursion unwinds, allowing larger and larger sized missing nodes to be added and, if possible,
allowing larger siblings to be merged. The final result is an unsorted list of nodes corresponding
to the linear gquadtree for the image with the interior nodes of each polygon set to BLACK. The
order of complexity for this algorithm is O(n- B) since each border pixel participates in # constant

2



time operations. A final sorting phase is required to generate a node list ordered by Morton code.

The third algorithm [Marks5a, Mark85b] parallels Samet’s algorithm [Same80] except it
allows for more generalized input. Instead of a list of border pixels, Mark and Abel’s algorithm
works for any vector representation of a polygon. Thus, the first step of their algorithm is to
compute the list of pixels lying on the boundary of the polygon of interest. This step takes O(R)
time. However, the input to step two of the algorithm, i.e., the polygon fill phase, is a sorted list
of pixels by Morton code. S0, the pixel list must be sorted before being passed to step two. Phase
two determines the colors of all the absent pixels (nodes). The main theorem underlying this step
of the algorithm states that given a sorted list of border pixels, the absent nodes between any two
border pixels must be either all the same color, or change colors only one time. In this second
case, the intermediary nodes will be in two contiguous sets. The first set will be one color, and
the second set will be the other color. The importance of this theorem is that a limited amount of
information is ﬁeeded to determine the colors of all the absent nodes. Mark and Abel show that
at most one ancestor find and between two and four neighbor finds are performed per node, an
O(n) operation. A detailed analysis of this process was presented by Mark and Abel in an earlier
paper [Mark85c]. As with the algorithm of [Same80], the overall time complexity of this algorithm
is dominated by their polygon fill operation: O(n - B) where B is the number of border pixels and

7 is the depth of the final tree.

Webber [Webb84] improved the conversion algorithm of Samet [Same80] by using a method
called path length balancing. The main idea is to treat the boundary representation as two one.
dimensional objects: a horizontal one and a vertical one, and strategically position the polygon in
the quadtree to minimize the total cost of the neighbor find operations. Thus, the border pixels can
be inserted into the quadtree, and the interior of the region can be filled in time proportional to the
number of nodes in the quadtree (equivalently, the number of pixels obtained from the chaincode).
Although Webber’s result is linear, it is constrained by the fact that the region representation of

3




the polygon must be placed at a certain optimal position within the tree to achieve a linear time
complexity. Sometimes this is not desirable, in which case path length balancing cannot be used.

Webber [Webb84] does not address the polygon fill phase of the algorithm.

2. A NEwW CONVERSION ALGORITHM

Our new algorithm converts a boundary representation to a linear quadtree in Morton code
order. The boundary representation may be either a chaincode or a vector representation of the
polygon’s perimeter, but it must be convertible to a list of the boundary pixels. We assume for
simplicity of exposition that all images are binary, although our algorithm would work equally
well for multicolor images. Nodes interior to the polygon boundary are labeled BLACK after the

conversion process is complete; nodes exterior to the polygon are labeled WHITE.

Our algotithm works in the spirit of Mark’s algorithm [Mark85a] for producing a pointer-
based quadtree. Both algorithms take as input a boundary representation of a polygon. Both
algorithms operate in two phases. The first phase requires a traversal of the boundary to produce

a list of the border pixels. This list is then sorted by Morton code.

The polygon filling phase of our algorithm is similar to Mark’s second phase, but this portion
of our algorithm is performed in time O(n + B) instead of O(n - B). This linear time bound is
achieved by using a simple table to record the expected values of neighboring nodes yet to be visited
during the simula’ped traversal of the tree. Since a tree traversal visits every node one time, and
we do constant processing at each node, our polygon filling step is O(V) where N is the number
of nodes in the tree. By a theorem presented in [Hunt79a), the number of nodes in the resulting
quadtree is directly proportional to the number of border pixels for the polygon plus the resolution
of the image, so this step takes O(n+ B) time overall. The total cost of our algorithm will therefore
be O(B log B), dominated by the cost of the initial sorfing step. Alternatively, we could use the
initial construction phase of [Webb84] yielding an overall time complexity of O(n + B) with the

4



constrained positioning of the polygon within the tree.

2.1. Detailed Description of our Conversion Algorithm

As with the algorithm of [Mark85a)], the first step in our chaincode to quadtree conversion
process is to generate a sorted list of linear quadtree node records representing the border pixels.
Border pixels are defined to be those pixels with at least one edge on the chaincode boundary. The
initial border pixel list is created by following the directional codes of the chaincode from pixel
to pixel. The second (filling) step of our algorithm takes as input a set of sorted border pixels.
The border pixels may be four or eight connected. Polygon boundary descriptions are restricted as

follows,

1) Each polygon represented must be closed (i.e., it must begin and end on
the same pixel).

2) Polygons may not be self-intersecting, nor may two polygons in the image
intersect.

As the chaincode is processed, a linear quadtree record for each border pixel is created
that contains the Morton code, the pixel’s z and y coordinates, and a border code telling which
sides of the pixel are adjacent t'o WHITE pixels (i.e., which borders of the pixel actually touch the
chaincode boundary). The Morton code duplicates the 2 and y coordinates for the pixel; however,
presentation of the algorithm is simplified if all operations are done in terms of z and y coordinates.
Final processing of the node list can remove this redundant information if desired. After all border
pixels have been generated, they must be sorted by Morton code, and passed to the filling phase
of the algorithm.

The second phase processes the sorted list, simulating a traversal on the corresponding
pointer-based quadtree. The purpose of this traversal is to fill in the interior of the polygons whose
borders are described by the boundary pixel list. To aid filling of the polygons during this traversal,
a table is maintained that indicates the expected color of adjacent nodes yet to be processed. This
. color table is updated as the node list is processed to reflect the current state of the traversal.

3



The polygon filling algorithm begins by finding the first chunk in the image. A chunk
is defined to be all pixels whose Morton codes lie between two successive border pixels (that is,
successive in terms of Morton code). Each chunk in the image must eventually be broken into
quadtree Nnodes. A chunk’s constituent nodes are determined during the traversal phase and, based
on the color of each such node, our table is updated. As nodes are created during the traversal,
they are passed to a routine that compares the node with its siblings to determine if all four siblings
are the same color and thus may be merged into a single node. This routine simply keeps a list of
consecutive nodes of the same color. When a node of 3, second color is processed, it may not merge
with any nodes preceding it; thus, stored nodes may be output. Four consecutive siblings of the
same color are merged to form a single node. At most 3n nodes need to be stored at one time. For
further details on the output node process, see [Shaf86]. The traversal continues until all of the
chunks have been processed and the resulting nodes output.

If the first border pixel of the image is not at position (0, 0), then maximal WHITE nodes
are output until the first border pixel is reached. Similarly, after the last border pixel has been

processed, WHITFE nodes are output until the lower right corner of the image has been reached.*

2.2. The Simulated Traversal

This section describes in detail the table driven simulated traversal that gives the filling -
phase linear time complexity. When the initial border pixel list is created, a border code is as-
sociated with each pixel (similar to the border code used in [Same80, Atki86])., This border code
describes which of the pixel’s edges may be adjacent to WHITE pixels. The code can be viewed
as a 4 bit map with bits 0, 1,2, and 3 corresponding to directions N, E, S, and W, respectively.
Alternatively, the code can be viewed as a four bit value generated by summing values of N = 1,

E=2,8=4,and W = 8§ for each edge on a border. For example, a pixel in the SE corner of a

* Tn this paper, all quadtrees are assumed to be traversed in the order NW, NE, SW, SE; the origin of each image is
assumed to be (0, 0) appearing at its upper left corner; and pixel coordinates are referred to by (ROW, COLj.

6




region has a border code of 2+4 = 6. Note that the color for all border pixels is BLACK, since by

definition border pixels are within the polygon defined by the chaincode.

After sorting the border pixel list into Morton code order, the complete linear quadtree is
generated by processing the pixel list in Morton order while simulating a traversal of the corre-
sponding pointer-based quadtree. To aid this traversal, information is stored in the color table. This
table is a two dimensional array with n rows for a 27 x 27 image, i.e., one row for each level of the
corresponding tree (except for the root at level n). Each row contains four columuns, representing
quadrants NW, NE, SW, and SE. Thus, each entry in the table corresponds to a quadrant at a
particular level of the tree. The value stored at each entry is the expected color for the next node
of that level and quadrant in the tree. Node levels are labeled from 0 (corresponding to nodes of
size 2° x 2%, i.e., pixels) to n — 1 (corresponding to nodes of size 27~1 x 27~ i.e., children of the

root node). Before processing begins, the color table is initialized so that all entries contain the

value WHITE.,

The traversal of the node list begins by setting the current level to be 7, corresponding to
visiting the root of the corresponding pointer-based tree. The initia] position in the traversal is
(0, 0), which is the upper left corner of the image (as well as the root node). At each stage of
the traversal, we maintain the curren‘c‘ level in the tree, the current (z, y) position in the tree, and
three values that describe the three corner pixels of the current node (all but the SE corner). Fach
corner pixel in the current node may also be the corner pixe! of some larger node. The mazimum
corner value for each corner is the level of the largest possible node for which that pixel is the
corresponding corner. For example, pixel (0, 0) is the NW corner of a node corresponding to the
entire image, while pixel (4, 0) is the NW corner of a 4 x 4 pixel node, regardless of the actual level
for the current node. We maintain this corner information in order to allow updates to the color
table in constant time. During the traversal process, corner information for the current node can
be derived in constant time from the corner information associated with the pixel’s parent.

7



Processing of the pixel list is simply a matter of processing the collection of pixels that lay
between each pair of border pixels (i.e., a chunk). As the nodes within a chunk are generated and
output, the color table is updated for each node, The first node in a chunk is the border pixel itself,
since this border pixel (which must be the NW corner of the chunk) may have a chaincode border
along its £ or S edge. When appropriate, this border pixel will later be merged with its siblings.
The current pixel position is then incremented to the next pixel in Morton order. The next node in
the chunk is the largest quadtree block with the current pixel position as its NW corner that does
not include the next border pixel. After this node is output, the next pixel position is calculated
in turn - this will be the next pixel in Morton order following the node just processed. When the
location of the current pixel becomes the same as the location of the next border pixel on the border
node list, then the current chunk is complete and processing of the next chunk may begin. This
continues until the entire list of border pixels has been processed. The purpose of the simulated
tree traversal is to allow the calculation in linear time of the nodes making up the current chunk.
The final chunk after the last border pixel contains the remainder of the image. All the nodes in

the last chunk are WHITE,

Procedure TRAVERSE of Section 2.3 is the heart of our algorithm. It simulates a pointer-
based quadiree traversal while simultaneously traversing the list of border pixels. If the node at the
current level does not fit into the current chunk (determined by function CHECK_N ODE.SIZE),
then the algorithm recursively processes the node’s four children. For each of these children, the NW
corner’s coordinates and the maximum corner values are computed. A maximum corner value is the
level of the largest node with that pixel in the corresponding corner. The largest eastern neighbor
for a node N will therefore be at the same level as N’s maximum NE corner value. Similarly,
the largest southern neighbor for N is its maximum SW corner value. If the block corresponding
to the current node in the quadtree traversai fits within the current chunk, then the color of the
current node is determined and the node is passed to the node merging routine ORDER_IN SERT.

8



(Further details on ORDER_INSERT may be found in [Shaf86, Shaf89].) If the current node is a
border pixel, then its color is BLACK. If the current node is not a border pixel, then the color of
the current node is found in the color table. The entry examined in the color table is at the level
and quadrant of the maximum corner value for the NW pixel of the current node. After the node’s
color is determined, this color may then be used to update the color table.

If the current nodé is a NW, NE, or SW child of its parent, then the color table is updated.
For SE children, no update is required since other nodes will later update those same color table
entries. The color table is updated as follows. For the current node, the sizes for the largest
adjacent eastern neighbor and the largest adjacent southern neighbor are calculated. They are
obtained from the maximum corner values for the current node. If the current node is a border
pixel, the pixel’s border code determines what color to use when updating the table. For example,
if the pixel has stored a border along the eastern edge, then the largest quadrant directly east of
the current pixel is set to be WHITE. This is accomplished by setting the entry in the color table
for the largest eastern neighbor (level and quadrant). If the current node is not a border pixel,
then the neighbor receives the same value as the current node. The quadrant of the neighbor is
determined by a simple function based on the current node’s location and the level passed down
from the current node’s parent in the variable mazne. If no eastern border exists, the color table
entry is set to BLACK. The southern direction is processed in a similar way, using the value mazsw.

When the table is used to determine a node’s color, the level of the largest node that has
a common northwest corner pixel with the current node is used for the table lookup. This insures
that the correct color will still be in the table, since no nodes will have been processed that could
have changed this value in the table due to the order in which nodes are processed. Figure 4

illustrates the node processing scheme.



2.3. Conversion Algorithm Pseudocode

This section contains a Pascal-like pseudocode description for the filling phase of our con-
version algorithm. This pseudocode contains four procedures. START_TRAVERSE initializes the
table values and begins the simulated pointer-based quadtree traversal by calling TRAVERSE,
which performs the actual traversal. The last two procedures are CHECK_N ODE_SIZE, a func-
tion that determines if the current node will fit into the current chunk, and UPDATE_TABLE, a
procedure that updates the color table based on the level and quadrant passed to it.

The pseudocode below calls several primitive procedures that did not merit a formal de-
scription. BIT_SET(border, side) returns TRUE if the bit corresponding to side is set in border,
and FALSE otherwise. The function FINDQUAD(z, y, level) returns the quadrant of the node
containing the point (z, y) at level with respect to the node’s parent. ORDER.INSERT(level,
color, x, y) outputs a color node of size 2/evel y level whose NW corner pixel is (z, ¥). This
procedure merges siblings if they are all the same color. GET-NEXT and TEST_NEXT both deal
with the input list of border pixels, GET_N EXT(z, y, border) takes the next border pixel off the
head of the border pixel list and stores its coordinate and border information in z, y, and border.
TEST_NEXT(z, y) checks if the next pixel on the list has the coordinates z and y.- GET_X() and

GET_Y() return the # and y coordinates of the next border pixel, respectively.

{ Declarations of types and global variables. }
type
QUADTYPE = (NW, NE, SW, SE);
BCODE = integer; { border code type: N=1,E=2,8S=3 W = 4, }
NODE = record { record type for border pixel list }
z, y : integer,
border : BCODE { border code for each border pixel }
end;
var
colortable : array[0. MAXLEVEL, N W..SE] of integer;
border : BCODE; { border code of node currently being processed }
currivl : integer; { level of node currently being processed }

10



currquad : QUADTYPE; { quadrant of node currently being processed }

procedure UPDATE_TABLE(maznw, mazne, mazsw, ¥, y : integer);
{ Updates the color table based on the current node just outputted. }
var
width : integer; { Width of the current node. }
eastquad, southquad : QUADTYPE; { Largest quadrant to E or § of current one. }
begin
width = Zcurrlvl;
case currquad of
NW: begin
eastquad := NE; southquad := SW;
if BIT SET(border, E) then { If eastern border exists }
colortable[currivi][eastquad] = WHITE
else colortablelcurrivi)eastquad] := color;
if BITSET(border, S) then { If southern border exists }
colortable[currivl][southquad] := WHITE
else colortable[currivl][southquad] = color
end
NE: begin
eastquad := FINDQUAD(z + width, y, mazne);
southquad := SE;
if BIT_SET(border, E) then { If eastern border exists }
colortable[maznelleastquad] := WHITE
else colortable[mazne][eastquad] := color;
if BIT_ SET(border, S) then { If southern border exists }
colortable[curriv][southquad] := WHITE
else colortablelcurrivl]{southquad] = color
end
SW: begin { Fastern neighbor already set by NE sibling }
southquad := FINDQUAD(z, y + width, mazsw);
if BIT SET(border, 8) then { If southern border exists }
colortable[mazsw][southquad] := WHITE
else colortable[mazsw][southquad] := color
end
SE: { Do nothing, neighbors will be set later on }
endq case currquad of .., }

end; { UPDATE_TABLE }

function CHECK.NODESIZE(z, y : integer) : boolean;

{ Returns whether or not the quadrant of size (20wrrivl x gewrrluly whose NW corner is (z, y) is
contained within the current chunk. }
var size : integer;
begin
if (border <> 0) and (currlvl <> 0) then { If current node is a border pixel }
return (FALSE);
size = chrrlvl _ 1;
if (¢ + size >= GETX()) and (y + size >= GET.Y()) then
return (FALSE)

11



else return (TRUE)
end; { CHECK_.NODE SIZE }

procedure TRAVERSE(maznw, mazne, mezsw, z, y : integer);

{ This recursive procedure imitates a pointer-based tree traversal in order to fill in the polygon’s
area. Its parameters are the levels of largest quadrants that the current node is a northwest,
northeast, and southwest corner of. Also passed along are the current 2, y coordinates. }

var color : integer;
begin

if CHECK_-NODE_SIZE(z, y) then
begin { If current node fits into the current chunk, output current node }

if border = 0 then { if current node is NOT a border pixel }
color := colortable[maznw|[FINDQUAD(z, y, meznw)};
UPDATE.TABLE(maznw, mazne, mazsw, z, ¥)
ORDERINSERT (currivl, color, z, Y);
border := 0 { Other nodes in chunk have no border }
end{ then clause }
else { Recurse down a level into four children }
begin
currlvl := currlol — 1;
for currquad in NW, NF, SW, SE do
begin
case currquad of
NW: begin
TRAVERSE(maznw, currlvl, currlvl, =, ¥);
x =z + acurrivi
end{ NW }
NE: begin
TRAVERSE(currlvl, mazne, currivl, z, ¥);

QCurrlful.

T p — : yi=y+ 2currlvl
end{ NE }
SW: begin
TRAVERSE(currivl, currivi, mazsw, ¥, y);
T =z + 2currlvl
end{ SW }
SE: TRAVERSE(currivl, currivl, currivl, z, y)
end; { end case }
i TEST-NEXT(z, y) then GET_NEXT(z,y, border)
end; { End for loop }
currivl := currlvi 4+ 1
end{ End recursive case }
end;

procedure START_TRAVERSE;
begin
currlvl := MAXLEVEL;
if TEST_NEXT(z, y) then
begin
z:=0; y:=0; border:=90

12




end
else
GET_N EXT_BORDER.,PIXEL(m, Y, border);

TRAVERSE(MAXLEVEL, MAXLEVEL, MAXLEVEL, z, )
end;

2.4. Example of the Conversion Algorithm

Figure 2a shows an example polygon with all border pixels shaded and their borders shown
with a heavy outline. Figure 2b numbers each border pixel by order of its Morton code. Figure 2b
also labels with letters those other blocks of the image that will be generated by the traversal phase.
Note that nodes A and B are not part of the border list; however, they are interior to the polygon.
Also note that blocks 1, 2, 3, and A must eventually be merged to form a single quadtree node.
Each border pixel has a border code associated with it. This code indicates which sides of the

border pixel are adjacent to WHITE pixels.

Recall that a chunk is the collection of pixels whose Morton codes lie between the Morton
codes of two consecutive border pixels. For example, the chunk defined by border pixels 3 and 4 of
Figure 2b has two nodes: the first is the level 0 (pixel-sized) node containing pixel 3. The second
is the node labeled A. When pixel 4 is reached, a new border pixel (pixel 5) is read off the list, and
a new chunk is calculated. Note that every chunk begins with a level 0 node containing the border
pixel at the beginning of that chunk. The final chunk defined by pixel 9 at the end of the image

contains nodes 9, E, F, G, H, I, and J.

During processing, each node has three corner values associated with it, indicating the
maximum level for the node containing the corresponding corner pixel. For node 1, the maximum
corner values corresponding to the (NW, NE, SW) corners are (3, 0, 0). Pixel B has values (0, 0,

1). Pixel 5 has values (0, 2, 0).

The traversal process begins with the color table initially containing the value WHITE for

13



all entries. Figure 3 follows the color table as it is updated by the various nodes. Pixel 1 is the
first node used to update the color table. After pixel 1 is processed, the color table is modified
as shown in Figure 3a (the initialized WHITE values are not shown for clarity). Entries updated
by pixel 1 are underlined. The largest eastern and southern neighbors of pixel 1 are at level 0, so
corresponding entries at level 0 in the color table are sot to BLACK. After pixel 2 is processed,
the color table is as shown in Figure 3b. Since the largest eastern neighbor of pixel 2 is a 2 x 2
quadrant that is a NE child of its parent, row 1, column NE in the color table is set to BLACK.
Figure 3¢ shows the color table after processing pixel 3. Since node A is not a border pixel, the
color table is accessed to determine node A’s color, Node A is at level 0, and is a SE child. Thus,
its value as indicated by the color table is BLACK. Node A does not update the table as it is a
SE child. Figures 3e and 3f show the color table after processing pixels 4 and 5, respectively. Since
pixe1.5 has an eastern border and its maximum NE corner value is 2, the table entry (level = 2,
quad=NE) is set to WHITE. Pixel B is a SW child, so it updates the table for its largest southern
neighbor, of size 2 x 2. This entry in the table is set to BLACK, as shown in Figure 3f. Pixel 6
is a SE quadrant so no update is performed. This process continues until the whole image has
been processed or equivalently, the entire tree has been traversed. Figure 2c shows the final block

decomposition for the image after all processing and merging has been performed.

3. ANALYSIS

As mentioned previously, [Same80], [Mark85a), and [Atki86] present conversion algorithms
that are O(n - B). Samet’s algorithm individually inserts B border pixels into a quadtree at level
n, while Atkinson et al’s algorithm performs » passes through a node list of length B. Since Mark
and Abel perform neighbor find operations O(n) cach at all O(B) nodes of the quadtree, their
algorithm is also O(n - B). Thus, all three of these earlier works have a depth factor (n) in their
time complexity. The algorithm of [Webb84] is O(n + B), but it imposes a restriction by limiting

14




the placement of the image within the image plane (the quadtree).

Our algorithm consists of two phases. First, a chaincode (or any other boundary represen-
tation) is processed, generating a list of linear quadtree nodes corresponding to the border pixels
for the polygens. For a list of B border pixels, the time for this step is O(B). The list is then
sorted by Morton code, requiring O(B log B) time. The output of the first phase is a sorted list of
the border pixel nodes. O(B log B) is asymptotically the same as O(n - B). However, our first step
has been reduced to a simple sort while some of the other algorithms [Same80, Webh84, Atkigs]

have a more complex initial construction phase.

The most significant aspect of our new algorithm is that our filling phase can be performed
in time O(n+ B). By Hunter’s theorem [Hunt79a], the number of nodes in the quadtree is O(n+ B),
since B is the length of the perimeter for the polygons represented. Qur traversal process (lnamed
TRAVERSE in the pseudocode) simulates a traversal of the corresponding pointer-based quadtree,
which contains O(n+ B) nodes with each node processed once. Each node (i.e., each part of a chunk)
is processed in constant time, since all subroutines other than TRAVERSE operate in constant time,
Thus, the total time complexity of our filling phase is O(n + B). Very little additional space Is
required (our color table has 4n entries), and no ropes for the tree are required as in [Hunt79a,

Hunt79b].

4. CONCLUSIONS

This algorithm accomplishes three goals. First, it presents a different and potentially useful
approach for converting border codes to a region quadtree. Second, it is the first boundary to region
conversion algorithm (for linear or pointer-based quadtrees) that has unrestricted O(n + B) time
complexity for sorted data (border pixels) and O(B log B) for lists of unsorted border pixels. This
is preferable to O(n - B) for small values of B, i.e., short chaincodes. Three previous algorithms
[Same80, Mark85a, Atki86) have worst case time complexity of O(n - B) for an image resolution of

15




27 % 27, Webber’s algorithm [Webb84] has a linear time complexity for the border pixel sort phase,
but it restricts the placement of the polygon in image space. Qur algorithm can be combined with
Webber’s for a total time requirement of O(n+ B). Third, ours is the first linear quadtree algorithm
that we are aware of that utilizes the algorithmic technique of simulating a pointer-bagsed quadires
traversal during processing of the linear quadtree node list. This traversal technique is what allows
our fill algorithm to operate in Linear time. While we have engaged in discussions with researchers
on the theoretical implications of such an approach, it is the first actual presentation of such an
implementation. As the quadtree representation is utilized for more applications, a wide variety of
algorithm techniques will prove increasingly useful to researchers and practitioners,

This algorithm could be easily modified to generate a éointer—based quadtree in O(B log B)
time. However, the initial quadtree construction phase must not operate by inserting the border
nodes into the quadtree as done in [Same80]. Instead, we would retain our initial phase in which we
- sort the border pixels by Morton code, and then modify our traversal phase to actually construct
the pointer-based quadtree rather than simulate its traversal. Our algorithm can also be easily
modified to operate in three dimensions. The color table must be expanded so as to store eight
octants for each level, and the border codes require six bits (one for each face of the voxel). The

table is still quite small, and the operation of the algorithm is essentially unchanged.

16



5. REFERENCES

1. [Atki86] H.H. Atkinson, 1. Gargantini, and T.R.S. Walsh, Filling by quadrants or octants, Com-
puter Vision, Graphics, and Image Processing 33, 2(February 1986), 138-155.

2. [Garg82] L. Gargantini, An effective way to represent quadtrees, Communications of the ACM 25,
12(December 1982), 905-910.

3. [Garg84] I. Gargantini and H.II. Atkinson, Linear quadtrees: a blocking technique for contour
filling, Pattern Recognition 1 7, 3(May 1984), 285-293.

4. [Hunt79a) G. Hunter and X, Steiglitz, Operations on images using quadtrees, JEEE Transactions
on Pattern Analysis and Machine Intelligence 1, 2(April 1979), 145-153.

5. [Hunt79b] G. Hunter and K. Steiglitz, Linear transformation of pictures represented by quadtrees, -
Computer Graphics and Image Processing 10, (July 1979), 289-296.

6. [Mark85a] D. Mark and D. Abel, Linear quadtrees from vector representations of polygons, IFEE
Transactions on Pattern Analysis and Machine Intelligence 7, 3(May 1985), 344-349.

7. [Mark85b] D. Mark and J.P. Lauzon, Linear quadtrees for geographic information systems, Proc.
Int. Symp. Spatial Data Handling, Zurich, Switzerland, August 1984, 412-430.

8. [Mark85c] D. Mark and D. Abel, Linear quadtrees from vector representations: Polygon to
quadtree conversion, CSIRONET Tech. Rep. No. 18, Canberra, Australia.

9. {Same80] H. Samet, Region representation: guadtrees from boundary codes, Communications of
the ACM 23, 3(March 1980), 163-170.

10. [Same89a) M. Samet, Design and Analysis of Spatial Data Structures: Quadtrees, Octrees, and
Other Hierarchical Methods, Addison-Wesley, Reading, MA, 1989,

11. [Same89b] H. Samet, A pplications of Spatial Datg Structures: Computer Graphics, Image Pro-
cessing, and GIS, Addison-Wesley, Reading, MA, 1989,

12. [ShafS6] C.A. Shaffer, Application of Alternative Quadtree Representations, Ph.D. dissertation,
TR-1672, Computer Science Department, University of Maryland, College Park, MD, June 1986.

13. {Shaf89] C.A. Shaffer and H. Samet, Set operations for unaligned linear quadtrees, to appear
in Computer Vision, Graphics, and Image Processing. Also, Department of Computer Science TR

88-31, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, September 1988,

14. [Webb84] R.E. Webber, Analysis of Quadiree Algorithms, Ph.D. dissertation, TR-1376, Com-
puter Science Department, University of Maryland, College Park, MD, March 1984.

17



0f0j0j0f0fo[0]0
0fj0fjofojo]ofolo
Ol0J10J041j1]1]1
0jof0f0]1)111]1
ojojojifiiifin
OJOoj1jtit1j1]1
o1 1j1f110}0
00111 |1]0}0]0
(a) (b) (c)
A
' ()
NW SE
N w
| OB O C OE
1
U I.I .I
2 3 4 5 6 11 12 13 14 19
(] B _ - a
7 8 910 15 16 17 18
(d)

Figure 1. A region, its binary array, its maximal blocks, and the
corresponding quadtree.  (a) Region. (b) Binary array. (c) Block
decomposition of the region in (a). Blocks in the region are shaded.
(d) Quadtree representation of the blocks in (c).



J—
LA Rl T
Gk iR IR s
LA LA f/f(”-:fv’

CLAA Gl
(LA el
A A

v o

GECH O,
CEAR R LA

>}
PR PN Y

(a)

Al = wi-
w] LT IS
Tlo|m| &~
Qo] W

(b)

ER i

R TR

N Y vy

) e

rrekereders
iy

(©)

Figure 2. Chaincode to Quadtree conversion process. (a) Initial list of
border pixels and their boundary. (b) Boundary of region with border
pixels labeled 1-9 and other nodes lettered. (c) Block decomposition of
the final region quadtree.



1 |INW|NE |SW|SE 2 [NW{NE |SW]|SE
0 B | B 0 B|B|B
1 1 B
2 2

(a) (b)
3 |[NW{NE |SW|{SE 4 |INW|NE |SWISE
0 B{B| B 0 B |B |B
1 B|B 1 B |B
2 2

© (d
5 INW|NE |sw!sE B {NW|NE | sw]| sE
0 B B 0 B{B |B
1 B [B 1 B|B|B
2 W 2 W

(e) ®

Figure 3. Step by step example of color table update. (a) the color table
after it has been updated by pixel 1. (b) after pixel 2. (c) after pixel 3.
(d) after pixel 4.



A——+B+
l

O e i T el

-

Figure 4. Node A, a NW quadrant will update entries in the color
table for its siblings to the eastand to the south (solid arrows).
Node B will update entries in the color table for its largest eastern
neighbor (Node E, bold arrow), and for its southern sibling (solid
arrow). Node C will update entries in the color table for its largest
southern neighbor (Node F, bold arrow). No update is necessary
for the eastern sibling (broken arrow). Node D performs no updates

since its neighbors are updated elsewhere.



