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Abstract. Probability-one homotopy methods are a class of algorithms for solving nonlinear sys-
tems of equations that are accurate, robust, and converge from an arbitrary starting point almost
surely. These new techniques have been successfully applied to solve Brouwer fixed point prob-
lems, polynomial systems of equations, and discretizations of nonlinear two-point boundary value
problems based on shooting, finite differences, collocation, and finite elements. This paper sum-
marizes the theory of globally convergent homotopy algorithms for unconstrained and constrained
optimization, and gives some examples of actual application of homotopy techniques to engineering
optimization problems.

1. Introduction. Continuation in various forms has been used for a long time in mathematics
and engineering, with such names as parameter continuation, incremental loading, displacement
incrementation, imbedding, invariant imbedding, continuous Newton, and homotopy. The state-
of-the-art of continuation methods was thoroughly surveyed in [1], and more recently in [17].
Recent mathematical developments have led to a whole new class of continuation methods known
as probability-one homaotopy algorithms, which have been successfully applied to solve Brouwer
lixed point problems, polynomial systems of equations, and discretizations of nonlinear two-point
boundary value problems based on shooting, finite differences, collocation, and finite elements.
These new techniques have recently begun to be applied to optimization, and have found significant
application in solving some engineering optimization problems.

Homotopy methods are very powerful, robust, accurate, numerically stable, and almost univer-
sally applicable, but also often prohibitively expensive. They are particularly suitable for highly
nonlinear problems for which initia] solution estimates are difficult to obtain. Properly imple-
mented they are indeed globally convergent, i.e., converge to a solution from an arbitrary starting
point. This (costly) global convergence feature is their forte, but also makes them inappropriate
for mildly nonlinear problems or problems for which a good initial estimate of the solution is easily
obtained.

The objectives of this paper are to summarize the basic theory of globally convergent homo-
topy methods relevant to optimization, to show how homotopy algorithms may be applied to solve
optimization problems, and to give some actual engineering applications. Section 2 gives an intu-
itive explanation of what is different about the new globally convergent homotopy algorithms, and
Section 3 briefly recounts the basic mathematical theory. Section 4 summarizes basic homotopy
results for optimization, and makes the connection between nonlinear equations, homotopies, and
optimization. Fxamples of the globally convergent homotopy techniques applied to optimization
are given in Sections 5-8.



2. Continuation versus homotopy. Continuation is a well known and established procedure
in numerical analysis. The idea is to continuously deform a simple (easy) problem into the given
(hard) problem, while solving the family of deformed problems. The solutions to the deformed
problems are related, and can be tracked as the deformation proceeds. The function describing the
deformation is called a homotopy map. Homotopies are a traditional part of topology, and have
found significant application in nonlinear functional analysis and differential geometry. Similar
ideas, such as incremental loading, are also widely used in engineering,.

These traditional continuation algorithms have serious deficiencies, which have been removed
by modern homotopy algorithms. The differences, however, are subtle and mathematically deep,
and the mathematical prools of the statements in this article are beyond the scope of the pre-

HA2) = Af(@)+ (1-A)s(z), 0<A<1.

The family of problems is 7 (Az)=0,0<2) < 1, and the idea would be to track the solutions of
H(\z) =0, starting from (A, z) = (0,20), as A goes from 0 to 1. If everything worked out well,
this would lead to a point (A 2) = (1,%), where f(Z) = 0. The “standard” approach is to start
from a point (A, z;) with H(Ai,2;) = 0, and solve the problem H(X; + A\, z) = 0 for z, with AA
being a sufficiently small, fixed, positive number. The bad things that can happen are:

1) The points (Ai, #;) may diverge to infinity as A — 1.

2) The problem H (Ai+AMNz)=0 may be singular at its solution, causing numerical instability.

3) There may be no solution of H(X + AN z) = 0 near (Aiyz5).

The modern approach to homotopy methods is to construct a homotopy map pa(A, 2), involv-

ing additional parameters in the vector a, such that 1), 2), and 3) never occur or never cause any
difficulty. The details of how this is done are given in the next sectio.

3. Homotopy theory. The theoretical foundation of all probability one globally convergent
homotopy methods is given in the following differential geometry theorem:

DEFINITION. Let E™ denote n-dimensional real Euclidean space, et U C E™ and V C E™ be open
sets, and let p: U X [0,1)XV — E™ e g C? map. p 18 said to be transversal to zero if the Jacobian
matriz Dp has full rank on p~1(0).

PARAMETRIZED SARD’S THEOREM [4]. If pla, A, z) is transversal to zero, then for almost all
a € U the map

pa(X, z) = pla, A, )

is also transversal to zero; i.e., with probability one the Jacobian matriz Dpa(A; 2) has full rank on
Pzt (0).

The import of this theorem is that the zero set £7(0) consists of smooth, nonintersecting
curves in [0, 1) X V. These curves are either closed loops, or have endpoints in {0} x V or {1} xV,
or go to infinity. Another important consequence is that these curves have finite arc length in any
compact subset of [, 1) x V. The recipe for constructing a globally convergent homotopy algorithm
to solve the nonlinear system of equations

F(z) =0, (1)
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where F': E™ — En i 5 (2 map, is as follows: For an open set I/ ¢ Em construct a C'2 homotopy
map p: U x [0,1) x E™ — E™ such that

1) p(a, X, z) is transversal to zero,

2) pa(0,2) = p(a,0,2) = 0 is trivial to solve and has a unique solution x,,

3) Pa(lax) = F(z),

4) p71(0) is bounded.
Then for almost all @ € U there exists a zero curve 7 of p,, along which the Jacobian matrix Dp,
has rank n, emanating from (0, 20) and reaching a zero 7 of F at ) = L. This zero curve v does not
intersect itself, is disjoint from any other zeros of Pa, and has finite arc length in every compact
subset of [0,1) x E=, Furthermore, if DF(z) is nonsingular, then 7 has finite arc length.

The general idea of the algorithm is now apparent: Jjust follow the zero curve Y emanating
from (0,a) until a zero # of F(z) is reached (at A = 1). Of course it is nontrivial to develop a
viable numerical algorithm based on that idea, but at least conceptually, the algorithm for solving
the nonlinear system of equations F(z) = 0 is clear and simple. The homotopy map (usually, but
not always) is

pa(A, ) = AF(z)+ (1~ ANz - a), (2)

are two crucial differences. First, in standard continuation, the embedding parameter ) increases
monotonically from 0 to 1 as the trivial problem z —a = 0 is continuously deformed to the problem
F(z) = 0. The present homotopy method permits A to both increase and decrease along v with no
adverse effect; that is, turning points present no special difficalty. The second important difference
is the use of the extraneous parameter «, whose consequence is that there are never any “singnlar
points” which afflict standard continuation methods. The way in which the zero curve v of p, is
followed and the full rank of Dp, along v guarantee this.

In order for property 4) above to hold for the homotopy map in (2), F(x) and (2 - @) must
be “asymptotically similar” (see Lemma 3 below). This is not the case for every F(z), and so
frequently other homotopy maps must be used, for example,

Pa(A @) = AF(a) + (1 - A) G(z;a), (2a)

where G(2;a) is a simple version of F(z). For instance, G(z;a) might be derived by simplifying
the physical model used to derive F'(z). Also the homotopy map need not be 2 simple convex
combination between F(z) and G(z;a); examples of homotopy maps nonlinear in X are in [21] and
[22].

The scheme just described is known as a probability-one globally convergent homotopy al-
gorithm. The phrase “probability-one” refers to the almost any choice for a, and the “global
convergence” refers to the fact that the starting point z need not be anywhere near the solution
. It should be emphasized that the form of the homotopy map pa(A,2) in (2) is just a special
case used here for clarity of exposition. The more general theory can be found in [14, 17, 18], and
practical engineering problems requiring a p, nonlinear in A are in [21] and {22]. Below are some
typical theorems for various classes of problems,

The computation of Brouwer fixed points represents one of the first successes for both simplicial
(1, 12] and continuous homotopy methods {4, 14]. Brouwer fixed point problems can be very nasty,
and often cause locally convergent iterative methods a great deal of difficulty.
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TurorEM [14]. Let B = {z ¢ En | lzlly = 1} be the closed unit ball, and f: B — B o C? map.
Then for almost all o € int B there exists a zero curve v of

pa(A,.‘L‘) = ’\(m - f(a:)) + (1 - ’\)(37 - (1.),

along which the Jacobian matriz Dpa(N,z) has full rank, emanating from (0,a) and reaching a
fized point T of fatA=1. Furthermore, v has finite are length if I — D (%) is nonsingular.

Typically a mathematical problem (such as a partial differential equation} results in a finite
dimensional nonlinear system of equations, and what is desired are conditions on the original
problem, not on the final discretized problem. Thus the results in this section are used to derive,
working backwards, useful conditions on the original problem, whatever it might be. The following
four lemmas, which follow from the results of [4], are used for that purpose.

LEMMA 1. Let g: EP — EP pe q 2 map, a € ¥, and define p, : [0,1) x EP — gp by

Pa(As9) = Ag(y) + (1 - Ny — a).

Then for almost all @ € EP there is @ zero curve 7y of p, emanating from (0,2) along whick the
Jacobian mairiz Dpa(A,y) has full rank.

LEMMA 2. If the zero curve 7 in Lemma 1 is bounded, it has an accumulation point (1,7), where
g(7) = 0. Furthermore, if Dg(7) is nonsingular, then 7 has finite arc length.

LEMMA 3. Let F: EP — EP pe q 02 map such that for some r > 0, & F(z) > 0 whenever [zl = .
Then F has a zero in {z € Er | Izl < 7}, and for almost all ¢ € E?, |la|l < r, there is a zero
curve y of :

Pa(Az) = AP(z) + (1 — A)(w — al,

along which the Jacobian matriz Dpa(A,z) has full rank, emanating from (0,a) and reaching a zero
Tof Fatd=1. Furthermore, v has finite arc length if D F(z) is nonsingular.

Lemma 3 is a special case of the lollowing more general lemma,
LEMMA 4. Let F: BP — FP pe q (2 map such that for some v > 0 and 7 > 0, F(z) and 2 ~ a do
not point in opposite directions for flzll = v, ||a|| < 7. Then F has g zero in {z € EP ] z|] < 7},
and for almost all g EP, |la|| < #, there is g zero curve v of

pa(A, ) = AF(2) + (1 - Az — a),

along which the Jacobian mairiz Dpo(X, ) has full rank, emanating from (0,¢) and reaching a zero
ZofFat =1, Furthermore, vy has finite arc length if DF(Z) is nonsingular.

These theoretical algorithms have been implemented in production quality mathematical sofi-
ware packages such as PITCON [1 1], CONKUB [7), and HOMPACK [18]. The latter is an extensive
collection of FORTRAN 77 routines implementing three different tracking algorithms for problems
with both dense and sparse Jacobian matrices, and containing high level drivers for special classeg
of problems.

4. Basic optimization homotopies. Consider first the unconstrained optimization problem
min f(z). (3)
x
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THEOREM [16]. Let f: E® — E be a C® conver map with a minimum at Z, &, < M. Then for
almost all a, {all, < M, there exists a zero curve Y of the homotopy map

Pa(X2) = AV f(2) + (1 - A)(z = a),
along which the Jacobian matriz Dpa(A,2) khas full rank, emanating from (0,a) and reaching a
point (1, %), where & solves (3).

A function is called uniformly convex if it is convex and its Hessian’s smallest eigenvalue is
bounded away from zero. Consider next the constrained optimization problem

min /(). (4)

This is more general than it might appear because the general convex quadratic prograin reduces
to a problem of the form (4).

THEOREM [16]. Let f: E® — E be a (3 uniformly convex map. Then there exists § > 0 such that
Jor almost all @ > 0 with |ja||, < § there exists a zero curve -y of the homotopy map

pa(d, @) = A K(z) + (1 - Mz ~ a),

3 3
;| + (a—fgi) + 23,
3:13,;

along which the Jacobian matriz Dpa(A, ) has full rank, connecting (0,a) to a point (1,z), where
Z solves the constrained optimization problem ().

where

I&vg(m) = - '%‘%ﬂ —

Given F : E™ — E™, the nonlinear complementarity problem is to find a vector z € E™ such
that
20, F(z)>0, z'F(z)=0. (5)

At a solution Z, # and F(z) are “complementary” in the sense that if Z; > 0, then F;(Z) =0, and
if Fi(Z) > 0, then #; = 0. This problem is difficult because there are linear constraints z > 0,
nonlinear constraints F(z) > 0, and a combinatorial aspect from the complementarity condition
z'F(z) = 0. It is interesting that homotopy methods can be adapted to deal with nonlinear
constraints and combinatorial conditions.

Define (7 : E™ — E™ by

Gi(z) = —}E,;(z) - Zifa + (E(z))s +23, i= L...,n,

and let

Pa(X2) = AG(z) + (1 - A)(z a).
THEOREM [15]. Let F: E» — E* pe g C2 map, and let the Jacobian matriz DG(z) be nonsingular
al every zero of G(z). Suppose there exists > 0 such that » >0 and zp = ||z, > r imply
Fr(z) > 0. Then for almost all a > 0 there exisls a zero curve v of pa(A, %), along which the
Jacobian matriz Dpo (X, z) has full rank, having finite arc length and connecting (0,a) to (1,3),
where 2 solves (5).

THEOREM [15]. Let F: B™ -5 E™ be o C° map, and let the Jacobian matriz DG(z) be nonsingular
at every zero of G(z). Suppose there exists 1 > 0 such that » 2 0 and [[z]], > 7 imply 2, Fu(2) > 0
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for some index k. Then there exists § > 0 such that for almost all @ > 0 with llell., < & there
exists a zero curve v of pa(A, 2), along whick the Jacobian matriz Dpo(X, 2) has full rank, having
finite are length and connecting (0,a) to (1,%), where  solves (5).

Homotopy algorithms for convex unconstrained optimization are only of theoretical interest,
and are generally not computationally competitive with other approaches, but it is reassuring that
the globally convergent homotopy techniques can theoretically be directly applied. For constrained
optimization the homotopy approach offers some advantages, and, especially for the nonlinear com-
plementarity problem, is competitive with other algorithms. See [19] for an application of homotopy
techniques to the linear complementarity problem. Constrained optimization is addressed in the
next few sections.

5. Expanded Lagrangian Homotopy. The expanded Lagrangian homotopy method of Poore
[9, 10] is applicable to the general nonlinear programming problem

min (z)
subject to  g(z) <0,
hiz) =0,

where ¢ € E™, § is real valued, ¢ is an m-dimensional vector, and A is a p-dimensional vector.,
Assume that 8, g, and A are C2. Ip this general situation the complete formulation and solution
algorithm for the expanded Lagrangian homotopy are rather complicated. The essence of the
method is presented here, referring the reader to [9] and [10] for a discussion of the theoretical
and practical subtleties. The technique has been applied to linear programming [9] and the linear
complementarity problem [19], but is currently primarily of theoretical interest.

The expanded Lagrangian approach may be described as an optimization /continuation ap-
proach and has in its simplest form two main steps,

Step 1. (Optimization phase).
At 7 = rg > 0 solve the unconstrained minimization problem

min Pz, r)
&x
where

P(z,r) = 6(z) + -él?h(m)th(m) -7 Zln(—gi(:x)).
i=1

Step 2A. (Switch to expanded system).
A (local) solution of min P must satisfy

0=V,P = Vi(z) + m@ - i;zﬂ?)v‘qi(az).
i=1 J?

Introduce the following variables:

h{z
JB: ( )a
P
.
L = \ t=1,...,m,
! —gi()



which ultimately represent the Lagrange multipliers, This helps to remove the inevitable ill-
conditioning associated with penalty methods for small » and we thus obtain our equivalent but
expanded system:

VO(2) + B'Vh(z) + p*Vg(z) = 0,
h(z)—rB =0,
pigi(z) +7 =0, t=1,...,m.
(Remark. As a result of the optimization phase and the initial starting point with o > 0, the
solution 2(9) of min P(z,7g) satisfies g(:r:(o)) < 0. As a consequernce, #© > 0 from the definition
of pt. p remains positive until r — 0 where we formally have
V6(a) + 5V () + 4V g(z) = 0,
h(z) =0,
9(z) <0,
pz0,
tigi(z) = 0, i=1,...,m,

which implies that we have solved the problem.)
In practice we do not solve the optimization problem min P to high accuracy since a highly

imperative that VP be reasonably small in magnitude, say less than rg /10. The expanded system
is converted to a homotopy map by letting r = 7o(1— A) and modifying the first equation to obtain:
V() + ' Vi(z) + 4t Vg(z) riwa(m(ﬂ), 7o) = 0,
0
h(z)—rB8 =0, (6)
tigi(z) +r =0, i=1,...,m.
Write this system of n + P+ m equations in the n + P+ m+ 1 variables ), x, B, u as

T(A2,8,p) =0.

Step 2B. (Track the zero curve of T from r =7y to r = 0.)
Starting with arbitrary ro > 0 and feasible interior point z(®) (g(z9y <« 0), the rest of the
initial point (0, m(o),,@(o),p(o)) is given by

= To ,

(0) _ 0 ;—
T SEey TR

phase. For degenerate problems the path can still be long. One possible resolution is the use of
shifts and weights as developed in the method of multipliers [3], but holding r = 74 fixed. (This
approach is currently under investigation in the context of linear programming [9].) Note that the
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6. An example of a special purpose homotopy. The optimization problem that we consider
here is to maximize the lowest eigenvalue 77 of the eigenvalue problem

A{v)u — n B(v)u = 0, (M

where 4 and B are symmetric positive definite matrices which depend on a vector of design variables
¥ with components v;. Equation (7) can represent various engineering problems such as buckling
and vibration problems. In a typical problem the design variables have lower and upper bounds

LU
= mdn wl ’ (TG)

the optimization problem may be formulated ag

. ul An
mﬂa.xmin T
such that ¢y — g = 0 (75)

and vy, < V; X Vimar fOr i = ..., M,

where ¢ is a positive cost vector, and & is the amount of available resources,

A typical optimization method, applied to solve this problem, starts from a given design and
continuously searches for better designs until it finds an optimum design. The trial designs along
the path are of no value, Reference [13] proposed instead a method which proceeds along a path
of optimal designs for increasing amounts of resource f. The resource 6 is varied between the
minimum 8,,;, required to satisfy the lower bound constraints and a maximum #,,,, when all
variables are at their upper bounds.

fori ¢ I, (9)

such that ¢fp— g = 0.

The solution of the problem consists of three related problems: solving the optimization
problem along a segment, locating the end of the segment where the set 7, changes, and finding
the set 74 for the next segment.



It is common practice to normalize the eigenvector u such that the denominator of Rayleigh’s
quotient is unity and to treat this as an equality constraint. Then, using Lagrange multipliers n
and g, the augmented function P* is formed:

P =yT Ay~ g [uT Bu — 1] —p [eTo — g]. (10)

The following stationary conditions are obtained by taking the first derivative of P* with
respect to v;, u, 7, and g, and setling it equal to zero:
i) Optimality conditions

L

B, T Eau—,ucz-zﬂ for i ¢ I4. (11)
ii) Eigenvalue problem
Au — pBu = (. (12)
iii) Normalization constraint
1-ulBu=0. (13)
iv) Total resource constraint
0~ cTv = 0. (14)

Equations (11)-(14) form a system of nonlinear equations to be solved for Vi, 4, 1), and p. A
homotopy method is used to find the solutions of these equations as a function of 6.
In certain ranges of structural resources, the optimal solution is known to be bimodal, i.e., the

vice versa) along the path of optimum solutions.

The homotopy method as described here earlier is intended to solve a single nonlinear system
of equations, and converge from an arbitrary starting point with probability one. In this context
¢ € [0,1], and the zero curve 7 is bounded and Jeads to the (single) desired solution at = 1. The
¢ vector, viewed as an artificial perturbation of the problem, plays a crucial role. In the version
of the method employed here, 8 ¢ (6o, 81), each point along v has physical significance, and q is
fixed at zero (no perturbation). Because @ is not random, the claimed properties for v hold only
in subintervals (60,61) of [0, 00). Detecting and dealing with these subinterval transition points is
the essence of the modification of the homotopy method used in this section.

Switching from one segment to the next

There are four types of events which end a segment and start a new one:
Type 1: a bound constraint becoming active (i.e., being satisfied as an equality);
Type 2: a bound constraint becoming inactive,

Type 3: transition from a unimodal solution to a bimoda] solution;
Type 4: transition from a bimodal solution to a unimodal solution.

To switch from one segment to the next, we first need to locate the transition point. At a
transition point there are a number of solution paths which satisly the stationary equations, and
we need to choose the optimum path,

Transition points are located by checking the bound constraints and the optimality conditions.
The bound constraints

Ui‘méngvisvémam fOI‘i“—‘l,__,,M (15)
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are checked to detect a transition point of type 1.

Optimality of the solution is checked by the Kuhn-Tucker conditions and the second-order
conditions discussed below. The solution satisfies the Kuhn-Tucker conditions whep all Lagrange
multipliers are nonnegative. So a transition of type 2 is detected by checking the positivity of the
Lagrange multipliers associated with the bound constraints. These multipliers are obtained by
adding the bound constraints to the formulation (9) and replacing the augmented function P* by

P* = ’U,TA’M —n [uTB’U. - 1] — M [CT’U and 5] - Z /\15 [’Ugmin - ’Di] - Z )\35 [’Dg - ’U.gmag,-]. (16)
i€l =N

Taking the first derivative of P* with respect to v; gives

oA o ,
uTé-U—iu—nuT-a—?gu—pci—i—Ali—)\% =0 fors: €14 (17)

Since Ay; is 0 for »; # Vimin and Ag; is 0 for Vi # Vimasz 10T the above equations, Ay; and Ay
are given by

B .
A = —'U,T%H, -+ ’I}‘U,T‘"—“"U: + pe; for Vi = Yimin,
A, Jv; (18)
A -——uTaAu uTaBu ¢; for v; = o;
R P A R Lo

A type 2 transition is detected by a Lagrange multiplier becoming nonpositive. Similar equations
for the bimodal case are given in the appendix of [13].

The bimodal formulation replaces by 7, and 7z which are the Lagrange multipliers for the
normalization constraints on the two repeated eigenvectors, When one of them becomes negative,
the corresponding eigenvector should be removed for the optimum design, so that we have a
transition of type 4 from bimodal to unimodal design.

For a transition of type 3, we need to check if there is another eigenvector associated with a
lower eigenvalue. This can be accomplished by checking the second-order optimality conditions for
the eigenvector variables u given by

r [ViP*] 7 >0 for every r such that (Vuh)Tr =0, (19)
where R
0° p*
2 px] _
[ver I= [c'?us&‘ut} ’
oh
Vol = [BHJ ’
h=uTBy—1.

Alternatively we can solve the eigenvalue problem (12) for the current design and check whether
the buckling load obtained from the stationary conditions is truly the lowest one. The transition
of type 3 is detected by checking if

m# 1, (20)

where 7 is the solution obtained from the stationary conditions while T is the lowest eigenvalue
obtained by solving the eigenvalue problem ( 12) for the set of design variables v obtained from the
stationary conditions.
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Once a transition point is located, we need to choose a path which satisfies the optimality
conditions, Choosing an optimum path constitutes finding a set of active bound constraints for
type 1 and 2 transitions anpd the correct eigenvectors for type 3 and 4 transitions. These are
obtained by using the Lagrange multipliers of the previous path and the sensitivity calculation on
the buckling load. The procedure is explained separately for each type of transition.

A type 1 transition occurs when one of design variables, i, hits the upper or lower bound.
Then v; is set at Vimaz O Vimiy, and treated as a constant value. The number of design variables
is reduced by one.

At a type 2 transition, one of the Lagrange multipliers for the bound constraints, Ay; and My;,
is found to be negative. The bound constraint corresponding to the negative Ay; or Ag; is set to be
inactive and the number of design variables is increased by omne,

At a transition from ga unimodal solution to a bimodal solution (a type 3 transition), the
formulation requires two eigenvectors, u; and tz, for the solution of the upcoming bimodal path.
These eigenvectors can be obtained by solving the eigenproblem (12) of the previous unimodal
formulation, since the lowest eigenvalue is repeated at the bimodal transition point.

At a transition from a bimodal to a unimodal solutjon (a type 4 transition), two eigenvec-
tors are given from the bimoda] solution. Oue of the Lagrange multipliers for the normalization
constraints, 5, is known to be negative from the previous transition check, so the eigenvector
corresponding to the positive 77 is chosen.

Some of the above transitions can occur simultaneously. Special treatment is required in
certain cases where the Lagrange multipliers are not available. In general, the optimum design
requires at least one design variable v; for a unimodal case and two design variables for a bimodal
case. At a type 1 transition, the number of design variables is reduced by one, and at a type 3
transition the bimodal formulation requires one more design variable in case the previous unimoda]
path has only one design variable. So some type 1 or type 3 transitions oceyr simultaneously with a
type 2 transition which allows ap additional design variable. In that case, the Lagrange multipliers
Ai; and Ay, which are used at a type 2 tramsition to determine a new design variable, are not
available. We then rely on the sensitivity information of 71 with respect to v. For a unimodal case,
the location of the new design variable v; is determined where dn/d@ is maximized. For a bimodal
case, we need to find a combination of 5 and 7 which maximizes the value of the eigenvalue for 3, small
increment of the total available resource. Considering the bound constraints in the formulation,
the new design variables are determined by

d?}‘ _ 3?]1 d’l).,j 87}1 dvj
KAl T T I mry

O du; om dv; _ Qn_? dv; O dv;

Ovi A8~ Ov; df ~ Bu; 48 " Do o

dv;
— >0 for Ui = Vi min

such that

7 S0 for v = v 0.
=20 forv; = Vi min
dv;
and -39—“1 S0 for vy = v,
where 1 and 72 are the eigenvalues corresponding to the eigenvectors u; and g, Tespectively.
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After we obtajn the design variables v and the eigenvectors u, we need the Lagrange multipliers
# and 7 at the transition point to complete the set of starting values for the next solution path.
These are obtained by solving the stationary conditions for the given » and ». For example, in the
unimodal case, 7 is obtained from the stability conditions (12) and p is obtained by solving one of
the optimality conditions (11).

7. Example of a smooth envelope function for nonlinear constraints. The two previ-
ous sections presented ways to deal with inequality constraints. Both are theoretically “correct”
and computationally “practical”. However, there are numerous practical difficulties in dealing
with them, and the implementation and tuning details become absolutely crucial. e.g., with the

the approach in Section 6, the detection and switching criteria for transition points may become
extremely cumbersome and inefficient. This section suggests an alternate way of dealing with

Consider inequality constraints of the form
g;(m)SO, Z.:]-a"-am, (22)

where each g; : E™ = F is 02, For & constant p > 0, the Kreisselmeier-Steinhauser [5] envelope
function for (22) is

1 m

K(z) = ;ln [Z exp (pgi(m))J . (23)
i=1

K(z) is a cumulative measure of the satisfaction or violation of the constraints (22). Let gron() =

max{g;(z),..., g, {z)}, and observe that

K(2) = gmas(e) + ;1)-111 [Z exp (p(gi(z) - gmaz(x)))J ; (24)

i=1

from which it directly follows [2] that
1
gmaz(z) < K(2) < gmas(z) + ;In m. (25)

Thus the envelope K (z) follows the maximum constraint, more closely for large p. In particular,
(22} could be replaced by
K(z)<o (26)
with an error of no more than (Inm)/p.
The choice of p involves a tradeoff between modelling the maximum constraint (large p pre-
ferred) and avoiding large gradients {small p preferred). If the practical criterion for an active
constraint is |¢;| < €, then a choice for p which has worked well in practice (2] is

Inm
p=—. (27)

Observe that K(z) is C? and defined everywhere, a decided advantage over barrier functions.
Furthermore, (26) is a single nonlinear constraint, which makes any active set strategy very simple.
(26) has been successfully used in large scale structural optimization [2] and optimal control I5].
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8. Probability-one homotopy for Kuhn-Tucker optimality conditions. Section 7 explained
why the approaches of Sections 5 and 6 are not always entirely adequate. The cumulative constraint
function (23) is however decidedly unnatural, extremely nonlinear and il conditioned for large p,
and does not take advantage of a known solution to a related problem. Consider again the general
nonlinear programming problem of Section 4:

min 6(z)
subject to g(z) <0, (28)
h(z) = 0,

under the same assumptions mentioned before. The Kuhn-Tucker necessary optimality conditions
for (28) are
Vo(z) + °Vh(2) + 1#'Vg(z) = 0,
h(z) =0,
9(z) <0, (29)
# 20,
nig(z) =0,
where 8 € E? and 4 € E™, Following Mangasarian [6] and Watson [15], the complementarity
conditions p > 0, g(z) < 0, pt g(z) = 0 are replaced by the equivalent nonlinear system of equations
W(z,p) =0, (30a)
where
3 3 3 .
Wile ) = =i+ 9:(@)” + 42 = (g:2))®, i=1,....m. (300)
Thus the optimality conditions (29) take the form

[V6(z) + 8*Vh(2) + ptVg(a))*
Fla, B, p) = h(z) = 0. (31)
W(a, p)
With 2 = (2,8, 1), the proposed homotopy map is
pa(X2) = AF(2) + (1 - N)(z - a), (32)

where a € E™P+™  Simple conditions on 0, g9, and h guaranteeing that the above homotopy map
PalA, z) will work aze unknown, although this map has worked very well on some difficult fuel
optimal orbital rendezvous problems [23].

Frequently in practice the functions €, g, and & involve a parameter vector ¢, and a solution
to (28) is known for some ¢ = ¢(0). Suppose that the problem under consideration has parameter

vector ¢ = ¢V, Then
e ={(1-X)c® £ 2D (33)

parametrizes ¢ by A and 0 = §(z;c) = B(z;c(A), g = g(x;¢(N)), h = h(z;c(A)). The optimality
conditions in (31) become functions of )\ as well, F(A, 2, 8,1) = 0, and

Pa(A,2) = AF(A, 2) + (1-2)z-a) (34)

i3



is a highly implicit nonlinear function of X. If F(O,z(ﬂ)) = 0, a good choice for ¢ in practice has
been found to be ¢ = 2(0). A natural choice for a homotopy would be simply

F(Xz) =0, (35)

since the solution 2( to F(0,2) = 0 (the problem corresponding to ¢ = c®) is known. However,
for various technical reasons, (34) is much better than (35) [23].

The homotopy (34) was used in [23] to solve a fuel-optimal orbital rendezvous problem, and
for such optimal control problems appears to be far superior to other known algorithms.
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