Comparison of an Object-Oriented
Programming Language to a Procedural
Programming Language for Effectiveness
in Program Maintenance

Sallie Henry and Matthew Humphrey

TR 88-49

Comparison of an Object-Oriented Programming
Language to a Procedural Programming Language
for
Effectiveness in Program Maintenance

by

Sallie Henry
and
Matthew Humphrey

Department of Computer Science
Virginia Polytechnic Institute
Blacksburg, Virginia 24061

Internet: henry@vtodie.cs.vt.edu

Comparison of an Object-Oriented Programming Language
to a Procedural Programming Language for
Effectiveness in Program Maintenance

(ABSTRACT)

New software tools and methodologies make claims that managers often believe intuitively,
without evidence. Many unsupported claims have been made about object-oriented
programming. However, without scientific evidence, it is impossible to accept these
claims as valid. Although experimentation has been done in the past, most of the research
is very recent and the most relevant research has serious drawbacks. This paper describes
an experiment which compares the maintainability of two functionally equivalent systems in
order to explore the claim that systems developed with object-oriented languages are more
easily maintained than those programmed with procedural languages. We found
supporting evidence that programmers produce more maintainable code with an object
oriented language than a standard procedural language.

I. Introduction

New software tools and methodologies make claims that managers often want to hear.
“Language X cuts design time” or “This Computer Aided Software Engineering package
improves maintainability.” Most professionals reco gnize hype when they see it and treat it
accordingly. Many managers and software engineers have only an intuitive feeling for the
accuracy of these claims because there is no hard scientific evidence, only “warm fuzzy
feelings.” More scientific evidence is needed.

Structured design divides a system into modules such that each module has a high binding
strength while the coupling dependencies between modules is low [STEW74] [STEW31]
[STAJ76] [PRIJ82] [FAIRS5] [SWAGTS] [GANC77] [YOUES2]. Structured design is
often used directly with top-down decomposition and stepwise refinement. “The benefits
of structured design result from the independence of the modules” [STEW81]: Typically,
modules are defined that have the highest binding possible first, and then the resulting
System structure is arranged to minimize the coupling. For most modern programming
languages, a module is synonymous with a procedure or function. With object-oriented
programming, it means “method,” an operatibn on an object. Binding is the relationship
among the items within a module. Coupling is the relationship among modules in a
system.

Object-oriented design is a new technique that uses the good aspects of top-down design
and abstract data types combined with the modularization and separation of structured
design. In object-oriented design, “the decomposition of a system is based on the concept
of an object. An object is an entity whose behavior is characterized by the actions that it
suffers and that it requires of other objects” [BOOGS86]. Object-oriented design has several
definable characteristics. Object-oriented programming directly supports these
characteristics. The four attributes are encapsulation, messaging, inheritance and
polymorphism.

Encapsulation forces objects to be visible from the outside only. They are encapsulated so
that only their interfaces show. The interface of an object consists of the names and
formats of the messages to which it can respond. Design information concerning the
structure of the object is hidden within the object. Note that while encapsulation is usually

considered an implementation detail by forbidding programmers from using private data (as
in Pascal) [JACJ87], itis also a design detail since it allows the interface to an object to be
described and used without knowledge of the inner workings. It can also be used to
constrain programmers by using the interface as the detailed desi gn, requiring programmers
to implement the necessary methods, but with the freedom to implement any way they
choose, as long as the interface remains the same [BROF86] [RENT82] [BOOGE6].

Messages accomplish the processing in an object-oriented system. In a purely object-
oriented system (such as SmallTalk [GOLAS3]), all processing is accomplished via
messages. In hybrid systems, like Objective-C, messaging exists simultaneously with
procedure calls to accomplish processing. In slightly object-oriented systems, like Ada,
Pascal and C, procedure calls substitute for actual messages. Messages break
dependencies inherent in the “caller-callee” model because “a message is a request of what
the sender wants with no hint or concern as to what the receiver should do to accommodate
the senders wishes” [RENTS82]. The receiver and the sender are separate and distinct units.
No assumptions are made by the sender as to “how” nor any assumptions by the receiver
as to “why.” This enforces low coupling between modules [RENTS2] [BOOGS6].

Inheritance is the collective property of sharing and adaptation. “Sharing makes for a
usable system by facilitating factoring, the property of one thing being in only one place.
Successful factoring produces brevity, clarity, modularity, concinnity and synchronicity...”
[RENTS82]. Additionally, adaptation allows individual objects to be different. One object
may share (inherit) the properties of another, then add or delete properties that are exclusive
to itself. For example, a taxi is like a car, except that a taxi has a built-in driver and a
meter. Both still have doors and can go places, but they are distinct. Inheritance yields the
most capability for code reusability, understandability and simplicity [RENTS2].

Object-oriented methodologies and object-oriented languages have put forth many
unsupported claims. An object-oriented approach cuts development time [BROF86],
makes software “resist both accidental and malicious corruption attempts” [BOOGS#6], is
more maintainable [BOOGS86] [MEYBS81], more understandable [BOOGS6], has greater
clarity of expression [BROFS6], supports the buy vs. build software trend
[BROF86][COXBS6], is easier to make enhancements to [COXBS84] [COXBS86]
[RENTS82], enables better prototyping and iterative development [BASV75] [COXB84],

While these claims have 3 Qualitative “rightness” there are little supporting quantitative data.
Boehm-Davis claims that object-oriented designs are the hardest to modify, but a
procedural language was used in the experiment [BOED86]. Gannon claims that
dynamically typed operands (polymorphism) result in more errors, but in that experiment,
brogrammers were required to keep track of the structure of the data themselves which
violates the principle of information hiding [GANJ77]. The programmer should not have
to care how the object is represented. Holt found that object-oriented programs are most
difficult for subjects to recognize and understand, but again a procedural language was
used with an object-oriented design [HOLRS&7].

that have been done were conducted on trivial programs which are only a dozen statements
long [GANI77]. Other experiments using student subjects made unreasonable conclusions
about professional programmers.

This experiment Supports the claim that systems developed with object-oriented languages
are more maintainable than those developed with procedural Janguages. In this empirical

Maintenance times, error Counts, change counts, and pProgrammers impressions were
collected. The analysis of the data from this single experiment showed that systems using
object-oriented languages are indeed more maintainable than those built with procedural
languages.

The goal of software engineering is to produce better software systems. One method of
testing this goal is by controlled experiment and analysis. This experiment is another piece
in the software engineering “mosaic.” Software engineering strives to reduce software
cost, increase reliability, and increase robustness, among other things., The goal of this
experiment is to expand the foundations of software engineering so that those who work

with software can make intelligent choices when building and maintaining systems.

II. Criteria to Test

Previous Studies

Only recently has there been much empirical experimentation in computer science
[ATWM78] [BARMG69] [BARM77] [BOIS74a] [BOIS74b] [CARJ70]1 [CARE77]
[CURB79] [DUNH77] [ELSJ76] [GANJ76] [GANJ77] [GOUI75] [KNUD71] [LEE)78]
[LOVT77] [LUCH74] [MYEG?7S] [SAAH77] [SCHN77] [SHNB76] [SHNB79]
[YOUE74]. Within the curriculum of software engineering and software maintenance there
is great difficulty in obtaining appropriate materials and subjects. The greatest difficulty is
training the subjects in the use of a methodology or a language or a technique. Teaching a
methodology can take months or years. These problems deter many researchers from doing
thorough studies. However, two experiments conducted by Deborah Boehm-Davis and
Robert Holt do present some preliminary background information in the field of software
maintenance,

In the Boehm-Davis experiment, eighteen professional programmers built programs using
one of three different design methodologies: Jackson Structured Design, Object - Oriented
Design and Functional Decomposition Design. The programs were small, requiring a
minimum of only 100-200 lines of code, The results collected showed that “the data did
not provide any clear answers regarding their relationship to future maintainability”
[BOED84]. However, it is still possible to suspect that object-oriented code is more
maintainable, since “the complexity ratings again favor the Jackson and object-oriented
methodologies as they show lower complexity ratings than the other solutions” [BOED84].
Low complexity ratings are important since they are argued to be the key to more
maintainable code [BOEDS§4]. They also found that “there was no correlation between
percent complete and years of programming experience, and the solutions generated by the
experienced programmers WEre no more alike than the programs generated by the less
experienced programmers” [BOEDS84]. This second finding has the greatest impact, since
it supports the use of students in programming experiments as being relatively as useful as
professional programmers. This helps alleviate the problem of lack of professional
Programmers on which to experiment.

In the end, this study provided some ideas, but no concrete information for maintainability.
Additionally, there were some flaws with the study. The Jackson and object-oriented
methodologies did equally well, but “the programmers using the Jackson program design
methodology had a great deal more experience in programming and with the design
methodology, than did the programmers using either the object-oriented or functional
decomposition approach.” Therefore, the experiment was biased towards programmers
who had used the Jackson method. In spite of the bias, though, they did only as well as
the programmers who used the object-oriented methodology with little or no training, The
large differences in the experience of the users of the different methodologies makes the
results unreliable.

Additionally, not all of the data were complete when they were collected. Incomplete
solutions were subjectively judged as to the degree of completeness and given a percent
rating accordingly. The programs were not of realistic size, reducing the effectiveness of
the methodologies, which work best when the project cannot be easily handled by a single
person. The definitions of the methodologies were very vague and do not seem to be
supported by any external documentation, The study does not say if the programmers were
provided with methodology definitions.

Another experiment by Boehm-Davis and Holt [HOLRS87] attempts to make statements
about software maintenance based on the methodology, the experience of the programmer,
the complexity of the task, and the type of the program. Eighteen professional
programmers and eighteen student pro grammers were asked to make simple or complex
modifications to several of three different programs, each built according to three different
methodologies. Each subject performed one task on each of the three different types of
problems. The results indicate that functionally decomposed code is the easiest to modify
and object-oriented code is the most difficult to modify. This is the exact opposite of what
the researchers expected and what one intuitively expects since the functionally
decomposed code had little structure or modularization while the object-oriented code was
the most modular.

This study also has several problems. The size of the programs being modified was not
indicated, but a minimum of only 100-200 lines of code is likely, since these problems are
the same as the programs that appear in the 1984 Boehm-Davis experiment. All of the

Programs were written in Pascal, which is not an object-oriented language. To use Pascal
as an object-oriented language requires adding a great deal of complexity.

There were three subjects for each of the possible treatment levels of the experiment,
yielding a very small sample size. Additionally, direct comparisons of subjects with other
subjects, called a “between subjects” experiment, was used for several parts of the
experiment, which is highly unreliable when dealing with small numbers of subjects
[BRORS0].

The methodologies tested in the experiment were not well defined. Additionally, the
subjects were not necessarily practiced in the various methodologies. How is it possible to
test the effect of methodology when the subjects are not familiar with it?

The experiment does not say if the modifications were presented as “change variable X in
line Y”, which is an implementation modification or if the change is to the specification:
“Make the program do this now, change how it does this now.” A specification change
would be the same for a program regardless of the methodology while an implementation
change depends only on the code.

Two different kinds of changes were used, which is a good way to see how the complexity
of the change affects the performance. A simple change is defined as being a change in
only one location and a complex change is defined as a change in many locations.
However, unless the change is defined as “change this line,” how is it possible to guarantee
what a simple change is? Modification tasks written from the implementation point of view
are not indicative of the maintenance task,

The evidence presented in the first experiment is not statistically significant to be certain of
the results. The bias towards Jackson structured programming also interferes with the
results. Only the second experiment can make any significant claims about maintainability
of object-oriented code. But for that experiment, there are a large number of errors in the
construction of the experiment that weaken the results. The small sample size, the
vagueness of the methodology definitions and the problems of how the modification tasks
are presented (implementation or specification) indicate that a more rigorous experiment is
needed to verify the results,

Maintenance and Enhancement

Software typically passes through the life cycle stages of requirements, design,
implementation, testing and maintenance. The experiment described in this paper
concentrated on the maintenance portion of the software life cycle. Maintenance can be
divided into three sub-activities: “corrective maintenance (performed in Tesponse to the
assessment of failures); adaptive maintenance (performed in anticipation of change within
the data or processing environment); and perfective maintenance (performed to eliminate
inefficiencies and enhance performance or improve maintainability)” [LIEB78]. This
research concentrates only on perfective maintenance, which is also called “enhancement.”

Improving the maintenance phase of the software life cycle promises the best reduction of
software cost, Many researchers have concluded that most of the cost of software is spent
On maintenance, between 50% and 75% [LEHMS80] [FAIR85]. Lehman has estimated that
the United States government and commercial institutions, collectively spent $50 billion to
$100 billion on software in 1977, or approximately $25 billion to $75 billion on
maintenance [LEHMS0].

Software enhancement is the largest portion of maintenance, Fairley estimates that 60% of
all maintenance money is spent on perfective maintenance [FAIR85]. That is equivalent to
42% of the total software cost being spent on enhancements after the product is delivered.
A small improvement in this area of maintenance yields large returns.

Besides cost effectiveness, studying maintenance redyces the effects of requirements,
design and testing from the grand scale to a small scale. There are many methodologies for
the early part of the life cycle, and studying a small issue in the design area brings with it
the problems of comprehending requirements, understanding the whole system, building
the whole system and testing methodologies. While the enhancement task must
nevertheless be understood, coded and tested, analyzing the single task is more accurate
than analyzing the entire system,

Additionally, experimenting on a large real world system yields more realistic results.
Many studies are flawed by having subjects write very short programs to test language
features [GANT77]. The simple programs do not adequately represent the real world
design and coding effort. “...writing a large system is not just a matter of scaling up the

manpower required for a small system...” [BROR80]. Studying maintenance of
realistically sized programs reduces the artificiality of the experiment.

III. Experimental Methods

A goal of this research was to support the claims that object-oriented design and
implementation yield more maintainable systems. This goal was achieved in a controlled
experiment where subjects performed enhancement maintenance on two functionally
identical programs, one designed with structured design techniques using a procedural
language and the other designed with object-oriented design techniques using an object-
oriented language. Measuring various dependent variables when the subjects performed
the task gave insight into the usefulness of object-oriented programming over structured
procedural programmin g,

The hypothesis of this study was that systems designed and implemented in an object-
oriented manner are easier to maintain than those designed and implemented usin g
structured design techniques. Easier to maintain in this context means the programimers
take less time to perform a maintenance task or that the task required fewer changes to the
code. It also means that programmers perceived the change as conceptually easier or that
they encountered fewer errors during the maintenance task. Maintenance is defined in terms
of the variables used to measure the subjects performance.

This experiment was a “within subjects” test with three independent variables. The
variables were the programming langunage, the subject group and the task. The subjects
were randomly divided into two groups: Group A and Group B. Every subject was
required to perform a modification task fo both programs. Group A subjects modified the
C program and then modified the Objective-C program before proceeding to the next task.
Group B subjects did the reverse: they modified the Objective-C program first and then
modified the C program. This counterbalancing attempted to eliminate any effect of using
one language for a task before using the other for the task.

All subjects performed three tasks. Each task was performed once on each of the two
programs. All subjects performed the tasks in the same order. The tasks were all of 2 very
similar nature and were not selected to exhibit any particular attribute. As a warm - up
exercise, all subjects performed an initial task that was not included in the data analysis.

This task was equivalent to the others in difficulty, and the subjects were not told that data
would not be collected.

Procedure

This study was presented through a college senior-level course in software engineering
entitled “Object-Oriented Software Engineering,” which used the course “Introduction to
Software Engineering” as its prerequisite. The object-oriented software engineering course
was divided into two phases of eleven weeks each, a teaching phase and an experimental
phase, such that a phase was one academic quarter. The first phase, involved teaching the
students software engineering techniques and the languages to be used in the study. No
experimental data were collected during this segment. The second phase was the actual
experiment, in which the students of the course were the subjects and they performed the
tasks and data were collected. All students were enrolled for the course for both quarters.

The teaching phase cncompassed three segments: software engineering, structured
programming, and object-oriented programming. During the first segment, general
principles of software engineering applicable to all methodologies were presented,
including motivation for software engineering and the need for control in development
studies and experiments. During the next section the students were also taught the C
language and familiarized themselves with the VAX/VMS operating system, on which all
their assignments and the experiment were given. Their programming assignments for this
segment involved designing, coding, and integrating their code with other students code.

The last segment involved teaching object-oriented design and programming. They were
taught the necessity of encapsulation, messaging and inheritance for accomplishing the
design and implementation tagk. During this time also, students were taught the Objective-
C language which was available on the same machine as the C language. The
programming assignments again included design, coding and integrating new code with
other students code.

The eleven weeks of the experiment phase followed. For the start of the experiment
students were asked to complete a questionnaire on their programming experience. This
questionnaire assessed the abilities of the subjects. The background questionnaire measured
the students overall Grade Point Average, their Computer Science G.P.A,, the number of

months experience programming in C, Pascal, Objective-C and SmallTalk, the number of
months experience in integrating code with other programmers code, and the number of
months experience in testing software, They were then given a packet containing
information about the rules of participation in the experiment and the two programs to be .
maintained. The rules of the experiment were also explained in detail in class, emphasizing
that the students performance in the experiment in no way would affect their grade.
Accuracy in collecting data was stressed as more important than “good” data or “bad” data.

After the subjects completed the background questionnaire and read and understood the
rules for the experiment, the first task was distributed. They were told that each task had to
be compieted before they would receive the following task. They were then allowed to
work on the task out of class during the followin g week. While no deadline was assigned
to any of the tasks, the subjects were told that it was imperative that they complete all of the
tasks in the specified order, and that only exceeding the eleven week limit would endanger

Subjects

There were 24 students enrolled in the “Object-Oriented Software Engineering” course.
Two students were selected as “graders™ to collect and record data from the subjects. Two
other students were selected as pretesters to make sure the tasks were of reasonable
complexity, had no undye complications and were of comparable magnitude. Both Groups
Aand B had ten subjects each.,

10

Tasks

There were three modification tasks that generated the actual data used in this study. A
modification task was a simulated request from users to make a functional change to the
System. The change was specified in terms of observable system behavior and not in terms
of the implementation code, This was to simulate a real users request for change and
isolated the task specification from the implementation lan guage.

Both systems to which the changes were made were coded from identical specifications and
user interface information, They were functionally identical so that when running, it was
impossible to distinguish the programs or to identify the implementation language. This
was the criterion for both Systems to be considered identical. The specifications were
independent of the implementation language.

In general, the purpose of the programs was to be a sort of “laundry-list” handler. The
System was not graphical, but used cursor control to maintain g formatted screen that
looked like a scrap of paper with ten slots for notes. A note in the list was either a line of
text or the name of a sub-list or the name of an account ledger. The line of text was simply
a string and a sub-list was defined recursively through the definition of a list. An account
ledger was a different data item. An account ledger was a list of purchase items and
annotations. A purchase item was either a direct purchase, with a name, a category and a
dollar value or a purchase item was a sub-ledger, which yields a name and a dollar value.
An annotation was a line of text with no numeric content. The user was allowed to view
and edit the lists and ledgers, descending as many levels as desired.

This program was chosen as the basis for the experiment because it seemed to encompass a
broad range of programming techniques. It had a formatted user interface, used complex
and nested data structures, was interactive, had varying control constructs, used a sizable
number of procedures, functions and modules. The program was intended to be
representative of typical systems.

Neither C nor Objective-C had any built-in facilities that made building this program easier.
Both systems were programmed starting with the design specifications. Further details on

system. The original systems were developed by a graduate student experienced with both
C and Objective C.

Each task consisted of two parts. For Group A subjects, the first part was to perform the
task using the C system and the second part was to perform the task using the Objective-C
system. For group B subjects, the first part was to perform the task using the Objective-C
system and the second part was to perform the task using the C system. Therefore,
subjects actually performed each task twice, once using both of the systems. Performing
each part of the task had to be completed before proceeding to the next task. Subjects were
only allowed to work on one part of a task at a time (e.g., subjects were asked not to think
about how to code the Objective-C portion of task two before completing the C portion).
This attempts to prevent information exchange between tasks. Additionally, subjects were
not provided with the specification for a new task until both parts of the preceding task
were completed.

Each task required that each modification be made to an original copy of the system, as if
the request was received with no knowledge of the other requests. Since the subjects did
not change modified code the tasks do not cumulatively interfere with each other. It also
provides a basis of comparison for all tasks: the original copy. There was no control group
for this experiment since an “optimal” or “ideal” implementation of the task does not exist.
This is why the subjects modifications are compared to the unaltered version. It is only
possible to measure the difference between the original and the modified versions to
determine the amount of work done.

Tasks were developed by having experienced computer programmers run the program and
make comments about what new features would be handy or clever to add to the system.
All tasks added new functionality to the system. Three tasks were selected to be used in the
experiment. These tasks were selected because they represented a broad range of
programming constructs, and yet were all of the same level of difficulty. They were
chosen because they seemed to be independent of the programming languages.

A task was defined to be complete when it successfully ran with four special input data
files, only one of which was available to the subject for testing. If the program did not
generate a run time error, it was accepted as complete. If it did generate an error, the

12

subject was asked to continue the task. Only two subjects on two different tasks submitted
non-working programs, which they corrected.

Materials

Subjects were given the following information:

. Complete documented source code for the C system,

° Complete documented source code for the Objective-C system,

. The software specifications from which both systems were built,
. Running copy of the original C system,

. Running copy of the original Objective-C per task,

. One file of test data per task

IV. Data Collection

This experiment collected two sets of data. The first set described the subjects and was
used to show homogeniety among subjects and between groups. The second set was the
actual experimental task data. These data were generated by the questionnaires the subjects
completed for each task they performed. The student data were used to show that the
experiment was free of bias in the subjects. The task data was used to support claims about
the abilities of the C and Objective-C languages.

There are four independent variables:

. SUBJECT, the student identifier (1 through 10)

. GROUP, the group to which the subject belonged (Group A or Group B)
. LANGUAGE, the language used in performing a task (C or OBJC)

. TASK, the task identifier. (1,2 0r3)

Student Data

Background data were collected on the subjects to show that the two groups of students
were similar and that the random assignment of students to groups produced a fair mixture.
All background data were collected using a three page questionnaire that subjects were
given one week to complete,

13

The following variables are from the background questionnaire, except for two subjective
questions which are from the post-experiment questionnaire. The two subjective questions
are SUBJTASK, how difficult the subject thought the tasks were in general, and
SUBJQUES, how difficult the subject thought the questionnaires were.

Task Data

Two methods were used to collect the data associated with each task: questionnaires and an
automatic data collection facility. Prior to the beginning of the project, the students filled
out a questionnaire which supplied the dependent variables of the student data. Table 1
summarizes those variables. While students worked on the task, they each filled out a
questionnaire that recorded the amount of time they spent on the task as well as the number
of errors they made. Once the subjects completed a task, they filled out the subjective
portions of the questionnaire and turned in the completed forms. The computer then
automatically tested their programs using four sets of test data. For all the programs that
passed the tests, the computer compared the subjects source code to the original program
and recorded the differences usin g the VMS “DIFFERENCE” facility. It also recorded the
differences in sizes. After all of this was recorded in a file, the students continued to the
next task.

Table 2 gives an overview of the dependent variables used in the task data. The “Variable”
column Lists the formal name of the variable. It is followed by a brief definition of the
purpose of the variable, an indication as to how each variable was collected and the means
and standard error values for the task data. Formal definitions of the variables can be
found in Appendix B.

Table 3 contains the means and standard error values for the task data. Table 3 contains
the means and standard error values for the task data averaged over the language variable.
Table 4 contains the means and standard error values for the task data averaged among the
three tasks.

V. Results

The statistical analysis of the student data is described first, followed by the analysis of the
task data.

14

Significant Values for Student Data

An analysis of variance (ANOVA) test was performed on each of the variables using
subject identifier and group as discriminating classifications. The design provides that
subject is nested within group. This yields a between subjects design over the group
classification. The statistical significance of each variable is presented in Table 5.

Except for the computer science GPA of the subject, every variable shows no statistically
significant differences between Group A and Group B, The “-NA-» notation in the F-table
column for variables “CURRIC” and “OBJC” mean that there was no difference in the data
at all; every value was identical. This is because every subject was a computer science
student and no student had previous experience with Objective-C; they had all learned the
langnage during the first part of the experiment. Additionally, no variable shows a
difference between any of the subjects.

Significant Values for Task Data

An analysis of variance test was performed on each of the variables using subject identifier,
group, language and task. The design provides that subject is nested within group, which
is crossed with language and task. This yields a two by two by three design with ten
observations per entry. The statistical significance of each variable is presented in Table 6,

Table 6 also shows the variables and discriminants over which statistically significant
differences were found. The “Discriminant” column lists the independent variable for

error term, which is actually the probability that the significance of the difference is due to
random error in the €Xperiment,

Some variables are dependent on a combination of two independent variables. This is
denoted in the discriminant column by joining the two variables with an asterisk.
Therefore, “SUBJECT*TASK” indicates that the combined independent variables result in
a statistically significant difference in the data values. This was used later to find
interactions between conditions op independent variables.

15

Faults in the Data

showed that task valyeg Were very different from the other two tasks. It was possible that
task I was not on the same level of difficulty as the other tasks, skewing the true resulis.

removed,

Supporting the Hypothesis

Granted this is a single experiment which used students inexperienced in object oriented
Programming, however, we feel that some interesting observations resulted from this
work. This experiment Supports the hypothesis that subjects produce more maintainable
code with an object-oriented language than procedure-oriented languages. For source code
variables, Objective-C produces code that Tequires fewer modules to be edited, fewer

16

While subjects had no previous training in either object-oriented languages or in Objective-
C, they did have significant training in Pascal and structured programming. This gives
€ven more support to the power of Objective-C over C since the data yielded good results
even though there was a bias from the subjects toward the procedural paradigm.

since Objective-C is a Super-set of C there are more options available. Objective-C contains
additional mechanisms that allow the object-oriented treatment of code, such as messaging,
encapsulation and inheritance that C does not have, These additions to the language may
require more thought and more decisions from the subject.

probably accounts for most of it. Students today are taught software engineering
techniques that emphasize hierarchical nesting of procedures and control-flow based
computing paradigms. While these are useful within their own realm, they make new
languages and new methodologies difficult for all types of developers — from
programmers through system architects — to accept.

The final conclusion of this study is that Objective-C produced fewer changes in the source
code and that these changes were more localized. For all other variables, there were no

Systems, of say 10,000 lines being maintained for many months or years, localizing
changes will have 1 much stronger impact in reducing both the number of errors
encountered and the amount of time to effect a change. Hopefully, this experiment wil]
open the way for more tests to verify those claims.

18

Bibliography

[ATWM78] Atwood, M.E. and Ramsey, HR,, “Cognitive structures in the
comprehension and memory of computer programmers: An investigation of computer
debugging,” Technical Report T.R.-78-A21, US. Army Research Institute for the
Behavioral and Socia Sciences, Alexandria, VA, August, 1978.

of management information Systems,” Management Science, Vol. 23, No. § » April 1977,
Pp. 820-829.

[BARM69] Barnett, M.P,, Ruhsam, W.M., “SNAP: An experiment in natura] language
pProgramming,” AFIPS Conference Proceedings, Vol. 34, Montvale, N7, 1969, pp. 75-
87.

[BASV75] Basili, V., Tumner, A, “Iterative Enhancement: A Practical Technique for
Software Development,” IREE Transactions of Software Enginecring, Vol SE-1, No. 4,
1975, pp. 390-396,

[BOEDS4] Boehm-Dayvis, D., Ross, L., “Approaches to Structuring the Software
Development Process,” Technical Report GEC/DIS/TR-84—B1V-1, Software
Management Research Data & Information Systems, General Electric Co., Arlington,
VA, Oct. 1984,

[BOEDS6] Boehm—Davis, D., Holt, R., Schultz, A, Stanley, P., “The role of program
Structure in software maintenance,” Technical Report TR 86-GMU -P0O1, Psychology

.

Department, George Mason University, Fairfax, VA 22030, May 1986.

[BOIS74a] Boies S. and Gould J., “Syntactic Errors in Computer Programming,”
Human Factors, 1974, Vol. 16, No. 3, pp. 253-257.

[BOOG86] Booch, G., “Object-Oriented Development,” IEEE 1986.
“No Silver Bullet: Essence and Accidents of Software
Processi

Engmeermg,” Information sing 86, H.J. Kugler, ed., Elsevier Science Publishers
B.V. (Nonh-HolIand) (C) TFIP 1986,

19

[CARE77] Carlson, E.D., Grace, B.F. and Sutton, J.A., “Case studies of end user
requirements of interactive problem-solving Systems,” MIS Quarterly, March 1977, pp.
51-63.

[COXB84] Cox, B., “Message/Object Programming: An Evutionary Change in
Programming Technology,” IEEE Software, Vol. 1, No. 1, Jan. 1984,

[COXBS6] Cox, B., Object—Orientgd Prograrnming: An Evolu;ionary Approach,
Addison—Weslcy Publishing Co., Reading, MA., 1986,

[CURB79] Curtis, B., Shepp.ard, S.B., Milliman, P, Borst, M.A. and Love, T.,
“Measuring the psychological complexity of software maintenance tasks with Halstead
and McCabe metrics,” IEEE Transactions of Software Engineering, Vol. SE-5, No. 2,

[DUNH77] Dunsmore, H.E., and Gannon I.D., “Experimental investigation of
programming complexity,” Proceedings of Sixteenth Annual ACM Technical
Symposium: Systems and Software, * Washington, D.C., June 1977, pp. 1-14.

[ELSJ76] Elshoff, J.L., ”An analysis of some commercial PL/1 programs,“ IEER
Transactions on Software Engineering, Vol, SE-2, 1976, pp. 113-121.

[FAIR85] Fairley, R., Software Engineering Concepts, McGraw-Hill Book Co., New
York, NY, 1985,

[GANC7?7] Gane, C,, Sarson, T., Structured Systems_Analysis: Tools and Technigues,
Improved System Technologies, Inc., 1977,

[GANTJ76] Gannon, J., “An experiment for the evaluation of language features,”
International Journal of Man-Machine Studies (1976) Vol. 8, pp. 61-73,

[GANJ77] Gannon, J., “An Experimental Evaluation of Data Type Conventions,”
Communications of the ACM, Vol. 20, No. 8, pp. 584-595, Aug. 1977.

[GOLAS3] Goldberg, A., Robson, D., Smalltalk-80. The Language and its
lm_Illil‘I_l,G_nLaLiQr_l, Addjson-Wesley Publishing Co., Reading, MA, 1983.

[GOUJ75] Gould, J D., “Some psychological evidence on how people debug computer
programs,” International Journal of Man-Machine Studies, Vol. 7, 1975, pp. 151-182.
[HOLRS§7] Holt, R., Boehm-Davis, D., Schultz, A., “Mental Representations of
Programs for Student and Professional Programmers,” Psychology Department, George
Mason University, Fairfax, VA , 1987,

[JACJ87] Jacky, J.P,, Kalet, 1.J., “An Object-Oriented Programming Discipline for

Standard Pascal,” Communcations of the ACM, Vol. 30, No. 9, pp. 772-776, Sept.
1987.

[KNUD71] Knuth, DE., “An Empirical Study of FORTRAN Programs,” Software—
Practice and Experience, Vol. 1, pp. 105-133 (1971).

20

[LEHMSO] Lehman, M., “Programs, Life Cycles, and Laws of Software Evolution,”
Proccedings of the IEEE, Vol. 68, No. 9, Sep. 1980.

[LIEB78] Lientz, B., Swanson, E., Tompkins, G., “Characteristics of Application
Software Maintenance,” Communications of the ACM, Vol. 21, No. 6, June. 1978.

performance to human information processing abilities,” Ph.D. Dissertation, University
of Washinton, 1977,

[LUCH74] Lucas, HL., Kaplan, R.B., “A Structured Programming Experiment,”
Computer Journal, Vol, 19, pp. 136-138, 1974,

[MACBS§2] MacLennan, B, “Values and Objects in Programming Languages,”
SIGPLAN Notices, Vol. 17, No.12, p. 70, Dec. 1982,

[MEYBSI] Meyer, B., “Towards a two-dimensional programming environment,”
Readings in Al Palo Alt ,» CA, Tioga, 1981, p.178.

[MYEG78] Myers, G.1, “A controlled experiment in program testing and code walk
throughs / inspections,” Communications of the ACM, Vol. 21, No. 9, Sept. 1978, Pp.
760-768.

[PRIJ82] Privitera, Dr. J.P., “Ada design language for the Structured Design
Methodology,” Proceedings of the AdaTEC Conference, Oct. 1982, pp. 76-90.

[RENT82] Rentsch, T, “Object Oriented Programming,” SIGPLAN Notices, Vol. 17,
No. 9, p. 51, Sept. 1982,

[ROMHS3] Rombach, H.D., “Impact of Software Structure on Maintenance,” IEEE
Transactions on Software Engineering pp.152-160.

[SAAH77] Saal, H.J., and Weiss, Z., “An empirical study of APL programs,”
Computer Languages, Vol. 2, No. 3, 1977, pp. 47-60.

[SHAMS4] Shaw, M., “Abstraction Techniques in Moderm Programming Languages,”
IEEE Software, Vol. 1, No. 4, pp. 10-25 1984

[SCHN77] Schneidewind_, N.F. and Hoffman, HM., “An €Xperiment in software error

data collection and analysis, Proceedings of the Sixth Texas Conference on Computing
Systems, November 15-14, 1977.

21

[SHNB76] Shneiderman, B., “Exploratory Experiments in Programmer Behavior,”
International Journal of Computer and Information Science., Vol. 5, No. 2, pp. 123-
143, 1976.

[SHNB79] Shneiderman, B. and Mayer, R., “Syntactic / Semantic Interactions in
Programmer Behavior: A Model and Experimental Results,” International Journal of
Computer and Information Sciences, July, 1979, pp. 219-239.

[STAJ76] Stay, JL.F,,“HIPO and Integrated Program Design,” IBM Systems Journal,
I Corp, Vol. 15, No. 2, 1976, pp. 143-154.

(STEW74] Stevens, W.P, Myers, G.J., Constantine, L.L., “Structured Design,” IBM
Systems Journal, IBM Corp., 1974.

[STEW81] Stevens, W., Using Structured Design: How io Make Programs Simple,
Changeable. Flexible. and Reusable, John Wiley & Sons, New York, NY, 1981,
[SWAG78] Swann, G.H., Top-down Structured Design_Techniques, PRI Inc., New
York, NY 1978,

[YOUE74] Youngs, E. “Human Errors in Programming,” International Journal of Man-
Machine Studies (1974), Vol. 6, Pp. 361-376.

[YOUES2)] Yourdon, E., Managing the System Life Cvele: A Software Development
Methodoloey Overview, Yourdon Press, New York, NY, 1982.

22

Table 1, Summary of Student Data Dependent Variables

Variable Synopsis measured Mean A Mean B
GPA Subjects overall GPA before 3.101 2.860
CSGPA Computer Science GPA before 3.482 3.090
CURRIC Subjects curriculum before

C Months of C experience before 4.700 3.000
PASCAL Months of Pascal experience before. 27.800 33.200
OBIC Months of Objective-C experience before 3.000 3.000
SMALLT Months of SmallTalk-80 experience before 0.000 0.100
INTEGR Months experience integrating code before 5.100 8.100
TESTX Months experience testing code before 49.200 50.900
LEVEL Academic level before 3.800 3.900
COURSES Number of Computer Science courses before 6.700 7.900
SUBJTASK Task difficulty, subjective after 1.950 2.400
SUBJQUES Questionnaire difficulty, subjective after 1.150 1.200

23

Table 2. Task Data Dependent Variables

Automatically

Varjable Synopsis Collected mean A mean B stderr A _stderr B
MODULES Number of files changed Yes 221 195 0.12 0.83
SECTIONS Number of sections changed Yes 695 6.93 0.74 0.83
LINES Number of lines different Yes 69.23 67.40 8.76 9.67
TOTLINES Difference in file sizes Yes 46.67 48.51 2,67 4.67
CERR Number of failed compilations No 2,50 241 0.52 029
TC Number of compilation errors No 10.02 7.02 275 0098
LE Number of linking errors No 0.18 0.25 0.06 0.07
RE Number of program crashes No 090 141 0.17 0.28
LGE Number of program logic errors No 1.80 1.37 0.28 0.20
TOTERR CERR+TC+LE+RE+LGE 15.40 1247 3.08 1.30
STHIN Thinking difficulty No 253 3.77 0.14 0.21
SMOD Modifying difficulty No 297 451 0.21 0.21
STEST Testing difficulty No 264 395 0.19 0.26
SALL Task difficulty No 278 3.95 0.17 0.17
TTHIN Minutes thinking No 31.90 3570 3.69 390
PTHIN Percent attention thinkin g No

T™OD Minutes modifying No 77.00 67.90 8.05 6.70
PMOD Percent attention modifying No

TTEST Minutes testing No 46.50 40.90 723 497
PTEST Percent attention testing Neo

TASKTIME TTHIN+TMOD+TTEST 155.40 144.50 10.60 10.50

24

Table 3. Raw Task Data, Averaged Between Languages

Variable C Objective-C__ stderr C_ stderr Obj-C
MODULES 227 1.90 0.09 0.11
SECTIONS 8.73 5.15 0.96 0.46
LINES 98.93 37.70 11.40 2.90
TOTLINES 62.90 32.30 4.20 1.82
CERR 2.68 2.23 0.52 0.28
TC 11.85 5.18 2.77 0.74
LE 0.22 0.22 0.06 0.05
RE 0.77 1.55 0.24 0.22
LGE 1.55 1.62 0.24 0.26
TOTERR 17.07 10.80 3.15 1.09
STHIN 3.00 3.30 0.21 0.19
SMOD 3.87 3.61 0.25 0.22
STEST 3.35 3.25 0.25 0.25
SALL 3.49 3.38 0.19 0.19
TTHIN 32.00 35.70 3.19 4.33
T™MOD 70.00 74.80 7.47 5.54
TTEST 42.50 4480 6.42 6.00
TASKTIME 14470 155.30 10.21 10.90

25

Table 4. Raw Task Data, Averaged Between Tasks

Variable Task 1 _Task2 Task 3 Err-1 Err-2 FBrr-3
MODULES 2.10 2.12 2.02 0.15 0.14 0.10
SECTIONS 7.10 6.87 6.85 1.16 088 0.85

LINES 7380 6220 6890 15.10 8.81 8.80
TOTLINES 47.45 44.52 50.80 7.02 310 2.50
CERR 3.60 1.92 1.85 0.75 029 0.34
TC 13.50 6.75 530 384 143 133
LE 030 020 015 0.07 0.09 0.06
RE 1.80 0.80 0.87 0.38 0.22 0.21
LGE 1.70 105 200 030 024 0.35
TOTERR 2090 1070 10.20 428 1.82 1.59
STHIN 345 297 3.04 025 024 023
SMOD 4.21 3.21 3.80 031 027 026
STEST 3.37 326 326 031 030 0.25
SALL 3.88 3.00 340 025 023 0.21
TTHIN 47.37 3025 23.90 6.14 4.07 2.00
TMOD 86.10 66.30 6490 10.93 791 7.79

TTEST 52.00 40.10 39.00 973 6.62 582
TASKTIME 185.00 136.70 128.00 1470 12.60 9.1

26

Table 5. Results of ANOVA on Student Data Variables over Group

Variable Confidence F-table (df) Significant
GPA 0.2706 No
CSGPA 5% 0.0347 Yes
CURRIC -NA- No
c 0.8539 No
PASCAL 0.1853 No
OBIC -NA- No
SMALLT 0.3306 No
INTEGR 0.2853 No
TESTX 0.8672 No
LEVEL 0.5560 No
COURSES 0.1686 No
SUBJITASK 0.1395 No
SUBIQUES 0.7730 No

27

Table 6. Results of ANOVA on Task Data Variables

Variable Discriminant Confidence F-table(df)
MODULES LANGUAGE 5% 0.0410
SECTIONS LANGUAGE 1% 0.0023
LINES LANGUAGE 01% 0.0001
TOTLINES LANGUAGE 01% 0.0001
CERR TASK 1% 0.0013
SUBJECT*TASK 5% 0.0340
TC SUBJECT 5% 0.0415
LE NONE
RE LANGUAGE 5% 0.0310
TASK 1% 0.0088
LGE TASK 5% 0.0380
SUBJECT*TASK 5% 0.0136
TOTERR TASK 1% 0.0039
SUBJECT 5% 0.0306
STHIN GROUP 1% 0.0085
SMOD GROUP 1% 0.0017
TASK 1% 0.0027
STEST NONE
SALL TASK 1% 0.0039
GROUP 1% 0.0096
TTHINK TASK 1% 0.0100
T™MOD NONE
TTEST SUBJECT*TASK 1% 0.0084
TASK 5% 0.0330
TASKTIME TASK 1% 0.0018

28

