Taskmaster:
An Interactive, Graphical Environment
for Task Specification, Execution and Monitoring
James D. Arthur and K. S Raghu

TR 89-15



Taskmaster: An Interactive, Graphical Environment for
Task Specification, Execution and Monitoring

James D. Arthur and K.S. Raghu

Department of Computer Sciences
Virginia Tech
Blacksburg, Virginia 24061
(703) 961-7538

ABSTRACT

Taskmaster is an interactive environment that employs a unique blend of graphic technologies and
iconic images to support user task specification. In this environment, problem solving is based on
the selection, specification, and composition of tools that correspond to natural sets of ordered
operations. The Taskmaster environment is novel in that it:

* provides an interactive, visual-based approach to user task specification,

* encourages and supports task specification and refinement processes from bozh the

top-down and bottom-up perspectives, and

* enables one to specify parallel tasks in a natural and convenient manner.
To "program™ a given task within the Taskmaster environment, one decomposes it into an ordered
set of conceptually simple, high-level operations, and then combines (composes) a corresponding
network of software tools that implements these operations. Execution of the specified network
provides a task solution. Major system components supporting user task specification include a
network editor, a tools darabase and a network execution monitor.

CR Categories and Subject Descriptors: D.2.6 [Software Engineering]: Interactive
Programming Environments; H.1.2 [User/Machine Interaction]: Human information

Processing

General Terms: Interface Abstractions, Top-Down and Bottom-up Task Specification, Partitioned
Menu Networks, Graphical Networks

Additional Keywords: Nodes, Arcs, Communication Paths, Cutsets



Taskmaster:

An Interactive, Graphical Environment
for
Task Specification, Execution and Monitoring

James D. Arthur and K.S. Raghu

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

1.0 Introduction

Over the past decade, several treﬁds have led to new attitudes about software development, and
correspondingly, user task specification. First, the proliferation of personal workstatidns with
extensive graphics capabilities has put local computing power in the hands of many people and has
created a demand for high quality, user-friendly interfaces. Second, software development tools
have evolved from an ad hoc collection of independent programs to integrated sets Jof
complementary tools forming a basis for user support environments, e.g. Interlisp [TEIWS1],
Smalltalk [TESL81] and PECAN IREIS84]. Several of these environments, such as PICT
[GLIE84], PegaSys [MORMS5] and DMS [EHRRS86], exploit graphical interfaces to enhance user
productivity. A third trend is the specification of task solutions through software composition
techniques rather than line-at-a-time coding [ARTJ87]. This third trend is particularly attractive
because it help reduce coding errors and implementation time as well as facilitates software
reusability. What has been lacking, however, is an environment that embraces all three of these

trends, that is, a visual-based environment for high-level, task specification. In recognition of this

i




void, the authors have pursued a research direction leading to the development of Taskmaster: An

Interactive, Graphical Environment for Task Specification, Execution, and Monitoring.

Taskmaster employs a unique blend of graphic technologies and interaction formats to visually
support the specification, instantiation and monitoring of physical tasks. Within the Taskmaster
environment, one begins a task specification by conceptually breaking the task into a partially
ordered collection of high-level operations. The decomposition is then expressed as a graphical
network where nodes represent high-level operations (supported by underlying software tools) and
arcs represent directed communication paths between the nodes. Instantiation of that network
provides a solution to the correspondingly specified task. In support of this visual approach to
"programming”, Taskmaster provides a flexible, user-directed dialogue format based on
complementary interaction mechanisms. In particular, functional abstractions, supported through
visually-oriented icons and primitives, provide an integrated top-down and bottom-up task

specification interface.

The remainder of this paper focuses on concepts intrinsic to and issues underlying the
development of the Taskmaster environment. Because the operational aspects of the environment
play such a crucial role in our discussion, an overview of the system is presented first. Included in
that presentation is a description of the environment's major components which visually and
textually support user task specification, Section 3 follows and presents a discussion of
abstractions used in support of top-down task specification. The discussion includes a description
of (a) partitioned menu networks supporting multi-level, menu-based interaction, and (b) the
expand node operation. Section 4 describes composite tool abstractions and discusses its relevance
to bottom-up, user task specification. Included in this discussion is an overview of tool-composite
operations. Finally, Section 3 provides a summary of the paper and briefly discusses the current

status of the Taskmaster environment.



2.0 The Taskmaster Environment: An Overview

The Taskmaster environment has been a product of evolution. Its initial predecessor, OMNI
[ARTIR®7], was textually oriented and supported interactive user task specification based on a
"loose" composition of program filters. Taskmaster's immediate predecessor, GETS [ARTI88],
exploited graphics-based task specification but, like OMNI, was still restricted to rigid specification
constraints enforced by menu-based interaction. Learning from our experiences with OMNI and
GETS, the Taskmaster environment has been purposely designed to support user task specification
from a graphics-oriented perspective while utilizing abstraction mechanisms that minimize the

interaction rigidity inherent to menu-based systems.

2.1 A Task Specification Example

The high-level operations identified during task specification are supported through a collection
of software tools present in a tools database. A fool, as used in this paper, refers to a filter
program (@ la UNIX1 sorf) which performs a single operation with minor variations. Each tool can
have multiple input and output ports through which it communicates with other tools. To
"program" a given task within the Taskmaster environment, one decomposes the task into a
partially ordered set of conceptually simple, high-level subtasks (or operations), and then
composes a corresponding network of software tools that implement those subtasks. This
decomposition/composition process is supported through and depicted as a graphical network in -
which nodes correspond to subtasks and arcs represent directed data paths between the nodes. For

example, Figure 1 illustrates a task specification that:

» retrieves the contents of a file,

* creates two copies of the file contents,

! Unix is a trademark of AT&T,



* selects records in parallel based on independent selection criteria,
+ merges the records selected by the parallel selections,
» sorts the selected records, and

* stores the selected and sorted records in a file.

The resulting network topology captures, from both a visual and operational perspective, the set

and sequence of operations needed to compute a solution to the user task specification.

Figure 1

A High-Level, Task Specification Network for Sorting and Saving Selected Records

During the task specification process leading to the network illustrated in Figure 1, the user
could have chosen to specify the task from (a) the top-down perspective by creating a single node
representing the entire task and then expanding it into a multiple node network representing various
levels of task specification refinement, (b) the bottom-up approach by creating an initial network
topology where each node represents a distinct operation intrinsic to the the proper resolution of the

task, or (3) a combination of both the top-down and bottom-up approach. The authors note that



although the topology shown in Figure 1 is in its final format, the operations associated with each
node are still specified using their generic name. As illustrated in Figure 4, further interaction is

still required to bind each node to a specific tool.

2.2 The Major Components of the Taskmaster Environment

The Taskmaster environment is an integrated user support environment that exploits visual
programming concepts, tool composition, and structured data flow. It is composed of three major

cooperating components:

* the Network Editor,
» the Network Execution Monitor, and

+ the Tools Database.

The Network Editor provides a graphical interface for constructing task networks. It guides the
user through the task specification process by supporting top-down and bottom-up interaction
formats. Once a task is fully specified, the corresponding network is ready for execution. A
network representation is forwarded to the Execution Monitor for instantiation and monitoring.
| The Tools Database plays a supportive role in that it provides access to all the information
pertaining to the basic tool set. This information includes a detailed description of each tool present

in the database, its interface structure and the dialogue for refining its function.

Physically, the environment is partitioned across two machines connected by a high speed
communication link. The Network Editor resides on a VAXstation2 I running MicroVMS 4.2

(local workstation). The Execution Monitor resides on a VAX 11/785 running Ultrix-32 (host

2 VAXstation, VAX, Ultrix and MicroVMS are all trademarks of the Digital Equipment Corporation.

5



Vaxstation 1 - MicrovVMS
Network Editor

Tools Database
{Local Copy)

Execution Monitor Interface

High Speed Link
VAX 11/785 - Ultrix
Execution Menitor

Tools Database
{Master Copy)

Figure 2

Taskmaster System Configuration

computer). The Tools Database resides on the host machine but gets copied over to the local
workstation on every update. Although the current configuration has a single local workstation,
we envision a set of local workstations all connected to the host, in future, The overall system

configuration is shown in Figure 2.
2.2.1 Taskmaster User Interface: The Network Editor

The Network Editor provides an interactive, graphical interface for constructing task
specifications. Programming in the Taskmaster environment consists of transforming a conceptual
task into a network whose nodes represent operations (tools) and whose arcs represent the
communication path between the nodes. The Network Editor supports the specification process by
providing editor primitives for building generic networks and for specifying nodes and arcs
through menu-based interaction. For clarity, a generic network is viewed as a directed graph with

unspecified nodes and arcs. Following the construction of a generic network, additional



Figure 3

A Generic Network for Record Selection, Sorting and Saving

interaction leads to the "binding" of nodes to operations and arcs to tool-specific ports. Figure 3
illustrates one generic network from which the fully specified network in Figure 4 can be derived.

Note, however, that the second node will require further refinement through an expansion process.

The Network Editor is primarily menu-driven and makes extensive use of logical windowing
and mouse input. Similar to the Dialogue Management System [EHRR86] and PICT [GLIE84],
the Network Editor incorporates many of the human engineering principles related to graphical user
interface design. For example, ergonomic features include direct manipulation, visual feedback,
user error recovery, choice confirmation, default selection, operational and representational
consistency, pop-up menus and so forth. The Editor display consists of a large window detailing

the topology of the network being edited and auxiliary pop-up windows for displaying

*  MEnus,

« multiple views of nodes and arcs,

« user instructions and help messages,
»  error messages,

« user confirmation requests, and

« textual information pertinent to tool and communication path specification.



The Network Editor provides access to many editing primitives, the majority of which support
either network construction, network specification, or network inguiry operations. The network
construction operations are used to create and operate on node and arc icons. When first created by
the create node (create arc) operation, node (arc) icons serve as visual place-holders and have no
initial semantic meaning with respect to the task being solved. Pan and zoom operations provide
for the selective viewing of relatively complex networks. The collapse operation allows one to
abstract a subnetwork performing some high-level operation into a single "super-node”. The
explode operation reverses the effect of a corresponding collapse operation. The expand operation
provides a new network topology window in which to define a subnetwork associated with the
node being expanded. Sections 3 and 4 presents a more detailed discussion of the expand,

collapse and explode operations relative to specifying functional abstractions,

The network specification operations are used to specify the node and arc icons. Node icons
are specified by attaching to them, a fully refined tool or pseudotool from the tools database. Arc
icons are specified by making all the appropriate connections between the tools associated with the
nodes connected by the arcs. Thus, an arc can be specified only after both incident nodes are fully

specified, and subsequently, tool interfaces are known.

The network inquiry operations provide characteristic information based on the current
specification status of nodes and arcs. The view node operation provides a detailed view of the tool
attached to a specified node. Taskmaster also provides a textual view of each specified node
containing the description of the associated tool, its attributes and its input and output ports. The
view communication path operation provides a detailed view of the interface between the tools

connected by an arc.

Additional operations provide for various "backup” and "restore" capabilities. At anytime

during a editing session, the current state of the network can be saved to disk or a previously saved

8



network can be restored from disk using the save network and the restore network operations
respectively. The undo operation supports error recovery by undoing the effect of the most recent

topology modifying operation.

Finally, after a network is created and completely specified, the execure network operation can
be used to send the network to the Execution Monitor for instantiation. Upon selection of this
operation, the Network Editor performs consistency checks and network validation, and then
sends an internal representation of the network over a high-speed link to the remote hosted Monitor

for instantiation.
2.2.2 Taskmaster Executive - the Execution Monitor

Problem solving in the Taskmaster environment consists of (1) specifying the problem and (2)
computing the solution. The Network Execution Monitor supports the second stage of this process

by performing the following functions:

» reading the task network representation forwarded by the Network Edttor,
+ validating the network,
+ spawning computational processes based on the network topology, and

* monitoring the network execution.

Before initiating execution of the network, the Monitor first performs a modified breadth-first
traversal (BFS) of the network checking for network connectivity and data path consistency. After
confirming network consistency, the Monitor instantiates the network by spawning a process for
each node in the network, allocating a UNIX "pipe" for each arc and connecting those pipes to the
appropriate nodes. The node instantiation is also performed in the BFS traversal order in an

attempt to satisfy certain interprocess communication constraints imposed by the operating system.

9



The network execution, however, is independent of the instantiation order because it is based
solely on data flow. The Execution Monitor sends status messages back to the Network Editor

indicating the instantiation, execution and termination of each node-associated process.

2.2.3 Taskmaster Knowledge Base - the Tools Database

The third component of the Taskmaster environment is the Tools Database. In the Taskmaster
environment, the Tools Database plays a major role in isolating and encapsulating all application-
specific information, and presenting it in a generic form to the other two components of the

environment. This approach has significant advantages in that:

* defining a new application domain requires only that the Tools Database be redefined
accordingly, and
* integrating into the new Database into the Taskmaster environment is an operation that is

transparent to the rest of the system.

More specifically, the Tools Database contains information about all the tools available in the
environment. This information includes tool communication requirements, tool arguments and
complete textual descriptions of each tool and its input and output ports. The Tools Database also
contains all the information supporting the multi-level, menu-based dialogue process for node
specification. The Network Editor directly uses this information to drive node specification.
Effectively, the specification process can be viewed as a finite state machine driven by the Tools

Database menu dialogue "table” [RABM59].

10



3.0  Abstractions in Support of Top-Down Task Specification

To specify a task within the Taskmaster environment, the user first defines a generic network
reflecting an conceptual ordering of one or more high-level operations. The initial network can be
a single node representing the entire task, or a network of nodes representing a task specification
overview. From this initial configuration, top-down specification can be employed to refine the
network. Top-down task specification is the successive decomposition of a high-level task into
lower level subtasks until the lowest level subtasks are directly identifiable with available tools or
pseudotools defined in the tools database. In the Taskmaster environment, top-down task
specification is supported through two distinct interaction formats, each embracing different
decomposition philosophies and employing distinct abstraction mechanisms. The first approach
exploits partitioned menu networks through a multi-level, menu-based interface [ARTIJ85]. As
with any menu-based system, the specification/decomposition paths are predefined. The second
approach, however, employs node expansion activities and supports user-directed
specification/decomposition. As discussed below, both approaches encourage top-down, task
specification. Multi-level, menu-based interaction assumes that each node being specified
represents one operation and will be attached to a single tool. Node expansion, on the other hand,
assumes that the selected node is to be "expanded” into a subnetwork of nodes, each representing

distinct operations,

3.1 Top-Down Specification through Multi-Level, Menu-Based Interaction

Multi-level, menu-based interaction assumes that the node being specified is to be directly
bound to a primitive tool defined in the tools database. As with any menu-based dialogue format,
the interaction process is restricted to predefined sets of refinement paths that correspond to the the
underlying menu network hierarchy. The novelty of this approach is not the menu-based

interaction per se, but the specification sequence induced by a partitioning of the underlying menu

11



network. That is, the predefined menu network is partitioned into multiple levels, where each level
(or layer) represents a refinement abstraction across the entire menu network. As illustrated below,

the partitioning induces interface layers that permit the user to

* specify a task overview based on predefined high-level operations, and then

* successively refine that overview through subsequent menu-based interaction.

Although we choose to restrict the discussion of partitioned networks and the multi-level, menu-
based interaction to systems that support user task specification, the concepts presented in this
section are applicable to most general menu-driven systems and their corresponding application

domains,

In specifying a task, the user first constructs 2 generic network that provides a framework for
sequencing and specifying a particular set of operations. Through conventional menu-based
interaction, for each node in the generic network the user selects the appropriate sequence of menu
frame itemns that identifies the hi gh-level operation, binds that node to a tool which implements the
operation, and then refines the execution behavior of that tool. This scenario implies that a selected
node is fully specified before another node is considered. For example, suppose that a user has
access to a menu-driven, file transformation system and wants to retrieve a file, select certain
records from a specified file, sort them, and then save them for later processing. First, the user
selects the sequence of frame items whose corresponding actions solicits the name of the file to be
retrieved and infers all associated physical attributes. Next the user chooses a sequence of frame
items that indicates the selecr-record operation as well as the criteria for selectin g the appropriate
records. The user then chooses a sequence of menu items that leads to a description of the sort
operation and all refinements that specify record format and the desired sort sequence. Finally,
frame items are selected that denote the Jfile-save operation and that define all characteristics relating

to the destination file. Figure 4 illustrates one possible network to accomplish the above specitied

12



Figure 4

Fully Specified Network to Sort and Save Selected Records

task. In this fully specified network car is the file retrieval tool, grep is the select tool, sort is the

sort tool and fileit is file creation tool.

The problem with the specification approach described above is that the user is forced to select
one node at a time and fully specify its operational details before moving to another node in the
network. Such rigidity, enforced by conventional menu neiworks, tends to obscure the user's
overall perception of the task solution. For complex tasks, forcing the user to contend with details

before firmly establishin £ a task overview can have adverse, if not devastatin g repercussions.

In the Taskmaster environment, however, menu interaction is based on partitioned meny
networks that support and encourage partial node specification through defined interface layers.
Intuitively, an interface layer can be viewed as a horizontal "slice” through the menu network that
delimits menu frames possessing a common level of specification refinement. For the above file
transformation example, a (simplified) conventional menu network might look similar to the one
illustrated in Figure 5. In the Taskmaster file transforrmation environment, however, Figure 6

shows the same menu network after partitioning. Note that the network defined at Hierarchical

13



Root
Operation Classes

character operations
field operations
record operations
|~ file operations

Level 1 "terminates" with the selection of a high

by the second-level meny networks.

save
retrieve
create
SOI't\
File Characteristics Sort Detailg File Characteristics Selection Criteria
menu menu menu menu
7 1 N\ 7 | N\ 7 I N\ 7 | \

. - - . » . . . - [ . °
L] - - - ° - . M . - - .

Figure 5

Conventional Menu Netwaork for File Transformation

menu network in a conventional manner, specify a task overview (without being encumbered by

refinement details), and then continue with individual node refinement through interaction guided

(Figure 7a), specifies an overview by associating high-level operations with each node
(Figure 7b), and then refines each high-level operation through continued menu interaction on the
second hierarchical level. The final result i a fully specified network identical to the one shown in

Figure 4. We emphasize that partitioned networks provide the capability for the user to specify an

14

-level operations. Hence, the user can traverse the

That is, the user first constructs a generic network



Hierchical Leve! 1
-1-
Operation Classes
character operations
field operations
record operations
|~ file operations

save
retrieve
-'__.-create
3F sort t
a-' Hierarchical Level 2
2 ¥ 3 v+
File Characteristics Sort Details Selection Criteria
menp menu menu
7 TN 7T~ 7 TN
Figure 6

Partitioned Menu Network Supporting File Transformation

overview through the Taskmaster interface. The final choice remains with the user as to whether
"breadth-first” overview or the conventional "depth-first"

the specification sequence follows a
Although partitioned menu networks is a powerful mechanism for supporting multi-level,

orientation.

menu-

based interaction, the user is still forced to follow a

set of paths defined by the menu

15



Figure 7a

Generic Network to Sort and Save Selected Records

Figure 7b

Overview Network to Sort and Save Selected Records

16




the user to control the specification process.

3.2  Top-Down Specification Through Nede Expansion

Given a generic nhetwork topology, top-down task specification entails

* the selection of an unspecified node, and

* the binding of that node to a tool or pseudotool through an Iterative refinement process.

The node expansion operation provides the yser with a separate "node expansion” window to

construct the subnetwork to he integrated. This window is two-thirds the size of the network

17




In effect, the user can specity multiple levels of abstraction reflecting his/her own perception of
an operation or task, and have all levels appear as one node at the outermost level. Moreover,
because all normal editing operations are supported by the expansion window, the user can choose

the method by which each individual subnetwork node is subsequently specified.

4.0  Abstractions in Support of Bottom-Up Task Specification

Top-down task specification involves the successive decomposition of a task into lower level
subtasks until the lowest level sybtasks are directly identifiable with available tools in the tools
database. In many instances top-down specification is most natural, ¢. g. when concentrating on

the specification of a single network node. Within the framework of task specification, however, it

is often convenient for the user to consider groups of nodes as a single abstraction supporting one
high-level operation. Although not specifically stated, the expand node operation provides such a

view but from a top-down perspective,

Bottom-up task specification involves successive abstractions of fully specified lower level
subtasks into higher level subtasks. At the lowest level of abstraction a network is specified where
each node is directly bound to a tool or pseudotool in the database. The specified network usually
defines some low-level, yet not quite primitive, function. Reflecting a bottom-up specification
strategy, this network is collapsed into a "super-node” and becomes a single node in a higher level
network. This successive abstraction toward higher level functionalities culminates in a fully

specified subnetwork that performs a specific user defined function.

18



The remainder of this section describes how successive abstraction is integrated into the
Taskmaster environment, In particular, Section 4.1 describes a model defining the semantic
framework associated with successive abstraction. Section 4.2 describes the editing primitives

supporting abstraction from a user's perspective.

4.1 Abstraction based on Cutsets

Abstraction is itself an abstract term which has manifold meanings. Abstraction as used here
means the hiding of unnecessary detail, or equivalently, showing only those aspects essential to
solving a given problem. It is important to note that the criteria used in abstraction are dependent
on the projected use of the abstracted object or the target environment, Abstraction is the best way
to deal with complexity since it reduces the apparent complexity by the elimination of irrelevant
detail. Of particular interest here, is the abstracting of a composite tool representing a single, high-
level operation from a collection of “networked" tools. The followin g paragraph defines terms that

will be helpful in relating our model of abstraction to bottom-up specification.

As described earlier, a ool is the basic entity in the tool composition paradigm and performs a
single operation. Each tool has one or more poris with which it communicates with other tools via
links. A composite tool or a tool-composite is a collection of tools grouped together forming a new
tool, or pseudotool. A cutser of tools is a sub-network of tools delineated from the whole by a
closed polygon. For example, Figure 8 shows a network where a closed polygon forms a cutset
comprising the tools labelled C,D,E and F. Within the Taskmaster environment, cutsets visually
and physically define pseudotools which, correspondingly, define high-level operations from a

bottom-up perspective.

Any cutset can be considered to have two distinct contexts. The first is its internal context which

includes only the internal links and all the tools comprising the cutset. The second is the external

19



Figure 8

Example Network to Illustrate Cutset

context of a cutset which entails information about the cutset vis-a-vis the rest of the network. By
virtue of identifying a cutset one automatically implies the preservation of its internal context. In
terms of the external context, however, Taskmaster records only enough information to preserve
the functional identity of the selected set of tools. This approach is particularly appealing because it

promotes reusability at the functional level.
4.2 Editor Operations Supporting the Cutset Abstraction

The Network Editor supports four operations that enable the user to create and manipulate tool-
composites (pseudotool), namely save rool-composite, attach tool-composite, collapse and

explode. In particular,

*  the collapse operation is used to define a new pseudotool in-place,

20



* the artach tool-composite operation enables the user to insert a pre-defined pseudotool
(defined with the sqve tool-composite operation) into the currently defined network, and
finally

* the expand node Operation supports the definition of a complete sub-network relative to an

existing node in the currently specified network.

The remainder of this section illustrates how of each of these primitives operate, except for expand

node which is discussed in Section 3.2.

4.2.1 The Collapse and Explode Operations

The collapse operation creates an abstraction representing the collection of tools identified by
the user. The resulting "super-node” is viewed as implementing some high-level operation,
Collapse can be used recursively in the sense that it may be applied to a cutset which already
contains collapsed pseudotools. The effect of the collapse operation is to redraw the network with
the collapsed tool-composite bein g represented by a special "super-node” icon containing the user-
supplied label. Figure 93 shows a cutset in the process of being collapsed. The rubber band
polyline drawn with the mouse to delineate the cutset can also be observed in the figure.
Figure 9b shows the network after the collapse operation is completed. The "super-node” icon

with a brick-pattern ring represents the newly defined pseudotool named Process File.

During the collapse operation the Network Editor automatically constructs pseudotool port
descriptions from the correspondingly encapsulated tools. The pseudotool name and description
are solicited from the user before performing the collapse. Other than the specify node operation
all other generic node operations can be performed on the "super-node”. If the user chooses to
explode the Process File pseudotool, the network will be redrawn to show its pre-collapse state of

Figure 9a. In addition to reversing the effect of collapse operation, the explode operation can

21



Figure 9a

Network Showing a Cutset Before the Collapse Operation

Figure 9b

Network Topology Display After the Collapse Operation

22




also be used on pseudotools "defined" by the artach tool-composite or through the expand node

operation.

4.2.2 The Save Tool-Composite and Attach Tool-Composite Operations

The save tool-composite operation also creates an abstraction of the cutset similar to the
collapse. While the collapse operation does an in-place replacement of the cutset with the
pseudotool, the save tool-composite builds the pseudotool (based on a selected cutset) and stores it
for later reuse. The network topology display is not altered by a save tool-composite operation.
The attach tool-composite operation is used to attach an already saved pseudotool to an unspecified

node, and hence, is one way of specifying an unspecified node.

5.0 Summary and Conclusions

Graphical images and conceptual abstractions are extremely useful in characterizing the
complexities of user/machine interaction as related to tools-based, task specification. Within the
Taskmaster environment, top-down task specification is achieved through the successive
refinement of a graphical network where nodes represent operations and arcs correspond to
communication paths between those operations. In support of the top-down specification process,
Taskmaster effectively exploits the inherent powers of multi-level, menu-based interaction and the
node expansion operation. On the other hand, bottom-up task specification is achieved through the
successive abstraction of fully specified lower level networks into higher level operations.
Additional applications of successive abstraction lead to the desired task specification and, as a by-
product, a powerful set of reusable pseudotools. As touted by Boechm [BOEB 841 and Munsil
[MUNWSS5], the provision for reusable components can have a significantly beneficial impact on

productivity,

23



Currently two prototype Taskmaster applications exploit abstraction in support of user task

specification:

* a Unix-based, dataflow command shell supporting file transformation task specifications,
and

* a matrix manipulation environment supported through selected LINPACK [DONJ79]

routines.

Knowledge gained from the synthesis of these two application environments, and their current use
as experimental test-beds, has contributed si gnificantly toward the development of complementary
interface abstractions. A realization of those abstractions within the Taskmaster environment
embody a unique blend of top-down and bottom-up task specification capabilities, all oriented

around visual programming concepts.

24



References

[ARTIS88] Arthur, J., "GETS: A Graphical Environment for Task Specification,"

Proceedings of
The Seventh Annual Phoenix Conference on Computers and Communications, Scottsdale,
Arizona, March 1988, To Appear,

[ARTI87] Arthur, J. and Comer, D., "A
Specification, and Composition," Intern
No. 5, May 1987, pPp. 581-596.

n Interactive Environment for Tool Selection,
ational Journal of Man-Machine Studies, Vol. 26.,

i-Level, Menu-Based Interaction”

3

Scottsdale, Arizona, March 1985, pp. 34-39

[BOEB84] Boehm, B., et al,

"A Software Development Environment for Improving
Productivity,"

IEEE Computer, Vol. 17 No. 6, June 1984, pp. 30-42.

[DONJ79] Dongarra, J., et al., Linpack User's Guide, SIAM, Philadelphia, Pennsylvania, 1979,

[EHRR36] Ehrich, R. and Williges, R., Huma
Amsterdam, 1986,

[GLIES4] Glinert, E. and Tanimoto, §.,

"Pict: An Interactive
Environment,"

Graphical Pro gramming
IEEE Computer, Vol. 11, No. 11, November 1984

» Pp.7-25.

[MORMS85] Moriconi, M. and Hare, D., "Visuali

zing Program Design Through PegaSys,"” IEEE
Computer, Vol. 18, No 8, pp. 72-85.

[MUNWS85) Munsil, W., "The Language Translation Task: Toward Reusable Components,"

Proceedings of the Fourth Annual Phoenix Conference on Computers and Communications,
Phoenix, Arizona, March 1985, pp. 46-52.

[RABMS59] Rabin, M. and Scott, D., "Finite A

utomata and Their Decision Problems," IBM
Journal of Research and Development, Vol.

3, 1959, pp. 114-125.

25



[REIS86] Reiss, S., "GARDEN Tools: Support for Graphical Programming,

" Proceedings of the
dvanced Programming Environments, Trondheim, No
519-536.

rway, June 1986, pp.

[TEIW81] Teitelman, W, and Masinter, L., "The Interlisp Programmjng Environment," IEEE
Computer, Vol 14, No. 4, pp. 25-33,

[TESLS81] Tesler, L., "The Smalitalk Environment," Byte, August, 1981, pp. 90-147

26




