Rapid Prototyping

H. Rex Hartson
Eric C. Smith

TR 87-26

Hartson and Smith Rapid Prototyping

OUTLINE

INTRODUCTION

The Concept of Prototyping
Weighing Rapid Prototyping
Advantages
Pitfalls
A Natural Technique
Related Work

Act/1

Flair

IDS

Rapid/use

Behavioral Demonstrator

The Rapid Intelligent Prototyping Laboratory

KINDS OF PROTOTYPES
Revolutionary versus Evolutionary Prototyping
Interface Only versus Whole System Prototyping

Intermittent versus Continuous Prototyping

SYSTEM DEVELOPMENT ISSUES
Methodology and Life Cycle
Tools and User Interface Management Systems
Design Evaluation
Traditional Controlled Experimentation
Holistic Testing
Evaluation With Rapid Prototypes

Hartson and Smith Rapid Prototyping

TECHNICAL PROBLEMS AND SOLUTIONS
The Problem of Prototyping Incomplete Designs
The Information Management Problem
The Programming Problem
The Communication Problem

An Environment for Rapid Prototyping

CONCLUSION AND FUTURE

ACKNOWLEDGEMENT

Hartson and Smith Rapid Prototyping 2

INTRODUCTION

The Concept of Prototyping.

In a television intezl'view (CBS 1986) Anthony Perkins described a technique used
by Alfred Hitchcock for developing and refining the plots of his movies. Hitchcock
would tell the stories at cocktail parties and observe reactions of his listeners. He
would expeﬁment with various sequences and mechanisms for revealing the story line.
Refinement of the story was based on listener reactions’ as an evaluation criterion.

Psycho is one notable example of the results of this technique.

Auto makers, architects, and sculptors make models; circuit designers build
“bread-boards”; aircraft developers test prototypes; artists experiment with working
sketches. In each case the goal is to providé an early ability to observe something about
the nature of the final product, evaluating ideas and weighing alternatives before com-

mitting to one of them.

Hartson and Smith Rapid Prototyping 3

In contrast, conventional approaches to development of large interactive software
systems — a highly complex process that requires enormous quantities of time, money,
and personnel — forces a commitment to large amounts of design detail without any
means for visualizing the result until it is too late to make significant changes. It is
little wonder that there is so much end-user dissatisfaction with many of the products

so developed.

Recently, however, the techniques of prototyping and iterative refinement have
emerged in the context of software development, especially for the human-computer
interface. The subject of this chapter is a technique for interface and software devel-
opment referred to as rapid prototyping. It, too, has the goal of early observation of
- behavior. In addition it shares the essence of the Hitchcock story development scheme,

refinement of the product based on feedback from users.

One last point should be made concerning the Hitchcock approach: in spite of
the vast difference between prototype and finished product (i.e., verbal storytelling
versus motion picture), the prototyping technique was used to great effect by a master

dialogue designer.

Hartson and Smith Rapid Prototyping 4

The prototyping approach to interactive software system design involves the pro-
duction of at least one early version of the system that illustrates the essential features
of the later, operational system. With rapid prototyping, the process of constructing
system prototypes is accelerated, so that the time from beginning a pbrototype to eval-
vating end-user responses is much shorter., This, in turn, allows multiple iterations
through the refinement process and a finer tuning to the needs of the end-user, leading

to a high degree of confidence in the usability of the resulting system.

usability, and functionality; rapid prototyping of human-computer interfaces will be
emphasized in this chapter. Often this can mean prototyping only the interface portion
of a system. Computation of results, storage and retrieval of information, and other
tasks not directly observable by the end-user can be stubbed into the prototype, saving

time in its construction.

Weighing Rapid Prototyping.

Advantages. Use of prototypes in the design and implementation of software

Hartson and Smith Rapid Prototyping 5
systems represents a significant departure from traditional development techniques.
To justify such a change in practice, some substantial benefits must be obtainable.
There are a few experimental studies on the subject of prototyping versus classical
system development methods in which benefits to both developers and end-users are

cited,

In an experiment conducted at UCLA (Boehm, Gray, and Seewaldt 1984), some
- development teams used conventional development methodologies while others em-
ployed prototypes in the development process. Systems produced by the groups using
prototypes were judged to be easier to learn and use than those produced by standard
methods. Groups using the prototyping approach also appeared to be less affected by
deadline pressures. Code of the final systems produced by prototyping groups was only
about 40 percent as large as that of their counterparts. Finally, the prototyping groups

accomplished their task with 45 percent less effort than the other groups.

In a similar study (Alavi, 1984), responses from end-users of the systems produced
in the experiment indicated that end-users of systems developed using the prototyping
approach were better disposed toward the product than were users of non-prototyped
systems. Software developers who had been involved in product development using

prototypes felt that use of prototypes provided a valuable means for understanding

Hartson and Smith Rapid Prototyping 8
what end-users really want in a proposed system. One developer commented that
“The end-users are extremely capable of criticizing an existing system but not too
good at articulating or anticipating their needs.” Developers also felt that prototyping
enhanced communication about the proposed system. The prototype created a common
baseline or reference point from which potential problems and opportunities could be
identified. Discussions could take place between designers and end-users about good
and bad features in the evolving design. The prototype allowed these discussions to be

conducted in concrete terms.

Users also tended to be more enthusiastic about a project in which they were
involved through the use and evaluation of prototypes. According to the developers,
this enthusiasm, together with the enhanced communication of requirements, led to
increased end-user acceptance of the systems. The first version that end-users can
experiment with, whether prototype or end product, can cause them to change their
view about what they want the system to do (Wasserman and Shewmake 1982). Use of
prototypes in design evaluation can respond to these changes earlier and can increase

the likelihood that the end product will be what users really want.

The advantage that rapid prototyping has to offer in addition to the prototyping

concepts in the above studies is that of iterative refinement. In each of the studies

Hartson and Smith Rapid Prototyping 7

mentioned above, prototypes were manually coded by the designers. Due to time
constraints there was little opportunity for multiple passes through the prototype phase
of development. The rapid prototyping technique can be enhanced by automated tools
that allow developers quickly to record the design of important components of the
proposed system — documenting its behavior, especially that of the interface. As
much as possible non-coding techniques, such as direct manipulation construction of
interface displays and state diagram representations of logical sequencing, are used to
represent the design. This Tepresentation of the design can then be executed and used
as a prototype. A prototype, however embryonic, can be available for experimentation
and evaluation very early in the development cycle. Changes in the prototype can be
made rapidly using the same design representation tools. Because the tools allow rapid
representation of design ideas, end-users can be presented with many options instead
of a single design, increasing their ability to maneuver toward a design which meets
their needs. Because of the many advantages of rapid prototyping, it is difficult to
avpid the conclusion that no interactive system ought to be produced without at least

a simple paper and pencil prototype, evaluated with user feedback.

Pitfalls, Prototyping, however, is not without potential drawbacks as an approach
to interactive system development. These are mostly pitfalls, rather than disadvan-

tages; with some caution they can be avoided.

Hartson and Smith Rapid Prototyping 3

One of the biggest dangers is found in attempts to use prototyping as a devel-
opment technique without first securing cooperation from the parties involved and
without establishing a thorough understanding of the process. First, iterative refine-
ment depends on the willingness and ability of customers and end-users to provide

useful feedback. Also, established management procedures can make it difficult to deal

example, Alavi (1984) noticed a reduction in programmer discipline, possibly because
the process was viewed as an exercise rather than as “the real thing”. Also, prototypes
of large systems can be large in themselves. The misconception that a prototype is
just a toy can lead to its development without a methodology to aid in its manage-
ment, resulting in a failed, unmanageable project. These problems can be addressed
by methodologieé and tools built around a prototyping-based approach (see the section

on “System Development Issues”).

opment may diminish after a “working” prototype is provided (Alavi, 1984). Managers,

upon seeing the prototype, can be tempted to rush it prematurely to the market —

Hartson and Smith Rapid Prototyping 9

Process.

Prototypes with emphasis on the end-user interface usually have a bottom-up fla-
vor to their development, because details of the interface design tend to surface early,
It can be dificult for a software engineer trained in the ways of top-down, step-wise de-
composition to accept such a different approach to the interface portion of the system.

Also, emphasis on the interface in the prototype can lead to stubbing of computational

is upheaval rather than a smooth progression toward an implementation. This kind of
problem is a good reason for mixing some bottom-up development with the top-down
step-wise decomposition process of the computational software of the design. Another
reason is the development of error handling (McFa,rland, 1986). Strict adherence to a
top-down approach makes it difficult to specify an accurate description of a system’s

error handling functions.

Hartson and Smith Rapid Prototyping 10

A Natural Technigue.

Although prototyping, especially rapid prototyping, has been closely associated in
the literature with automated tools, it is important to recognize that prototyping is o
technique, not a tool. The technique can be effective even when performed manually
(e.g., as part of a paper and pencil exercise), especially in the early, conceptual stages of
development. Furthermore, since it is a technique that begins with specific detéils of an
interface design, then structures and refines them into a system, there are sound theo-
retical reasons for believing that this is a natural technique, grounded in the precepts of
developmental psychology (Piaget, 1952; Whiteside and Wixon, 1985). Working from
concrete to abstract is the way humans naturally investigate new concepts and solve
problems. To both end-users and developers, a prototype is concrete while specifica-
tions are abstract. Rapid prototyping is also part of the notion of iterative refinement.
It is not that designers must be afforded a chance to be lazy or sloppy with the initial
design, but it is simply not possible, using design principles alone, to get it right the
first time. They are thus forced to adopt the “artillery method”: Ready, fire, airn!
The first shot serves to provide a reference point from which adjustments are made
in order to hit the target. As applied to the development of interactive systems, the

rapid prototyping approach is changing the way these systems are developed. There

Hartson and Smith Rapid Prototyping 11

is great potential to make the development process faster and the product better and

more usable.

Not only is rapid prototyping a natural technique, but it is highly suitable for
the special situation in which various parties of the development team find themselves,
Development of interactive systems must be a cdoperative effort between behaviora]
scientists and computer scientists (Hartson, 1985). A gap exists between the skills
and goals brought to the task by each of these roles, Computer scientists often do
not fully understand the need for user-centered design and human factors, and how
they are achieved. Alternatively, human factors engineers often do not appreciate the
constraints and difficulties of building large interactive systems and of integrating the

user interface with the rest of the software.

The behavioral scientist, trained in analysis and evaluation, is now part of an
environment primarily intended for synthesis and design. That environment must,
however, include more analysis and evaluation. This is not just a temporary situation,
either, until we learn how to do if right the first time. Because, as Carroll and Rosson
(1985) state, design activity is essentially empirical “..not because we don’t know
enough yet, but because in a design domain we can never know enough”. System

design is inherently more art than science, and art is where analysis meets synthesis

Hartson and Smith Rapid Prototyping 12

because the possibilities are infinite. The two developer roles must work together to

achieve an artful result.

The primary function of human factors work is testing. But at the beginning of the
design cycle there is nothing to test, a ailemma for the behavioral scientist. Building
a system to test is expensive and time consuming and is a large investment in design
concepts that have not been evaluated; thus the dilemma affects the compufer scientist,
too. The needs and constraints of each role work conflict with those of the other role,
Through rapid prototyping, an early opportunity is afforded the human factors engineer

to observe and evaluate system behavior. By building ease of modification into the

helping them work together.

Related Work.

Construction and modification of software by ordinary programming techniques

are notoriously expensive and time consuming activities. Since prototyping involves

Hartson and Smith Rapid Prototyping 13
construction and modification of a software model of a system, it should not be surpris-
ing that much rapid prototyping work to date has heen involved with the construction
of special prototype definition and execution environments, These environments at-
tempt to allow designers to construct useful prototypes while reducing the amount of
conventional brogramming required. In the late 1970’s and early 1980% several such
environments and tools were developed. These have served as examples and starting

points for much of the current research in rapid prototyping.

ACT/1. ACT/1 (Mason and Carey, 1981; Mason and Carey, 1983), developed
by Art Benjamin and Associates of Toronto, is one of the first commercially avail-
able products for rapidly prototyping end-user interface scenarios. ACT /1 employs a
speciﬁcation—by-example technique that allows designers to create interface screens by
filling in parts of a screen. Procedural links are specified in tabular form with entries
having the format:

< input screen, process, output screen >.

At first, with no application logic specified, end-users may go through a fixed script
simulation of the end-user interface. Application logic can be added to create a first
prototype of a new system. ACT /1 has had more than one hundred end-users and has

been applied to the development of several interactive information systems.

Hartson and Smith Rapid Prototyping ' 14

FLAIR. The Functional Language Articulated Interactive Resources (FLAIR)
system was developed at TRW to ajd designers in involving users in the design process
(Wong and Reid, 1982). FLAIR facilitates design of interfaces based on hierarchies
of menus. It allows simulation and experimentation with such hierarchies. FLAIR’s
prototyping abilities are largely restricted to the interface portion of the system, pro-
ducing elaborate graphical facades. FLAIR was among the first to provide a Dialogue
Design Language (DDL). The DDL, with its voice-driven memy interface, is used to

describe the end-user interface, rather than formal grammars that are often used,

IDS. The Interactive Dialogue Synthesizer (IDS) was developed at Martin Mari-
etta as a tool to aid in the production of interfaces for command and control systems
(Hanau and Lenorovitz, Proceedings, 1980; Hanau and Lenorovitz, SIGGRAPH, 1980).
The IDS uses Backus-Naur form rules to define the interaction language for the target
system. Displays are attached to the gramiar as semantic actions. These displays,
which rebresent “snapshots” of the final system, can then be used by a simulator to
give the end-user a feel for how the target system will eventually behave. IDS is a
good example of a tool designed specifically to support rapid prototyping. Information
gathered through the use of simulation may be quickly integrated into a new version of

the prototype, because of the very high level of interface definition. No programming

Hartson and Smith Rapid Prototyping 15
is necessary to alter the form, appearance, or position in sequence of a part of the

interface.

RAPID/USE. RApid Prototypes of Interactive Dialogues (RAPID) is a tool de-
signed to be used with the User Software Engineering (USE) methodology (Wasserman
and Shewmake 1985; Wasserman, Pircher, Shewmake, and Kersten 1986) in the context
of interactive information systems. RAPID/USE relies on state transition diagrams for
defining interaction languages. Displays are associated with state nodes and input with
state transition arcs. Dialogue, the contents of the nodes, is programmed with a high
level textual dialogue definition language. Prototype interfaces can be defined and sim-
ulated rapidly. As the interface prototype becomes more stable, prototype application
semantics may be attached using the Troll/USE database manipulation package. Even-
tually a fully operational prototype can be created. The USE methodology is one of the
first to provide explicitly for use of prototypes in the design phase. Design/prototype

iteration is specifically included in the life cycle.

Behavioral Demonstrator. The Behavioral Demonstrator (BD) (Callan, 1985} is
intended to support rapid prototyping within the Virginia Tech Dialogue Management
System. The Behavioral Demonstrator interprets designs represented as supervised

flow diagrams, which describe high level flow of control in a target system. Dialogue

Hartson and Smith Rapid Prototyping 16

content is created using specialized direct manipulation tools. Computational func-
tionality is either programmed or stubbed in. A support environment is provided
for executing partially specified and incompletely developed designs. As the design
matures and becomes complete, the prototype evolves into a real, compilable imple-
mentation of the entire target system. The goal of the Behavioral Demonstrator is to
provide systems and interface developers with the ability to alter the design during
the running of the prototype, and to restart from that same point in its execution,

providing very rapid turn-around from concept to example.

The Rapid Intelligent Prototyping Laboratory. The Rapid Intelligent Prototyp-
ing Laboratory (RIPL), developed at Computer Technology Associates in Englewood,
Colorado, is a set of hardware and software tools to support construction of facade
prototypes for complex interactive systems (Flanagan, Lenorovitz, Stanke, and Stocker
1985). Interface components called “tiles” are created by the designer using a set of
direct manipulation tools. A “Simulation Subsystem” links these tiles and user-defined
routines together to simulate the system. RIPL employs two expert systems to aid in
interface construction. A “consultation expert” provides design time advice to interface

designers, and an “Evaluation Expert” is used to evaluate the prototype itself.

Hartson and Smith Rapid Prototyping 17

KINDS OF PROTOTYPES

There are at least three {(more or less orthogonal) dimensions along which various
approaches to prototyping can be classified. These three dimensions, shown in Figure

1, are:

¢ revolutionary versus evolutionary,

¢ interface only versus whole system, and

o intermittent versus continuous.

In the first dimension, a distinction is made regarding how the prototype stands in
relation to the final product. In one direction of this dimension there is a revolutionary
development process in which a prototype is designed, built, evaluated, and scrapped
before work begins anew on the real system. That is, the prototype is disposable. In

the other direction there is an evolutionary development process in which a prototype,

Hartson and Smith Rapid Prototyping i3

through iterative modification, evolves into a complete implementation of the final

target system.

The second dimension separates those prototypes that address the end-user in-
terface only from those that represent the whole system, including its computational
component. Interface only prototypes are very common; a mock-up facade is fairly
easy to construct and execute. Conversely, whole system prototypes are difficult to

build; their support environment requires much more technically complicated support.

In the third dimension distinction is made between intermittently executable and
continuously executable prototypes. Prototypes for which the ability to demonstrate
system behavior is only fntermittent can be exercised only at times in the development
process when a particular version of the system has been completely constructed. Con-
versely, prototypes that can be exercised on a more or less continuous basis do not

depend on complete development of a specific version of the system.

Revolutionary versus Evolutionary Prototyping.

Hartson and Smith Rapid Prototyping 19

N

/

Interface -only

Whole system

Intermittent /

Continuous
Revolutionary
Evolutionary

Figure 1. Dimensions for ‘class:'fyz'ng kinds of prototypes.

It is not unusual for a software product to pass through several incarnations. The

following steps are common:

1. one or more prototypes

2. a development implementation

3. the final product

The scope of this chapter includes steps 1 and 2, from which the first version that

Hartson and Smith Rapid Prototyping . 20

can be called “the product” appears. The process of going from step 2 to step 3 is a
“software manufacturing” step, applied only to a system that is fully developed. In the
third step implementation is streamlined and optimized by “code-smiths,” often into
assembly language. This step is justified only if the potential market is large enough to
amortize the effort or if there are special requirements for storage space, performance,
or reliability (e.g., in a Department of Defense or N ASA contract). A software company

with a modest commercia] market will usually sell the development implementation as

of prototype, too. If step 3 was involved in the development, there is a danger that,
when modifications are needed, programmers may attempt to make changes directly
to optimized code. This, however, can cause a loss in project management control and
‘documenta.tion, not to mention a gross deviation from development; methodology. The
software manufacturing step is never considered as part of the prototyping process:
in the long run it is usually easier and more effective to change the development rep-
resentation and regenerate the optimized version. This is especially true if there are

automated tools to help with the optimization process.

The prototype-based development process is revolutionary if the prototypes of step

1 are discarded in the process of going to step 2. In an evolutionary process, the step 1

Hartson and Smith Rapid Prototyping 21

prototype eventually becomes complete enough to be a step 2 implementation. The na-
ture of the evolution to step 2 depends on representation of the design in the prototype.
If the prototype is coded, it may just be a matter of cleaning up the code and adding
computational functionality. If the interface is represented in other ways (e.g., state
diagrams representing dialogue control), implementation can be achieved by manually
coding the state diagramsl or, if suitable tools are available, through compilation of
the representation that previously was interpreted in the prototype. A revolutionary
prototype is most useful when it is built as early as possible and as rapidly as pos-
sible, without a large commitment of resources. Otherwise, deadline pressures make
it difficult for managers and developers to work on a large prototype they know will
be discarded. An early switch from a revolutionary prototype, however, means that
development at the end, when changes can be surprisingly large and frequent, is done
without benefit of a prototype. On the other hand, a revolutionary prototype can
seduce developers into the trap of overdesign (Mantei, 1986). It is possible to become
too attached to a prototype and invest too much in its development, only to have it
scrapped. The engineering maxim of “making it good enough” applies particularly to
throw-away prototypes. Perhaps the best way to avoid most of these problems is to
adopt the evolutionary approach and not have to face the question of when to discard

the prototype.

Hartson and Smith Rapid Prototyping 22

Interface Only versus Whole System Prototyping.

An interface only kind of prototype is sometimes called a facade or dialogue simula-
tion, and the drawbacks are obvious, Dialogue situations dependent on computationa]
actions ;:an be difficult to anticipate in the interface. For example, the complicated
dynamics of formatting displays for paging and scrolling of retrieved database records
within a window are difficult to design without some real output for testing. Also,
the dialogue developer cannot provide realistic messages in response to computational
conditions not fully known or understood. If the computational component cannot be
tested with the interface prototype, it is more difficult to integrate the interface design
with the rest of the software. As computational functions come into existence, it is
greatly beneficial to be able to see them in action in the prototype. Finally, of course,

a prototype cannot be fully evolutionary unless the whole system is included.

Intermittent versus Continuous Prototyping.

One of the most common kinds of prototype is “implementation as prototype”.
The idea is to implement a “bread-board” mockup of the system to observe its behav-

ior. Because the prototype is coded in a programming language, it is an effective way

Hartson and Smith Rapid Prototyping 23

to construct a whole system prototype. The disadvantage is that there are only inter-
mittent times when the system representation (i.e., the code) is in a state that can be
executed and evaluated. There are long intervals when, due to incomplete implementa-
tion of routines, syntax and semantic coding errors, data typing problems, unresolved
symbolic references, and so on, it cannot run. Anything syntactically incomplete or
erroneous in the partially developed code will prevent the prototype from executing,
Configuration management, which reverts to the most recent complete version, does
not help, because partially developed modifications occuring since the previous version
are what need immediate testing. The result is slow prototyping, not a process that is
useful for evaluating many different alternatives in an interface design. A secondary
negative effect is batching of modifications to be made. Since there are only partic-
ular times when all routines can run together, large and small changes tend to get
lumped together for the next version of the prototype. Every modification to a version
must then take as long as the longest item and results of any changes are not seen
until the next whole version is ready. As a result, the large number of small iterations
required for such design decisions as syntax, message wording, and sequencing take
a long time to stabilize. For example, the small modifications that can be involved
in consistent assignment of programmed function keys to commands over an entire
interface require testing of several configurations because each one is a compromise
involving: many screens throughout the interface. A slow batch-oriented development

process does not serve this need. Rapid prototyping allows the designer to concentrate

Hartson and Smith Rapid Prototyping 24

on coherent treatment of such a problem directly and get it under control early on,
rather than having to mix it in with all other interface problems. It is useful to cycle
through the life cycle phases of design and evaluation for one or two interface features
independently of the rest of the design. The software development principle of contin-
uous evaluation (Boehm 1983) is to be taken quite literally in the realm of end-user

interface development.

For most applications an evolutionary, whole system, continuous prototype is a
desirable choice for the human factors developer. However revolutionary, interface
only, intermittent prototypes are much easier for the computer scientist to provide
mainly because most programming environments require programs to be complete and
correct. The section on “The Problem of Prototyping Incomplete Designs” discusses

this problem in more detail.

SYSTEM DEVELOPMENT ISSUES

Methodology and Life Cycle.

Hartson and Smith Rapid Prototyping 25

Three major factors are essential to a development methodology using rapid pro-

totyping:

¢ iterative development using a high degree of iteration (especially early in the life

cycle),

¢ end-user involvement, and

¢ rapid (versus slow) prototyping.

As pointed out earlier in the section on “The Concept of Prototyping”, there is a
difference between a development approach based on iteration, even with prototyping,
and one based on rapid prototyping. Iterative development can be based on intermittent
prototyping or it can be used without prototypes, simply by producing successive
versions of the product. The important aspect of these approaches is that, although
they are iterative, they are linear in the sense that they tend to go through the entire
life cycle in a large loop. (This causes the batching problem mentioned in the section
on “Intermittent versus Continuous Prototyping”.) Effective development, especially if

interface quality is an important factor, requires a process that is responsive to iteration

Hartson and Smith Rapid Prototyping 26

needs at a much finer resolution. Occasionally this can necessitate several cycles of
redesign and evaluation just for a single interface feature. Rapid prototyping provides
the means by which such local iteration can be actomplished. Not every approach that
uses the term prototyping, then, is an example of the topic of this chapter (e.g., Bally,

Brittan, and Wagner 1977).

In seeking a suitable development methodology, no place is found in traditional
top-down, stepwise decomposition methodological models at which rapid prototyping
concepts can be integrated (Mantei, 1986). A new life cycle is needed, one that will be

a departure from the traditional approach in at least three ways:

» it will be a process of real cycling and less a linear process,

e developers can enter the cycle almost anywhere, and

¢ initial development proceeds bottom-up, starting with concrete design details of
a scenario-based prototype (after beginning with task analysis and requirements

specification).

Hartson and Smith Rapid Prototyping 27

This combination implies a high degree of localized cycling for individual interface
features. It also implies that the maxim of “specifications always before design” no
longer applies. The developmental approach mentioned earlier i ‘;A Natural Tech-
nique” begins with a concrete example design (as a rapid prototype), which then feeds
back to the more abstract requirements statement and specifications. This is exactly
what happens in scenario-driven design. A scenario is specific about how interface
features are designed. From this initial design the specifications of what is to be done
can be deduced. Then once more the process moves forward in the cycle to refine the
design, or perhaps to change the design significantly, and so on back to tuning the

specifications.

In case studies done in the Dialogue Management Project (Hartson and Hix, 1986),
it was observed that, overlaid upon local cycling and phases of the life cycle, there is
an interesting progression by developers through various levels of abstraction. Devel-
oper activity throughout the overal] interface development cycle appears to be a series
of alternating waves of upward (bottom—up) and downward (top-down) progressions.
It was observed that less experienced as well as more experienced developer subjects,
when not constrained by a particular methodology, often started with interface scenar-

ios — sketches of screen Sequences as seen by the user. This is a concrete, bottom-up

Hartson and Smith Rapid Prototyping 28

approach and a natural way to begin, according to developmental theory. Some suc-
cessful end-user testing was accomplished even with these very early tentative scenar-
ios. Many developer subjects then produced a state diagram or similar flow chart-like
representation to show a more general view of transitional relationships among inter-
face screens. In additional bottom-up development, a control structure was designed
to reflect state diagram information. At some point, developer subjects worked back
downward through the now emerging levels of abstraction to analyze, organize, and
modify the design. During this downward pass, for example, developer subjects faced
issues such as consistency, grouping functions by similarity, and sharing and re-using
functions. Then, typically, more end-user testing entered in, using a prototype inter-
face. Similar observations about natural interactive system development were made

independently by Carey (1987).

There appear to be essential differences in the nature of upward and downward
movements during the interface development process. Upward development activities
are typically empirical, synthetic, and behavioral; moving from abstract to concrete,
they tend to reflect the end-user’s view. Downward activities are more theoretical,
analytic, and structural; moving froxﬁ abstract to concrete, they tend to reflect the
system designer’s view. As a very simple illustration early requirements specification

might be bottom-up, starting with details. Top-down hierarchical task analysis follows,

Hartson and Smith Rapid Prototyping 29

leading to a bottom-up scenario design. A control structure to support the scenario
is developed top-down, returning to bottom-up end-user testing of details, followed by

top-down modeling and abstraction to restructure the design, and so on.

Because the influence of the behavioral scientist is finally, and rightfully, becoming
a factor in development of interactive systems, a final cautionary note is warranted.
Some methodologies for developing interfaces are beginning to emerge from the behav-
ioral and human factors side of the discipline without concern for connections to the
softwaré development process. There is a great amount of non-interface software with
which the interface must be integrated in an interactive system and methodologies
without connections to this software cannot be considered as serious possibilities to

meet real world development needs.

Tools and User Interface Management Systems.

Although prototyping, and to some degree even rapid prototyping, can be ac-
complished without the aid of automated support, management problems can quickly

become intractable. Use of computer aids in constructing and documenting designs and

Hartson and Smith Rapid Prototyping 30

prototypes can help a great deal if the tools used are well designed. Tools can main-
tain information about configurations, various versions, and reasons for design changes.
This information, gathered as tools are used (both by developers and by end-users),
enables the manager to track the fast pace of change during the design and prototyping
phase of development. Automated tools can also provide metering necessary to obtain

objective measures for prototype performance.

From the interface developer’s viewpoint, the important role of automated tools
in rapid prototyping is to support the highly iterative cycles of design and evaluation.
In the context of end-user interfaces, User Interface Management Systems (UIMS) are
becoming a key tool in this capacity. Modern UIMS, some of which were described
briefly in the related work section, allow very rapid definition and alteration of t}N1e
interface portion of a prototype. Many include simulators, or dialogue definition in-
terpreters, which allow the interface to be designed and prototyped entirely within the
UIMS. Automated tools are almost essential for using the rapid prototyping approach
to system design. A more thorough discussion of the technical aspects of tools for rapid

prototyping follows in the section on “Technical Problems and Solutions”.

Hartson and Smith Rapid Prototyping 3

Design Fvaluation.

Given that the computer science role can provide its partner, the behavioral science
role, with rapid prototyping, the question is: What will the behavioral scientists do

with it?

Traditional Controlled Exzperimentation. A conventional controlled experiment
for point testing begins by stating a hypothesis of what is being tested and the expected
outcomme. For example, the hypothesis might be that “on-line help information is more
effective than hard-copy manuals”. An experiment is designed to test the hypothe-
sis, beginning with a task for human subjects to perform. Independent variables are
identified, often involving a single feature (such as the form of help information) to be
tested. Dependent variables are objective measurements of end-user performance (e.g.,
task completion time, error rates). Data are collected, analyzed, and the hypothesis is
confirmed or refuted. Occasionally, results of one or more experiments can be extrapo-
lated into an interface design guideline or principle. Further experimentation can then
be used to validate the principle. This is a gross simplification of the controlled testing

process, but sufficient for this context.

Hartson and Smith Rapid Prototyping 32

This kind of testing is an important research tool that contributes to our store of
knowledge. In time such basic empirical knowledge of human performance is translated
into guiding precepts that are to be interpreted within specific design situations. The
process of testing individual interface points and features, however, is not the effective
evaluation process needed as a keystone within the interface development cycle. A
large system simply cannot be decomposed into testable variables. It is not possible
to isolate all the factors that affect usability, and not time or other resourceé to test
them, anyway. Furthermore, testing all the parts is not the same as testing the whole
integrated system. Short, and perhaps less formal, experiments can still be used to
decide among alternatives for a given interface feature. However, a different approach
to testing is needed to drive the iterative refinement process of fitting the system to the

user; this approach must treat the target system, or at least its interface, as a whole.

Holistic Testing. ~ Whiteside and Wixon (1985) view system testing from the
perspective of psychological theory. Behavioral theory is presently dominant in system
design and evaluation. The behavioral view is a mechanistic view focusing on cause
and effect of isolated phenomena. Human behavior is shaped by the environment, as a
passive reaction to the stimulation of reward and punishment. Within the context of
human-computer interaction, this leads to adaptation of the end-user to fit the system!

The end-user’s behavior is shaped by error messages, feedback, and help information.

Hartson and Smith Rapid Prototyping 33

In contrast developmental theory takes an organicist view, that the human is a
living and changing organism, too complex to impute cause and effect, especially to
isolated phenomena. Human behavior is rational and rule-guided; knowledge is ac-
quired through action. Emphasis is on studying behavior over performance, yielding
more insight into reasons why end-user performance is bad or good in order to change
the system to fit the user. The developmental approach, in the iterative development
cycle, is amenable to observation, intervention, manipulation of conditions, and hunch
testing. Controlled experimentation has a very narrow focus; developmental research
gladly trades precision for breadth of scope. Developmental testing is holistic, including
whole systems and their contexts, seeking “ecological validity” (Whiteside and Wixon,

1985).

Fvaluation with Rapid Prototypes. A thorough coverage of user-based testing for
the evaluation of system and interface designs is well beyond the scope of this chapter.
[Editor: Reference to appropriate chapter?] However, evaluation is an important part
of the iterative refinement process, and that process is tied closely to rapid prototyping
as a development approach. It, therefore, is reasonable to focus briefly upon the subject

of evaluation in relationship to rapid prototyping.

Hartson and Smith Rapid Prototyping 34

Use of rapid prototypes is an excellent way to approach holistic testing. It is essen-
tially the only way to achieve early testing of whole system, or at least whole interface,
designs. Because prototypes are often developed bottom-up, from interface scenarios,
the method is very compatible with the developmental psychological view. In contrast
to point testing discussed in the section on “Traditional Controlled Experimentation”,
a kind of evaluation that treats the whole system is a case study of subjects using the
target system prototype to perform a task. Techniques described here are applicable
to very early paper and pencil prototypes as well as computer-based prototypes used
throughout most of the rest of the development cycle. Experimental sessions should be
videotaped so they can be replayed as needed for analysis. One important technique
for extracting information from the end-user is verbal protocol taking. In this method
the subject is asked to discuss, by thinking aloud, the approach taken, problems ex-
perienced, and needs arising during performance of the task. Verbal protocol methods

add to a case study by revealing thought processes behind observable events.

Perhaps the most useful technique for use with rapid prototypes in a case study
evaluation is the critical incident. This technique is based on distinguishing situations
and events, occurring during experimental observation, that significantly influence (ei-
the‘r positively or negatively) performance of the task by the subject. The critical

incident technique adds to the case study approach by distinguishing significant data

Hartson and Smith Rapid Prototyping 35
from the noise and bulk of the total data, and there is documented evidence of its
validity and reliability (Andersson and Nilsson, 1964). Suitability of the technique
when used with rapid prototypes is underscored by the fact that it is one of the few
evaluation techniques that is effective for translating results into feedback of redesign

requirements (Dzida, 1978).

Post-sesston interviews and questionnaires are also effective ways of extracting
more information from subjects, especially if questions are well designed to lead to
new interface requirements or design modifications. Open-ended questions can also be
useful for getting at subjects’ thoughts on what parts of the interface need improvement
and why. Examples of rather successful application of the case study approach to user-
feedback-driven development can be seen in a small number of commercial products

today (Smith, Irby, Kimball, and Verplank, 1982; Tesler, 1983).

The prototype itself can capture end-user feedback, too. Each screen of the in-
terface can be augmented with an additional end-user option, referred to generically
as a “complaint button” {a slightly less euphemistic and more alliterative phrase is
often used). When exercising a rapid prototype, the end-user will have one extra menu
seiection, PF-key, icon, or command on each screen for posting complaints or praise

about features of a new interface/system. The complaint button is an especially good

Hartson and Smith Rapid Prototyping 36

way to get feedback about smaller details that may be forgotten before the post-session
interview. It allows the end-user to express his or her feelings at the moment they are
experienced. Even a short delay can diffuse or defocus those feelings. Some problems
are a problem to a end-user for only a short time. After that, the marvelously flexible
human may adapt and smooth over the rough spots interface developers are trying to
detect through the refinement process. The najve user, as an evaluator, is a precious

and perishable commodity.

A UIMS is an ideal tool for automatic insertion of features such as the complaint
button into the prototype interface. Interface development tools can also be made au-
tomatically to build instrumentation into the prototype for monitoring end-user per-
formance. Metering can add information about the internal state of the interface or
target system, information essent%al for correlating redesign of system structure with
new requirements revealed by testing. Detailed metering can provide an ability to asso-
ciate performance times and error rates with specific features and parts of the interface.
These kinds of data can allow developers to pinpoint parts of the interface that cause

delays or errors in performance of the end-user’s task.

Hartson and Smith Rapid Prototyping 37

TECHNICAL PROBLEMS AND SOLUTIONS

The Problem of Prototyping Incomplete Designs.

Because a prototyping approach to interface development allows for earlier error
detection, errors are often easier and less costly to correct (Boehm, 1976). Thus, the
ability to observe behavior of partially specified, partially designed interfaces (and sys-
tems) is of great value in their development. This is true, also, whether the partial
design is mainly top-down or bottom-up in its development. Weighed against this pay-
off, however, is the fact that the early part of the life cycle is where technical problems
with prototyping are greatest. When the design is less wel] developed, it is more dif-
ficult to “execute” a prototype. The difficulty stems from z simple fact: Computer
programs are fragile. The slightest change to a program, the slightest error of com-
mission or omission, can prevent it from running. Systems of software are even more
fragile. All of a system’s routines must each be “perfect” and so must all the inter-
connections and interrelationships represented by parameters and arguments, symbolic
names, and data types. In contrast, prototypes, especially early ones, are characterized
by incompleteness, ambiguity, tentativeness, and errors. These characteristics are all

the opposite of what programs need to run.

Hartson and Smith Rapid Prototyping 38

While stubs can be used for routines not yet implemented, a stubbed system
must still be syntactically complete and correct to compile and run, or even to be
interpreted. This is a major drawback with interfaces that are programmed, either in a
programming language or a high level dialogue language. Thus, prototyping calls for a
support environment radically different from the traditional programming environment.,
A partial prototype must not Jjust quit running when it does not have everything it
needs for execution. In particular, life support mechanisms are needed to keep the
software, especially that of the interface, alive until its ill-formed and damaged limbs

and organs can be molded into single correct and complete design.

Allowing syntactically, as well as semantically, incomplete designs to be effectively
executed as prototypes is one of the difficult technical problems in providing a usable
rapid prototyping facility. Solutions to this problem are a serious challenge to the

computer science role, but may not be appreciated as such by the behavioral scientist.

The Information Management Problem.

During design and prototyping phases of system development, an enormous

amount of information is produced. Because the rapid prototyping approach to inter-

Hartson and Smith Rapid Prototyping 39

face development further introduces many designs and variations for the same system in
an environment in which more than one development phase can be active concurrently,
the problem of keeping track of the documents, design decisions, and personnel assign-
ments is multiplied. In short, information that managers are accustomed to having

could be more difficult to obtain, use, and maintain,

The problem of information loss becomes an important consideraton when us-
ing rapid prototyping. A long standing problem with software production has been the
amount of information lost between phases of the software life cycle (Balzer, Cheatham,
Green, 1983). The reasoning behind a given design or design change and the history of
revisions are often not available to implementors and almost never available to main-
tainers (Gutz, Wasserman, and Spier, 1981). Often this kind of information goes com-
Dletely unrecorded. With rapid prototyping, the problem becomes more pronounced,
as this- kind of information may be lost at each iteration. The result can be a lack of
control of the process, and in some Cases even a wasteful repetition of thought processes

and previously rejected designs.

Solutions to the problem of managing the information produced and consumed
throughout the development process, in particular during design and prototyping

phases, involve two major components. One component is use of automated tools to

Hartson and Smith _ Rapid Prototyping 40

| interactively create and record designs and prototype descriptions. Products of these
tools are usually in the form of data and procedures that define target system objects
and operations. More sophisticated tools may actively support tracking and documen-

tation of designs, changes, and developer products and responsibilities.

The second component of a solution to the information management problem
involves use of a common database among all tools used on a particular project, to
manage all information produced by design and programming teams in a uniform and
integrated manner. Requirements, specifications, scenarios, state diagrams, design
notes, structure diagrams, memos, management information, and even source code
for the entire project would reside in this database. This would provide a single, on-
line repository for all information relevant to the project (Smith, 1986). Tool-to-tool
communication of design representations can be enhanced by means of views (Date,
1985} tailored to provide information in a form suitable for each tool. These views
would map information produced by each tool to a single canonical schema. Thus, tools
can share information through a common database and yet maintain the representation

which best suits their needs.

Hartson and Smith Rapid Prototyping 41

The Programming Problem.

There are technicaj problems with 3 Programming approach to dialogue in a rapid

prototyping environment. First, the dialogue developer is often considered to be g

dialogue component of a new system. For a3 manually programmed interface, it ig
difficult to bresent alternatives quickly to end-users in order to evaluate usability. The
difficulty of altering the interface prototype design becomes a major factor affecting
the time between iterations of the Prototype. When each iteration is a fairly lengthy
process of programming and debugging, fewer iterations will be possible and end-users
will have correspondingly less opportunity to participate in the design process. The
Process becomes more lengthy if large numbers of pProcedures and /or modules must be
relinked, even after the slightest change is made. To Some extent this delay can be
controlled (e.g., by dynamic linking in an interpretive LISP environment), but it is still

a case of pProgramming,

On the other hand, tools such as UIMS allow many alternative designs for an

interface to be tried in a shorter period of time (ie., hours as opposed to days or

Hartson and Smith Rapid Prototyping 42
weeks). Relatively recent UIMSs allow rapid definition and demonstration of interfaces
for a wide variety of types of systems. Though many of them concentrate on particular
interaction styles or are limited to certain types of application systerns, they are stil]
useful tools for trying out initial ideas with users. Finer points not addressed by UIMS

can be added in later prototypes or in the fina] implementation.

Since many UIMSs employ dialogue design languages which are menu-driven, form-
based, or supported by semantically tailored editors, it is much easier to specify an
interface that is syntactically valid. Also, errors in semantics are reduced by allowing
the designer to viewror execute the interface as it is being designed. Because of the
ease with which they permit end-user interfaces to be defined and changed, UIMS may
prove to be the single most important class of tools in decreasing the design/prototype

iteration time.

The Communication Problem.

Rapid prototy'ping Serves as a technique to communicate more effectively with
users. Because of the increased rate of change of early system descriptions, it also

demands more effective communication among developers. So far, automated tools

Hartson and Smith Rapid Prototyping 43

such as electronic mail systems have been inadequate to solve the problem. This
may be largely due to the rather limited nature of these tools. How does one send
a design graph through a conventional electronic majl system? How about interface
screeﬁs? Performance evaluation charts? How does one find and access non-textual

design documents and specifications referred to in a textual electronic mail message?

To enhance communication during design activities, a set of on-line communication
aids must be integrated into the project design and documentation tools, the common
database, and the library of target system source code. This would allow developers to
embed messages with references to non-textual documentation that can be materialized
immediately in a graphical form. Such a set of communication tools would allow for

much more effective interaction among various developer roles.

An Environment for Rapid Prototyping,

A difficulty with some automated design tools is their lack of communication with
each other, i.e., the lack of composability of their products. For example, output of
tool A may be unacceptable as input for tool B. Tools may make use of different

information representations because they were produced by different manufacturers.

Hartson and Smith Rapid Prototyping 44

Another problem with these tools Ls that they must run under conventional operating
- systems. Tool developers often find themselves restricted in the power they can pro-
vide because they can only assume a minimal amount of host systemn support. Most
currently popular operating systems are designed to be general purpose environments
for development, maintenance, documentation, and execution of systems of all types.
Thus, designers of an operating system must try to make it a compromis‘e between
efficiency and power in all of these areas, with efficiency and high performance at exe-
cution time emphasized almost universally. A class of operating systems, referred to as
development environments, is needed to deal specifically with problems of interactive
system design and development. Only development tools themselves, and not target
systems under development, are required to run fast and efficiently iﬁ this development
environment, giving significantly different weight to considerations involved in operat-
ing system design. Since many problems of execution-time efficiency are less pressing,
additional design-time power (e.g., dynamic linking, interpreters, debuggers) can be
given to the operating system so that it may better support design and development,

tools, and thus the software development process.

As an example, in the context of rapid prototyping, consider the problems facing
the designer of a tool to interpret executable design representations. The interpreter

should be able to pass control, as needed, to already compiled parts of the prototype.

Hartson and Smith Rapid Prototyping 45

the time between prototype versions. The second involves g complex programming

task that would substantially increase the cost of the tool.

There are other useful facilities in a development environment based on rapid
prototyping, which are so computationally expensive that most conventional operating
Systems do not provide them, One of these is a facility for the maintenance of persistent
objects. Object-oriented programming (Cox, 1986} is being increasingly used, even for

developing the end-user interface. Most Popular operating systems provide no support

Hartson and Smith Rapid Protatyping . 46
for implementing and using objects. (Readers who are not familiar with object-oriented
programming are referred to other sources: Cox 1986; Goldberg and Robson 1983;

Goldberg 1984.)

CONCLUSION AND FUTURE

Rapid prototyping is a relatively new concept in the software industry. As it
increases in popularity and maturity, many changes will occur in how interactive sys-
tems are constructed. IncreaSingly powerful, automated tools will become available.
These tools will allow more rapid production of executable designs or speciﬁcations.
Improved development environments and other tool packages will allow better coor-
dination of multiple designers. Development, management, and communication tools
will become better integrated. The overall result will be faster iteration through the
design /prototype loop leading to systems that are faster and less expensive to produce

and more satisfactory to end-users.

As more experience in application of rapid prototyping techniques is gained, new
methodologies will remedy the shortcomings of currently popular software development
methodologies by emphasizing the human-computer interface and by specifically sup-

porting use of prototypes. These methodologies will define developer and end-user roles

Hartson and Smith Hapid Prototyping 47
for human-computer interface design and evaluation, roles lacking in current method-

ologies. They will explicitly include iterative refinement in the life cycle.

The future promises improved tools set in better software development environ-

and especially development of the human-computer interface.

ACKNOWLEDGEMENT

The authors wish to thank Pat Cooper for her cheerful and enthusiastic care and
typing in the face of severe and unmerciful hardwa;re difficulties. Special appreciation is
expressed to Deborah Hix for her careful reading of the manuscript and her cornments
and suggestions for improvement. Thanks for help also go to Jim Callan, Beverly
Williges, and Roger Ehricli. We also gratefully acknowledge research support, under
the supervision of Dr. H, E. Bamford, from the National Science Foundation: under
the supervision of Mr. T. M. Kraly, from IBM Federal Systems Division; and from the

Virginia Center for Innovative Technology.

REFERENCES

Hartson and Smith Rapid Prototyping 43

Alavi, M. (1984) An Assessment of the Prototyping Approach to Information Systems
Development. Communications of the ACM, 27,6, 556-563.

Andersson, B. and Nilsson, S, (1964) Studies in the reliability and validity of the critical
incident technique. Journal of Applied Psychology, 48, 6, 398-403.

Bally, L.? Brittan, J., and Wagner, K.H, (1977) A Prototype Approach to Information
System Design and Development. Information and Management, 1, 1, 21-26.

Balzer, R.M., Cheatham, T.E., and Green, C. (1983) Software Technology in the 1990’
Using a New Paradigm. IEEE Computer, 186, 11, 39-45,

Boehm, B. W. (1976) Software Engineering. JEEE Transactions on Computers, 25,
12, 1226-1241.

Boehm, B. W. (1983) Seven Basic Principles of Software Engineering. The Journal of
Systems and Software, 3, 3-24.

Boehm, B. W., Gray, T.E., and Seewaldt,'T. (1984) Prototyping Versus Specifying:
A Multiproject Experiment. IEEE Transactions on Software Engineering, 10, 3,
290-303.

Callan, J. E. (1985) Behavioral Demonstrations: An Approach to Rapid Prototyping
and Requirements Execution. Unpublished masters thesis, Virginia Tech Depart-
ment of Computer Science, Blacksburg, VA.

Hartson and Smith Rapid Prototyping 49

Carey, T. (1987) The Gift of Good Design Tools. To appear in H. Rex Hartson and
Deborah Hix (Eds.), Advances in Human-Computer Interaction, Vol. 2. Norwood,
NJ: Ablex.

Carroll, J. M., and Rosson, M. B. (1985) Usability Specifications as a Tool in Tter-
ative Development, Chapter one of H. Rex Hartson (Ed.), Advances in Human
Computer Interaction, Vol, 1, (pp. 1-28). Norwood, NJ: Ablex.

CBS, Inc. (1986) Interview with Anthony Perkins. CBS Morning News, Monday, 7
July.

Cox, B.J. (1986) Object Oriented Prog

ramming: An Evolutionary Approach. Reading,
Mass.: Addison Wesley.

Date, C.J. (1986) An Introduction to

Database Systems, 4th Ed. Reading, Mass.:
Addison Wesley.

Dzida, W., Herda, S., and Itzfeldt, W.D. (1978).

User-perceived quality of interactive
system. IEEE Transactions on Software Eng

ineering, SE-4, 4, 270-276.

Flanagan, D., Lenorovitz, D., Stanke
ations and System Architecture.
Technology Associates.

» E., and Stocker, F. (1985) RIPL Concept of Oper-
CTA Internal paper. Englewood, Col.:Computer

Goldberg, A., and Robson, D. (1983) Smalltalk-

80: The Language and Fts Irnplemen-
tation. Reading, Mass.: Addison Wesley.

Hartson and Smith Rapid Prototyping 50

Goldberg, A. (1984) Smalltalk-80: The Interactive Programming Environment. Read-
ing, Mass.: Addison Wesley.

Gutz, S., Wasserman, A.I, and Spier, M.J. (1981) Personal Development Systems for
the Professional Programmer. IEEE Computer, 14, 4, 45-53.

Hanau, P. R., and Lenorovitz, D. R. (1980) A Prototyping and Simulation Approach

to Interactive Computer System Design. In Proceedings of the Design Automation
Conference, ACM.

Hanau, P., and Lenorovitz, D. (1980} Prototyping and Simulation Tools for User/-
Computer Dialogue Design. In SIGGRAPH Proceedings (pp. 271-278). Seattle,
Wash.: ACM SIGGRAPH,

Hartson, H. Rex. (1985) Preface to Advances in Human- Computer Interaction, Vol. I,
Norwood, NJ: Ablex.

Hartson, H. R., and Hix, D. H. (1986) UIMS: Toward the Next Generation, Technical
Report TR-86-41, Department of Computer Science, Virginia Tech, Blacksburg,
Va. 24061

Mantei, M. (1986) Techniques for Incorporating Human Factors in the Software Life-
cycle. In Proceedings Structured Techniques Association Third Annual Conference
(pp. 177-203). Chicago, IL.

Mason, R. E. A., and Carey, T. T. (1981) Productivity Experiences with a Scenario
Tool. In Proceedings of COMPCOM 81 (pp. 106-111). Washington, D.C.: IEEE.

Hartson and Smith Rapid Prototyping 51

Mason, R. E. A., and Carey, T. T. (1983) Prototyping Interactive Information Systems,
Communications of the ACM, 26, 5, 347-354.

McFarland, G. (1986) The Benefits of Bottom-Up Design. ACM SIGSOFT Software
Engineering Notes, 11, 5, 43-51.

Piaget, J. (1952). The Origins of Intelligence in Children.New York: International
Universities Press.

Smith, D.C., Irby, C.L, Kimball, R., and Verplank, W. (1982) Designing the Star User
Interface. Byte (April), 242-282.

Smith, Eric C. (1986) System Support for Design and Development Environments.
Masters thesis, Department of Computer Science, Virginia Tech, Blacksburg, Va.

Tesler, L. (1983) Enlisting User Help in Software Design. ACM SIGCH] Bulletin 14,
3, 5-9.

Wasserman, A.L, Pircher, P. A., Shewmake, D. T., and Kersten, M. L. (1986) Develop-
ing Interactive Information Systems with the User Software Engineering Method-
ology. IEEE Transactions on Software Engineering, 12,2, 326-345.

Wasserman, AL, and Shewmake, D.T. (1982) Rapid Prototyping of Interactive Infor-
mation Systems. ACM SIGSOFT Software Engineering Notes, 7, 6,

Hartson and Smith Rapid Prototyping 52

Wasserman, A.l, and Shewmake, D.T. (1985) The Role of Prototypes in the User
Software Engineering (USE) Methodology. Chapter seven of H. Rex Hartson (Ed.),

Advances in Human-Computer Interaction, Vol. 1 {(pp. 191-209). Norwood, NJ:
Ablex.

Whiteside, J., and Wixon, D. (1985) Developmental Theory as a Framework for Study-
ing Human-Computer Interaction. Chapter two of H. Rex Hartson (Ed.), Advances
tn Human-Computer Interaction, Vol. 1 (pp. 29-48). Norwood, NJ; Ablex.

Wong, P.C.5., and Reid, E. R. (1982) FLAIR - User Interface Dialogue Design Tool.
SIGGRAPH Computer Graphics, 16, 3, 87-98.

