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Abstract

A homotopy approach for solving constrained parameter optimization problems is examined,
The first order necessary conditions, with the complementarity conditions represented using
a technique due to Mangasarian, are solved. The equations are augmented to aveid
singularities which occur when the active constraint changes. The Chow-Yorke algorithm
is used to track the homotopy path leading to the solution to the desired problem at the
terminal point. A simple example which illustrates the technigue, and an application to a
Juel optimal orbital transfer problem are presented.

Introduction

In solving constrained parameter optimization problems, a known solution to some
problem is often used as an initial estimate for solving a similar problem with different
constants. The reasoning behind this being that if there are small variations in the
problem constants, the problem characteristics are essentially unchanged, and the
solution to the new problem should be in the neighborhood of the initial guess,

Unfortunately, as many would attest, this procedure ofien fails to provide a solution.

In spite of these failures, this method of obtaining solutions by systematically varying
the problem constants is very appealing. The procedure of varying the system constants
either in a discrete manner or in a continuous manner has been successfully applied to
@ number of problems. Gfrerer, Guddat and Wacker' proposed an algorithm based on
this continuation idea coupled with an active constraint set strategy to solve constrained
optimization problems. The algorithm starts with the solution to some known problem,
with an index set keeping track of the active constraints. An estimate of the solution
at the next parameter point is obtained based on the Jacobian matrix at the current
point. This estimate is then used in a corrector iteration. The inequality constraints

and their associated Lagrange multipliers are monitored. If at any step the status of an
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inequality constraint changes, the precise point at which it changes is found. The index
set is then updated and the method proceeds as before until the desired final values of

the parameters are attained.

This method, however, fails when the Jacobian matrix becomes singular, which can
occur if the parameters are not monotonic with respect to the continuation parameter
or if they are multivalued. Under these conditions, this method stops. This situation,
however, can be tackled using Keller’s algorithm? for handling bifurcation problems,
giving us different procedares for different situations. Also, there exist situations where
if a hitherto active constraint is removed from the constraint set when the associated
Lagrange multiplier becomes zero, the solution becomes vastly different than if the
constraint were left in with a zero multiplier. Thus an appropriate active constraint

strategy is required.

Our effort stems from attempting to devise a procedure which is able to handle
inequality constraints with ease, and at the same time uniformly deal with problems
where the Jacobian matrix becomes singular. OQur approach is based on using the
Chow-Yorke algorithm® to solve the Fritz-John* equations. The complementarity
conditions on the inequality constraints are represented using a technique of

Mangasarian®.

We have used this algorithm to solve several problems, including a fuel-optimal orbital

rendezvous.
First Order Necessary Conditions for Optimality

Consider a constrained optimization problem: Find ¥ such that

Cx) = Mi} Cx); xeX = {x] xe@, gx) 2 0, hx) = 0} [1]
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where C: %" - R, g %" - A and h:% — &~ are twice continuously
differentiable functions. The generalized Kuhn-Tucker conditions or equivalently the

Fritz-John conditions?® are:

If ¥ is a solution to [1] then there exists a scalar %, and vectors 1 € %~ and & € & such

that:
Ho VCE) — 1 VAF) — 7 V() =0, [2]
A(E) =0, | [3]
a gx)=0, [4]
gx) =20, & =0, [5]
Boz 0, [LEA]=0. [6]

We normally assume 7, = ! (the Kuhn-Tucker conditions), hoping that the

Kuhn-Tucker constraint qualification* will be satisfied at x .
Equivalent Non-Linear Algebraic Equations

Often, we are interested in obt.aining solutions to some problems with small variations
in the system parameters. These parameters may occur in the cost function, in the
equality constraints, in the inequality constraints, or in all of them. In principle we
would start with the solution to a known problem and then in some systematic manner
solve a sequence of problems varying these system parameters until the desired solution
1s attained. We could scale these parameters in such a way that we have to monitor only

one parameter o, for example,

c=0 ¢+ (l—0a)c,



where ¢, 1s the parameter vector for the known problem and ¢, 1is the final desired

value,

We could do this tracking by solving the equality expressions of the Kuhn-Tucker
conditions and successively vérying this parameter a. This procedure will indeed provide
a solution if the second order necessary conditions are satisfied with strict
complementary slackness, ie., for each index i, p, > 0 or g(x,0) > 0, and if the
gradients of the active constraints remain lincarly independent®. Thus, if the variation
of the parameter causes the active constraint set to change, one is liable to obtain
erroneous results. Hence, we need some way of representing the conditions on the
inequality constraints [4], [5] in the form of an equality to allow us to use curve tracking
schemes to solve these as a set of nonlinear algebraic equations. Note that conditions
(4], [5] are in the complementarity form. This enables us to make use of a result due to

Mangasarian’®,
Mangasarian’s Complementarity Theorem

Let ©:2Z — R be any strictly increasing function with @(0) = 0.
Then ze @& and fe R solve the complementarity conditions
220, f20 and zf =0
ifand only if z and f satisfy
Ol fi—z 1) - Of) — 6(z) =0 [71

Jori=1,.. ., n

Thus the Kuhn-Tucker conditions for the parameter dependent problem

Min

xeXC(x,a); X={xlxed" glx,0) 2 0, h(x,0) = 0} | - [1a]

can be written as

VC(x,0) — 2 Vhalx,0) — n Vglx,0)=0, [24]



h(x, o) =0, [34]
—O(] glx,0) — [} + Oglxr,0)) + O(y) = 0, i=1,.., 5 £8]

It is assumed that ©(] ¢ [) is at least C?. It is now a simple matter to use a curve
tracking algorithm to connect the solution to the problem at o = 0 to the solution of the
problem of interest at o = 1. However, as is immediately transparent on examining the
Jacobian matrix of the above system of non-linear equations with respect to
{ x,4,n }, the Jacobian matrix becomes singular if p, = g{x,6) =10 for some index i,
which is something we would like to avoid. Such a situation occurs when going on or
off a constraint, and indeed forms the basis for the logic associated with most active

- constraint strategies.

Here we make use of a suggestion due to Watson’ to avoid this singularity. We modify

[8] as follows:
o {~O(] gfx,0) — u; |) + O(glx,0)) + O(y)+(1—0) (~a) = 0 [9]

where @ e %" is chosen such that equations [8] and [9] are satisfied at o = 0, With
this modification, the path of solutions to the system of non-linear equations given by

[2a}, [3a] and [9] yields a candidate optimal solution only at o = 1.

Another possibility is to use the same type of modification to [2a] and [3a), i.e.,
oL VCix,0) — 1 VAx0) ~ 4 Vglx,0) ]+ (1~0)(x — B) = 0, [26]
ol Ax,0) 1+ (1=0)(A ~2) =0 [35]

whereb € P, ¢ e o



The motivation to do this comes from the Chow-Yorke algorithm based on the

Parametrized Sard’s Theorem?®59,

Definition Let U, V=@ be open sets and p:UX[0,1)x ¥V —» & bea (2 map. p

is said to be transversal to zero if the Jacobian matrix Dp has full rank on pH0).

Parametrized Sard’s Theorem
I pla, 0, z2) is transversal to zero, then for almost all a € U, the map
pelo, 2) = pla, 7, 2)

is also transversal to zero, i.e., with probability one the Jacobian matrix Dplo,z) has full
rank on p;{0).

Thus if p{a, o,z) is a homotopy between a simple map g{z) = p(a,0,z) and the map
of interest flz) = p(a, 1,z), and if p is transversal to zero, then pfc,z) (with the
vector a fixed) is also transversal to zero for almost all choices of . The import of this
is that the zero set of p,o,z) consists of smooth, disjoint, non-bifurcating curves,
which under suitable hypothesis connect the zeroes of g to those of f. The
Chow-Yorke algorithm is to track the zero curve of pfo,z) emanating from the

(known) zeroes of g,(z).

The procedure then is:

1. Construct a homotopy map p(g, 0, z) such that the Jacobian matrix Dp has full rank
on p=(0), p(a,0,2) = gfz),and pa, 1,2} = flz).

2. Choose gz} with a unique known root, or show that the zero curves of o,
emanating from o = 0 are monotone in o if p,(0, z) = £{z)=0 has more than one
solution.

3. Show that the zero curves of pfs,z) are bounded.



Then the supporting theory*® guarantees that for almost all a there exists a zero curve
frome=0toaroot 7 of fiz) = 0 at ¢ =1 and that this curve has finite arc length if

DAZ) is nonsingular.

Usually 3. is very difficult to show and in some cases may not even be true. $So in general

a curve starting from ¢ = 0 can either

a. reacharoot Z of flz)ate=1, or

b. wander off to infinity.

Numerical Results

The Chow-Yorke algorithm, based on [2b], [3b], and [9] was applied to the problems
described below. The curve tracking was done using the code HOMPACK®,

Example 1

Min
e X
¥eX = { x| xeq?, glx) = 0}

Plx,0)= x2 4+ x x; + {a— 1.0) x2

where the inequality constraints are defined as

gilx) = 2x-x20
Lix} = 2x—x20
gs(-’?) = x12+x22—120
gx) = 2——xf-—-x2220

ande =0, + (1—0) oy, 0p = 0, &, = 3.



%, =0 is the starting problem for which we know the solution to be

x =0.6324555, x,=1.2649111, u,=0.0, By = 13914022, 4, =0.0, p,=02.

The feasible region for this problem is as shown in Figure 1. This is a simple example
for which the solution is known analytically for different values of a. It can be easily
shown that depending on the value of o each of the corners could be a locally optimal
solution. For this problem for & < 0.25 the top.left corner is the optimal solution. At
e =0.25 all feasible points on the constraint & are solutions. For 0.25 < a < 2.75 the
bottom left corner provides a locally optimal solution, and for 1.25 < « the bottom right
corner provides a locally optimal solution. Note that there are multiple solutions for the

values of a for 1.25<a<2.75 .

If one were to use a simple continuation method like that of Gfrerer, Guddat and
Wacker?, starting at the solution to the problem at a = 0.0, the marching procedure
would break down at & = 0.25 since the Jacobian matrix 1s singular at this value of o.
So one has to resort to the homotopy curve tracking procedure with the arc length as

the parameter and o as simply another dependent variable.

The Mangasarian complementarity function used for our problems is a cubic, ie.,
O(f) = P, since this gives us ﬁha simplest function for which @] 1]} is C%. We started
with the solution at ¢ =0 and used the map given by [2b], [3b], and [9], assuming
#s = 1. For an accuracy of 10-2 , the curve tracking procedure required 69 Jacobian
evaluations, and the arc length of the connecting path was 3.297855. Figure 1 also gives
the plot of x, versus x, while varying o from ¢=0 to 6 =1. As can be seen, the
constraints are not satisfied everywhere along the homotopy zero curve. Figure 2 gives

the history of the variables and the Lagrange multipliers forc = O to ¢ = I{e = 3).



Example 2 - Fuel-Optimal Orbital Rendezvous Problem

The problem is to find a minimum fuel rendezvous trajectory between two bodies, the
non-maneuvering target and the interceptor. The interceptor trajectory consists of
Keplerian coasting arcs separated by impulsive thrusting, characterized by a change in
velocity (magnitude and direction). A final impulse is applied at the end of the
interceptor trajectory to provide a velocity match with the target. Hence the number
of impulses equals the number of coasting arcs. The maneuver must be completed
within some specified time and the trajectory must avoid passing through the earth, i.e.,
the arcs must not violate a minimum radius constraint. The fuel-optimal problem

translates to minimizing the total change in the velocity (characteristic velocity).

The variables are: the coasting angles on each arc including a possible initial coast,

components of the velocity change vector, and the coasting angle of the target.

For our present analysis, we are assuming a spherical earth, To represent the trajectory
squations, we use Burdet oscillatori# type co-ordinates with the change in true anomaly
as the mdependent variable. Thus, the position and velocity of the body in a Keplerian
orbit can be represented by:
uand 7 reciprocal of the magnitude of the radius vector, and a unit vector in
the radial direction;
hand A magnitude of the angular momentum vector, and a unit vector along

its direction;

() the radius vector given by ;8 :
v() the velocity vector given by A() { u()#'() — «()7() )

where () refers to the derivative of () with respect to the change in true anomaly.



Therefore, knowing initial conditions on any subarc and the change in true anomaly, the

conditions at any other point can be obtained as

uly) = h%ﬂum) - —}f’;—)cos(m + u'(0) sin(y), [10]
W) =—(u(0) ~ fz-)sin(ﬂ) + #/(0) cos(r), [11]

and similarly the unit vectors as

Pan) = #(0) costr) + 7(0) sin(a), [12]
Pl = —P0)sinn) + 7(0) cos(n), [13]
htn) = h(o). [14]

The time of flight T on any subarc can be obtained by integrating

"
T(y) = L - ulzw) 8. [15]
At an impulse ¥ and  remain unchanged and the impulse is characterized by a change
in ', h, ;’, and 4. Thus a change in «' and A provides the magnitude change in
velocity and change in ' and A provides the directional change. Since 7 is fixed, the only
change, if any, in v and A is a rotation ¢ about 7. Using these Burdet oscillator type
co-ordinates to represent the position and velocity, an impulse vector {AV,, AV, AV} is

characterized by { Au’, Ak, ¢ }.

10



Mathematically, the above problem can be described as choosing a sequence of
{n, Aw’, Ah, @} so that the characteristic velocity (total velocity change), which provides

a measure of the fuel consumed, is minimized:®.

Therefore, a time limited problem becomes

v, [16]

where S = { (y,Au, Ah, 6)»%. ,J=1,...,nim} where nim = prespecified
number of impulses, and the characteristic velocity V' can be expressed in terms of these

variables as;

Nim )
V= Z\/.-,{,fil(@ (g = 2y by cos(e) + B} + (A, (0) + A, ry? . [17]
=1

For the quantities u, #' and A, the subscript j denotes the conditions at the beginning
of the j* subarc, and on the variables Au’, Ak and ¢ the subscript j denotes the j*
impulse which occurs at the end of the j* subarc. In addition the following equality and

inequality constraints must be satisfied:
Equality Constraints

The conditions for rendezvous require the following position and velocity matching

constraints:

i.  final position match constraint -

M) = 7~ ) =0, [18]

ii. final velocity match constraint -

il



b=y = wmn)=0, [19]
iii. time of flight constraint -
hx)= T, — T, = 0, [20]

where the subscript frefers to the conditions on the interceptor trajectory after

the final impulse and the subscript 7 refers to conditions on the target.
Inequality Constraints

Additional constraints which must be avoided along each arc of the interceptor or target

trajectory in the form of an inequality are;

1. non-negativity of the coasting arcs of the interceptor -

glx)= 7,20 i = 1,..,nim, [21]
il. non-negativity of the coasting arc of the target -

Brim(X) = 7,20, [22]
iil. time of flight limit constraint (maximum time specified for rendezvous) -

gnim+2(x) = Tmax - Tf =0, [23]

v, minimum radius constraint for each coasting arc except the initial coast arc of

the interceptor trajectory -

gx)= wy—~up,, >0 j = nim+3,..,2nm=+ 1. [24]

12



The transfer arc should lie outside a circle of radius 7, = ui,, This 15 essentially
a semi-infinite constraint. But from the nature of the transfer arcs, 1.e., conic

sections, the minimum radius on any subarc is given by:

1 perigee radius, if perigee passage occurs on subarc,
min (7o Foner)y Otherwise

The minimum radius constraint as given above is not C2, consequently for the
moment we have chosen a stiffer constraint of requiring the perigee radius of
any transfer arc to be greater than than the minimum allowable radius.

non-negativity of the radius constraint -

g(x)= upp 20 j = 2nim+2,..,3nim [25]

This too is a semi-infinite constraint, and here we require the final radius to
be positive. This constraint is considered to disallow the possibility of negative
distances which are mathematically possible from the nature of its governing

equations.

The known problem, the solution to which was obtained from earlier work is given by:

iit.

iv.

Vi,

specified number of impulses for the interceptor = 4,
the interceptor resides initially on a circular orbit of radius = 1.20 DU;
the target resides on a circular orbit of radius = 1.45 DU,

the phase difference angle between the target and the interceptor at the start
of the maneuver < 180. deg;

time of flight limit for the rendezvous = 160. min;

minimum allowable radius (I DU = radius of earth) 0.50 DU.

13



In all for this 4 impulse problem there are 17 variables and the total number of
constraints are: 7 equality and 12 inequality constraints. For the above mentioned
conditions, the time of flight limit inequality constraint [23] and the constraint [21] on

the initial coasting arc are active. The trajectory for this problem is shown in Figure 3.

Starting with the solution to this problem, we solve a problem for which all conditions
are the same except that now we require the minimum allowable radius to be =10
DU and the time of flight to be Towe=150 min. For the solution obtained, the above
mentioned active constraints still remain active, and the minimum radius constraint on
the third subarc becomes active. For an accuracy of 102 | the curve tracking
procedure required 77 Jacobian evaluations, and the arc length of the connecting path
was 1.528377, The trajectory so obtained is shown in Figure 4. The solution obtained

Is in accordance with the results obtained in a prior work®.
Remarks

We have applied the Chow-Yorke algorithm to solve constrained parameter
optimization problems. In this regard, one has to choose both an approriate homotopy
map and an appropriate curve tracking procedure. The success of this algorithm lies
mainly in finding the appropriate map connecting the initial (solved) problem and the
given (unsolved) problem. Finding such a map is unfortunately problem class dependent
and so a universal procedure is not advocated, although maps can be found for classes
of problems. We have provided an alternative to the active constraint set strategy,
wherein it is no longer necessary to monitor constraints and their multipliers to switch
constramts. Here we assume that at the end of the homotopy path the complementarity
conditions hold strictly and that if a constraint is active, it does not have a zero gradient.
At the end of the homotopy path, the appi'opriate constraints become active
automatically, and we have a candidate solution which satisfies the Kuhn-Tucker

necessary conditions.
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1.57

Figure 1. Feasible region for Example 1 and the plot of x, versus x, with respect to the

variation in o.
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Figure 2, Variation of Y = {31 X, ity 113, 1) With respect 1o o,
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Figure 3. 4 impulse trajectory, with tof = 160 mins, and minimum allowable radius

r,=0.9DU,
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Figure 4. 4 impulse trajectory, with tof = 150 mins, and minimum allowable radius

ro = I.ODU-
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