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Predicting Maintainability with Software Quality Metrics

Abstract

Maintenance of software makes up a large fraction of the time and money spent in the
software life cycle. By reducing the need for maintenance these costs can also be reduced.
Predicting where maintenance is likely to occur can help to reduce maintenance by prevention.
This paper details a study of the use of software quality metrics to determine high complexity
components in a software systern. By the use of a history of maintenance done on a particular
system, it is shown that a predictor equation can be developed to identify components which
needed maintenance activities. This same equation can also be used to determine which
components are likely to need maintenance in the future. Through the use of these predictions and
software metric complexities it should be possible to reduce the likelihood of a component needing
maintenance. This might be accomplished by reducing the complexity of that component through
furi:h_er decomposition. Even though this is only one study, this methodology of developing

‘maintenance predictors could be applied in any environment.







I. Introduction

Computer scientists are continually attempting to improve software system development.
Systems are developed in a top-down fashion for better modularity and understandability.
Performance enhancements are implemented for more speed. One area in which a great deal of
effort is being devoted is software maintenance. Brooks [1] estimates that fifty percent of the
development cost of a software system is for maintenance activities. Since a large portion of the
effort of a system is devoted to maintenance, it is reasonable to assume that driving down
mainienance costs would drive down the overall cost of the System.

Measuring the complexity of a software system could aid in this attempt. By lowering the
complexity of the system or of subsystems within the system, it may be possible to reduce the
amount of maintenance necessary. Software complexity metrics were developed to measure the
complexity of software systems. This study relates the complexity of the system as measured by

software metrics to the amount of maintenance necessary to that system.

The Software Life Cycle

To better understand a software system, it is helpful to ook at how a system is developed.
Most software systems follow a software life cycle. Although some stages of the software life
cycle may not be formally present, the basics of that stage of the life cycle are almost certainly used
in the development of a software system.

Ramamoorthy divides the software life cycle into seven stages {2]. The first stage is the -
understanding of requirements and of the problem in question. During this stage, requirements are
developed for the problem that is to be solved by this system, the functionality of the system and

any constraints which are to be placed on the systern.



Specification of requirements is the second stage of the software life cycle. During this
stage, software specialists attempt to understand the requirements and develop a set of
specifications of what the system is to do without describing how the system is to do it.

Design is the third stage of the software life cycle. The problem is decomposed into a
number of modules and the ways in which they interact. Modules may be further broken down
into submodules and procedures in order to obtain a unit that can be easily understood and
programmed. The sum of all these units is the design of the system and should meet the
specification from the previous stage and answer the question of how the system is to be
implemented.

The design from the previous stage is then used in the fourth stage, implementation. In
implementation, the modules are coded in a suitable language for the problem,

In the testing stage, the code is executed and bugs may be found and corrected before the
system is released. These bugs may occur in the implementation, in the requirements or in the
design. Individual modules are tested in this stage along with interactions between modules and,
finally, the system as a whole is integrated.

The last two stages are maintenance and evolution. These two stages are similar in that
there are changes being made to the system. If bugs are found during the operation of the system,
this stage is maintenance, but if performance improvements are made, it could be either evolution
or maintenance. The boundary between what is evolution and what is maintenance is usually
decided by how major a change is to the system. A major change would be evolution and a minor

_change is maintenance. Since it is a subjective opinion as to what is major, the distinction between

the two phases can be difficult.



There are various other software life cycles proposed in the literature. The model proposed
by Bennington [3] is the stagewise model. It proposes nine stages for software development:
operational plan, machine and operational specifications, program specifications, coding
specifications, coding, parameter testing, assembly testing, shakedown, and system evaluation.
Boehm [4] suggests that software be developed as a sequence of tasks waterfalling into one
another. Thése tasks are: system requirements, software requirements, preliminary design,
detailed design, code and debug, test and preoperations, and operations and maintenance. Each
step includes validation and verification activities. Balzer [5] proposes a life cycle model for
automatic programming. This model includes steps for requirements analysis, validation,
maintenance, mechanical optimization, and tuning. Since maintenance is a critical phase in the

software development process, all of these software life cycle models include 2 maintenance phase.

Software Maintenance

Software maintenance activity is a major part of the software life cycle. Estimates of time
and money spent on this stage of the software life cycle range from forty to sixty-seven percent of
the total for the entire life cyclé [2][6]. Lientz [7] suggests that “maintenance and enhancement
tend to be viewed by management as at least somewhat more important than new application
software development.” Curtis [8] states that “more time is spent maintaining existing software
than developing new code.” Since “the cost of correcting program errors can (and typically does)
increase enormously with time to discovery” [9], it is important to find these errors as early as

possible.



Swanson [10] characterizes three types of maintenance activities. They are corrective
maintenance which is performed in response to a failure, adaptive maintenance which is performed
in anticipation of a change within the environment of the system, and perfective maintenance which
is performed to enhance maintainability. Each of these types of maintenance is an important part of
the maintenance process. However, in this study we are looking at corrective maintenance of a
software system. By determining where errors occur, we hope to be able to predict where future
errors might occur. This allows preventative maintenance to be done to minimize the amount of
future corrective maintenance work and makes software systems more sound.

Ramamoorthy [2] describes three ways to reduce maintenance costs: “(1) The systern must
be developed with maintenance in mind; (2) The system must be maintained with future
maintenance in mind; and (3) The system must be continually upgraded to cope with future
technology.” He suggests that the use of precise methodologies would solve many maintenance
problems. One such method would be formal proofs of correctness. However, proving a
program correct is a time consuming process which is sometimes difficult to verify. Another
possible method is testing. Since exhaustive testing is not possible, test cases must be carefully
designcd to covcr.the entire program. This is generally not possible, therefore bugs can penetrate

the code,

Software Quality Metrics and Maintenance

One tool which helps in solving some of the problems of software maintenance is software
quality metrics. The metrics quantitatively measure aspects of the system which can be used as
indications of the quality of the software system. Metrics can be used at varions stages of the life
cycle. Ramamoorthy [2] suggests that metrics can be used for maintenance purposes during the
requirements, implementation, testing, and maintenance stages. In this study, we view the

software quality metrics as a tool used in the maintenance phase of the software life cycle.




Yau and Collofello [61{11] have developed a software metric to measure the ripple effect of
modifications in a software system. The ripple effect is “the phenomena by which changes to one
program area have tendencies to be felt in other program areas.” If the ripple effect is large, a
modification to one module of a system may have impact on many other modules in the system.
This leads to high maintenance costs and low system reliability.

Basili [12] has attempted to determine the correspondence between the software science
measures of Halstead [13] and other related metrics to the number of development errors and to the
weighted sum of effort required to isolate and fix these errors on a number of FORTRAN projects.
Most of the correlations are weak, but this is attributed to the discrete nature of error reporting and
to the fact that most of the modules examined reported zero errors. We are attempting a similar
study.

Henry and Kafura [14] used the information flow metric to analyze the UNIX operating
system. They chose UNIX for several reasons including it has large enough size and the fact that
it is not a toy or experimental system but a systerﬁ designed for users. They found that a high
complexity shows stress points in the system or inadequate refinement of the procedure. By
correlating changes in the system with the complexity of the procedures they found a high

correspondence between these values.




Kafura and Reddy [15] studied the use of software complexity metrics on several versions
of the same software system. The system they studied was a data base management system
developed by students at Virginia Tech over a number of years, It is a medium size software
system (16,000 lines) written in FORTRAN. They decided to use a subjective evaluation
technique in order to determine whether software metrics could provide information to a maintainer
. of a system in order to avoid poorly peffonncd maintenance. Subjective evaluation means that they
“attempt to relate the quantitative measures defined by the software metrics to the informed
judgement of experts who are intimately familiar with the system being studied.” An important
part of their investigation was examining the changes in the system from one version to the next.,
They found that the change in the complexities of the software metrics agreed with the changes that
one would expect from the changes in the software system. Another interesting finding was that
there was a growth in structural complexity as a result of maintenance activity. Two possible uses
for software metrics in the maintenance process were suggested. “First, the metrics can be used to
identify improper integration of enhancements. ... Second, procedures which are perceived to be
complex can lead to improper structuring of the system because maintainers will avoid dealing with
this complex procedure when makin g enhancements, even when the maintainer knows that a major
restructuring of the complex component is called for in order to gracefully include the required
enhancements.”

Section II describes the metrics and the metric tool used in this research. The data used in
this experiment is briefly discussed in section JI. While predicting maintainability does not seem
trivial, the paradigm we developed to generate equations to predict maintenance activity is

presented in section IV. Our conclusions are given in section V.



II. Software Metrics

Software maintenance occurs because software does not do what it was designed to do.
Higher quality software is less likely to need corrective maintenance. Higher quality software is
less likely to need corrective maintenance. However, quality is a subjective term. If there is to be
an improvement in the quality of software, there must be a way to objectivg:ly,'or quantitatively,
measure quality. This is the realm of software quality metrics. Software quality metrics provide a
way to quantitatively measure the quality of sofrware. These metric values can then be used as
indicators to determine which portions are likely to require maintenance.

There are three classifications of metrics that are used to measure the quality of source code:
code metrics which measure physical characteristics of the software, such as len gth or number of
tokens; structure metrics which measure the connectivity of the software, such as the flow of
information through the program and. flow of conﬁ'ol; and hybrid metrics which are a combination
of code and structure metrics. The metrics are briefly discussed in this section. Interested readers

are asked to refer to the references for more details.

Cdde Metrics

Historically, these were the first metrics and are among the simpler metrics to determine.
These metrics include Length (measured in lines of code), McCabe’s Cyclomatic Complexity and
Halstead’s Software Science Indicators.

A line of code, or length, is any line of program text that is not a comment or a blank line
regardless of the number of statements or fragments of statements on the line. This specifically
includes all lines containing program headers, declarations, and executable and non-executable

statements [16].



McCabe’s Cyclomatic Complexity, denoted V(G), was designed to measure the number of
distinct paths through a particular program by representing the program with a graph and counting
the number of nodes and edges [17]. The cyclomatic complexity for a graph with e edges and n

nodes is:
V@) =e-n+2

One of the most commonly used metrics, Halstead"s Softwére Science Indicators
[18]1[19][201f21][22] are our third set of code metrics. Halstead considered a computer program as
a collection of tokens which can be classified as either operands or operators. From these
measures he developed a number of metrics giving an indication of the complexity of the prografn

[13]. The basic measures are:

nl = the number of unique operators
n2 = the number of unique operands
N1 = the total occurrences of operators
N2 = the total occurrences of operands

The size of a program, N, expressed in tokens, is:
N=N1+N2

Vocabulary is defined as:

n=nl+n2

These two measures lead to a third measure which Halstead calis volume:

V =N xlogz (n)

Programming effort is a predictor of the effort it takes a programmer to translate ideas about
a program solution into the implementation of that solution in a language known to the

programmer. The formula for the effort indicator is:




Structure Metrics

In order to measure the complexity of a procedure with respect to its environment, Henry
and Kafura developed the Information Flow Metric [14]. This mefric attempts to measure the
complexity of the code due to the flow of information from one procedure to another. Flows of
information into a routine are called fan-ins and flows of information out of a routine are called fan-

outs. A more formal definition for each is:

fan-in the number of local flows into a procedure plus the
number of global data structures from which a procedure

retrieves information

fan-out  the number of local flows from a procedure plus the
number of global data structures which the procedure
updates
Local flows represent the fiow of information to or from a routine through the use of
parameters and return values from function calls. Combining these with the accesses to global data
structures gives all possible flows into or out of a procedure. The complexity of a procedure p is

defined as:

Cp = (fan-in x fan-out)?



Hybrid Metrics

Hybrid metrics combine aspects of code and structure metrics, Two hybrid metrics are
used in this research. Woodfield’s Syntactic Interconnection Model is a hybrid metric which
attempts to relate programming effort to time [23}. Woodfield defines a connection relationship
between modules A and B, A connection relationship is a partia] ordering between modules A and
B such that one must understand the function of B before one can understand the function of A.

There are three types of module connections: control, data and implicit. A control
connection implies an invocation of one module by another. A data connection occurs when a
module uses a variable modified by another module. An implicit connection occurs when there are
Some assumptions used in one module that are also used in another module. One example is that
two modules may both make the assumption that input is an expression of eighty characters or
less. If this changes then both modules have to be modified to reflect thar change.

The connection A -> B implies that some aspect of module B must be reviewed and
understood before module A is completely understood. The number of times a module must be

reviewed is Woodfield’s definition of the module’s fan-in. He presents the following general

equation for the model:
fan-in-1
k-1
Cp=Cyp x Z RC
k=2

where

Cpb = the complexity of module B’s code

Cwp = the internal complexity of module B’s code

fan-in = the sum of the control and data connections for B ’s code

RC = areview constant

10



The internal complexity for the module can be any code metric. In Woodfield’s mode]
definition, Halstead’s Program Effort Metric was used. The model uses a review constant of 2/3
which is a number previously suggested by Halstead.

Henry and Kafura’s Information Flow Metric can also be used as a hybrid metric. Asa

hybrid metric, the formula for the complexity is:

Cp = Cip x (fan-in X fan-out)2

where

Cp complexity of procedure p

1l

Cip the internal complexity of procedure P

Fan-in and fan-out are as previously defined. Cip may be any code metric’s measure of procedure
p’s complexity,
Software Metric Analyzer

The software metric analyzer, shown in Figure 1, is a tool developed under the direction of
Dr. Sallie Henry at Virginia Tech. Given the source code as input it caleulates each of the metrics

discussed previously.
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Using the UNIX tools LEX and YACC along with a BNF grammar for the given language,
the language dependent portion of the analyzer (pass 1), calculates the code metrics and translates
the source code into an encrypted relation language. These code metrics are generated by pass 1
because they are counts generated using the original source code before it has been disguised in
any way. The relation manager (pass 2), takes the relation language code from pass 1 and
translates it into a series of relations which along with the code metrics from pass 1 are the input to
pass 3 of the analyzer. Pass 3 uses the relations to calculate structure metrics [24]. Both the code
metrics and the structure metrics can be combined to create the hybrid metrics. Pass 3 also
displays the metrics in various groupings such as by metric or by procedure. Details of the

encoding algorithm and the implementation of the tool can be found in [25].

ITI. The Experiment

The software system used for this experiment is Version 2.0 of an actual product consisting
of 193 procedures comprising about 15,000 lines of C code (including comment lines and blank
lines). A majovr computer vendor currently markets this product. The project is composed of a
number of modules, each with a separate function. Each module is composed of one or more
procedures having a like function such as all the string handling routines or all the parsing routines.

The modules were processed by pass 1 of the metric analyzer separately, at the vendor’s
site, generating a file containing the values for the code metrics and a separate file of intermediate
code for the procedﬁres in the module. Recall from the previous section that the code metrics
include lines of code, values for Halstead’s Software Science indicators and McCabe’s Cyclomatic
Complexity. Relation language was then processed to generate the soucture and hybrid metrics:

Woodfield, Information Flow, Information Flow with Length, and Information Flow with Effort.
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In order to verify the interpretation of the metric numbers generated, there must be control
data against which the interpretation can be tested. Where software metrics are a guide to
maintenance of a software product, it is useful to see what changes are necessary to the product
after a major release. Since the last major version of this product was version 2.0, the version
which was measured, ziny modifications to the source code after this time are for maintenance
reasons. Thiscould be for bug fixes or performance improvements but is not new development of
any kind. This data was obtained from a code library which was used in the development and

maintenance of the product.

The Code Library

A code library was used to monitor accesses to the different modules of the product. All
source code in a code library could be accessed by the code librarian program. When a bug is
found by a customer, a software Teport is sent to the maintainers of the product who determine
what changes, if any, are necessary. Any changes made to the source code are done through the
use of the code librarian. As used in their development and maintenance strategy, a module of
source code is checked out of the code library when changes are to occur. Afier the change is
made, tested, and found to be correct, the changed module is checked back into the code library.
Each time new changes are to be made to the code, the module involved must be checked out of the
library and the corrected version checked in. This enables an automated history to be kept of
accesses to a module of code.

The smallest unit of change is the line. A line can be either added to or deleted from a
module. A modification to a line is therefore treated as a deleted line followed by an added line in
the same place. For purposes of verification, any changes or modifications described are based on
the changing of a line of the code. ‘Groups of lines that are all changed at the same time can also be

determined.,

13



It is possible to make a complete listin g of the source code with the lines of code added or
deleted flagged to show when they were added and deleted. A routine was written to find these
flagged lines in the source code and count the number of additions and deletions and where they
occurred. By coupling this with a routine to determine which procedure the changes occurred in, a
count of the number of changes, the number of lines changed, and how they were changed is
obtained. These numbers can S€Ive as control data for the interpretation of the metric numbers as
they apply to the maintenance phase of the software life cycle.

Since it was not possible to measure the amount of time spent on each correction, we

By tabulating the results of these data collection Toutines, a list is created of a]l the routines
along with the corresponding number of lines added after the s release, number of lines deleted,
and number of times these changes were made to each routine in the program. This gives an

indication of the maintenance activity which occurred to the program.

IV, Maintenance Predictions

This section presents the methodology used in developing maintenance prediction equations
using the metrics and the results of the statistical analysis of the data collected. Interrelationships
among the various metrics and the changes to the code are shown, A discussion is presented on
the various statistics used and the multiple regression model is also provided. A statistical analysis
of the data is presented using the multiple regression model for both number of changes and
number of lines of code changed. Finally, we select one of the models and demonstrate thatitis g

good predictor for the data that has been analyzed.
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Intermetric Results

First, recall from the previous section the various metrics used in this study: Length,
Haistead’s N, V, E, McCabe’s Cyclomatic Complexity — V(G), Woodfield’s complexity,
Information Flow, Information Flow with Length, and Information Flow with Effort. Statistical
correlations among the metrics are revealed in Table 1. Notice that there is a high degree of
correlation among the code metrics. This occurs because the code metrics are attempting to
measure the same aspect of the code. However, there are low correlations among the code metrics,
the hybrid metrics and the structure metric. This shows that the code, hybrid, and structure metrics
are measuring a different aspect of the code. These correlation results were expected and they

agree with other studies in the software metrics area [26]{27].

Table 1. Intermetric Correlations

Length N A\ E V(G) {Woodfield | Info-L |Info-E | Info
Length 1.000
N 0.842 |1.000
V 0.673 10.862 |1.000
E 0.740 10.370 {0.758 | 1.000

McCabe | 0.840 10.762 10.770 |0.420 | 1.000
Woodfield 0.436 ]0.485 |0.434 [0.215 | 0.310 1.000
Info-L 0.065 [0.110 [0.067 {0.011 | 0.022 0.088 1.000
Info-E 0.138 [0.170 0.158 |0.103 { 0.091 0.113 0.838 11.000
Info -0.077 10.062 {-0.068 }-0.049 {-0.093 | -0.051 0.830 {0.502 | 1.000

Statistical Analysis

The goal of this study is to develop a model which uses metric values as parameters in
order to predict the number of lines of code which will be changed and the total number of changes
during the maintenance phase of the software life cycle. Lines of code changed and number of
changes are the depeﬁdent variables in the statistical model and the metric values are the

independent variables.
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Our first attempt in developing a model to predict maintainability involved yusin g a single
independent variable (in this case a single metric) to statistically deterrnine the prediction model.
Although the results of this research are interesting, we felt that 3 single metric may not adequately
determine a good predictor in all Ccases. Since we have shown that different metrics measure
different aspects of the source code, a greater degree of accuracy may be obtained by using more
than one of the metrics available .

In some cases a linear relationship is not present between a single independent variable and
the dependent variable. In these cases it is better to express the model as a multiple regression
model. This indicates that more than one independent variable has some bearing on the valye of
the dependent variable. Looking at correlations may not be enough to determine which variables
are needed in the model since there may be some interactions among two or more independent
variables which better explain the observed effects. In our case, it may be that a combination of
structure, code and hybrid metrics better explain the variation in the number of lines of code
changed (NLC) and the number of code changes (NCC).

There are various statistics available to help calculate the best multiple regression model].
These include the PRESS statistic, MSE (mean squared error), and Mallow’s Cp. The best fittin g
model should have a Cp approximately equal to the number of independent variables and low
values for both PRESS and MSE [28].

The PRESS (Prediction Sum of Squares) staristic [28] is a good statistic for a predictive
model because it takes into account the effects of fitting one value out of a set of data to the model
specified by the rest of the data. Consider a set of N data observations. To calculate the PRESS
statistic we first withhold the first data observation and calculate the coefficients for the model with
the other N - 1 observations. This is repeated for each of the N data observations resulting in N
prediction errors or residuals, The sum of the N residuals gives us a value for the PRESS statistic.

Thus, the model with the lowest PRESS valueis g candidate for the best model],

16



Mean Squared Error (MSE) takes into account the error from the predicted value and the
actual value. A model is fit to the observations and an expected value is calculated for each
independent variable based on the dependent variables associated with it. The difference between
the actual value and the predicted value is squared. This is done for all N observations and the sum
of these values is added and a mean calculated. Again, the model with the lowest MSE is a good

| canchdatc for thc bcst rnodel Mallows Cp [28] takes nto account the fact that there is a predlcnon
variance in the MSE statistic. This variance, summed over the N data observations is equal to the
number of independent variables in the model. Thus, the best Cp is the one with the value close to
the number of parameters in the model.

The observations were randomly divided into two groups, one with three fourths of the
data and the other with the other fourth of the data, The large group is used to determine the
predictive model and the small group is used to verify the model. Only the large group of data is
used in the determination of the model so that the smaller dataset has unknown values which wouid
be predicted. Since each of the statistics can give a different “best” model, there is only an
indication of what the best models are. A set of best models can then be chosen and the unused

~data can be used to select the best model of that group. By calculating the sum of squared errors
for each model usin g the unused data a “best” model is chosen.

Tables 2, 3, and 4 show the top models as selected by each of the three statistics for
equations for the predicted number of lines of code changed. Table five shows the best candidate
models for the predictor equation taking into account values for all three statistics. Tables six,
seven and eight show the best model equations for the number of code changes. Table nine shows
the best overall equations taking all statistics into account. Although the model using N, V, and E
is chosen in this group, we chose not to use it because of collinearity among the three variables.
Collinearity among the independent variables can cause the coefficients of the model to not

s

accurately reflect te relative effects of trhe different variables.

17
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Table 2. Top 5 Models Selected by PRESS Statistic

NLC =0.42997221 + 0.000050156 E - 0.000000199210 INFO-E
NLC = 0.45087158 + 0.000049895 E - 0.000173851 INFO-L
NLC = 0.60631548 + 0.000050843 E - 0.000029819 WOOD - 0.000000177341 INFO-E
NLC = 0.33675906 + 0.000049889 E
NLC = 0.62562353 + 0.000050633 E - 0.000030739 WOOD - 0.000147075 INFO-L

Table 3. Top 5 Models Selected by MSE

NLC = 1.27935618 +0.05500043 L - 0.001333387 V + 0.000054797 E .

0.11960695 V(G) - 0.000000142938 INFO-E

NLC = 0.42997221 + 0.000050156 E - 0.000000199210 INFO-E

NLC = 1.2782025 + 0.05693335 L - 0.001428534 V + 0.000054898 E -
0.11900135 V(G) |

NLC = 1.30521150 + 0.06024787 L - 0.001438433 V + 0.000054545 E -
0.12321067 V(G) - 0.000163532 INFO-L

NLC = 153080447 - 0.000355426 V + 0.000056495 E - 0.08419100 V/(G) -
0.0000001493221 INFO-E

Table 4. Top 5 Models Selected by Cp

NLC = 1.47735619 + 0.000054638 E - 0.10017668 V(G) - 0.0000067303 WOOD
NLC = 1.51830192 + 0.000054724 E - 0.10084685 V(G) -  0.000000158757 INFO-E
NLC = 1.57295997 + 0.000054615 E - 0.10037670 V(G) - 0.0000051632 WOOD -
0.000157250 INFO-L
NLC =1.45518829 + 0.00005456 E - 0.10199539 V(G)
NLC = 1.57353731 - 0.002446765 N + 0.000054672 E - 0.08863879 V(G)
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Table 5. Best Overall Candidate Models

NLC = 042997221 + 0.000050156 E- 0.000000199210 INFO-E
NLC = 0.45087158 + 0.000049895 E - 0.000173851 INFO-L
NLC = 0.60631548 + 0.000050843 E - 0.000029819 WOOD - 0.000000177341 INFO-E
NLC = 0.33675906 + 0.000049889 E
NLC =1.51830192 + 0.000054724 E - 0.10084685 V(G) - 0.000000161798 INFO-E
NLC = 1.45518829 + 0.00005456 E - 0.10199539 V(G)

Table 6. Top 5 NCC Models Selected by PRESS statistic

NCC = 0.40552034 + 0.00001163 E - 0.000006267 WOOD - 0.0000000478 INFO-E
NCC = 0.38710077 + 0.00001158 E - 0.000006897 WOOD

NCC = 0.41056545 + 0.00001157 E - 0.000006517 WOOD - 0.000039367 INFO-L
NCC = (.36846091 + 0.00001149 E - 0.00000005238 INFO-E

NCC =0.34394979 + 0.000011418 E

Table 7. Top 5 NCC Models Selected by MSE

NCC =0.25438629 + 0.0043307 N - 0.00062705 V + (.00001471 E
- 0.0000000525 INFO-E
NCC =0.17374520 + 0.0127384 L + 0.00369907 N - 0.00089433 vV
+0.000014349 E

NCC = 0.25250119 + 0.0039729 N - 0.00059868 V + 0.00001454 E

NCC = 0.32020501 + 0.0136926 L - 0.00048185 V + 0.00001230 E

19



Table 8. Top 5 NCC Models Selected by Cp

NCC = 0.34394979 + 0.00001 1413 &

NCC = 0.41704985 - 0.000129275 V + 0.000012345 E

NCC = 036846091 + 0.000011488 E - 000000005238 INFO.E
NCC =0.3871077 + 0.00001 1583 E - 0.0000068966 WOOD

NCC = 0.25250119 + 0.00397286 N - 0.00059868 Y +0.000014538 E

Table 9. Best Overall NCC Models

NCC =0.34294979 + 0.000011418 E

NCC = 0.36846091 + 0.000011488 E - 0.00000005238 INFO-E

NCC =0.38710077 + 0.000011583 E - 0.0000068966 WOOD

NCC =0.25250119 + 0.003972857 N - 0.000598677 V + 0.000014538 E

NCC = 0.32020501 + 0.01369264 L - 0.000481846 V + 0.000012304 E

Prediction Example _

Before using any model we do a complete residual analysis to verify that the model is apt.
As an example, consider the mode] with the three independent variables E, V(G) and Info-E. This
model was in the top 5 as seleéted by both Cp and MSE. It also did well in the PRES S statistic.
This model might be selected as the best overall model due to it having the lowest sum of squared

error and be used to predict the amount of mainfenance to occur on a given procedure.
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Table 10. Verification of Smaller Data Set

Actual Predicted 95% Confidence Interval
Value Value Lower Upper
3 3.8621 2.6045 5.1197
0 0.0688 -0.4065 0.5441
19 21.3017 17.5334 25.0700
2 1.3829 0.9753 1.7905
0 2.5266 2.1381 29150
0 1.2029 0.7557 1.6501
0 1.2029 0.7557 1.6501
0 1.2025 0.755%3 1.6496
6 0.7059 0.3166 1.0951
0 1.2036 0.7989 1.6084
0 0.6292 (.2404 1.0181
3 1.1268 0.7137 1.5398
8 0.9211 0.5159 1.3263
0 -0.0369 -0.5060 0.4322
0 1.2620 0.8011 1.7229
0 0.4561 0.0711 0.8410
4] 0.4178 -0.0187 0.8542
0 0.7993 0.4004 1.1982
4 14936 1.0353 1.9558
0 14176 1.0327 1.8024
3 -0.1131 0.6075 0.3813
1 1.2117 0.8164 1.6071
2 0.8987 0.5004 1.2969
3 0.6932 0.2823 1.1041
0 1.4830 1.0705 1.8956
0 1.1632 0.7285 1.5978
0 1.2872 0.7031 1.8713
0 1.3403 0.9253 1.7552
0 1.2370 0.8023 1.6718
8 2.9747 2.3459 3.6035
0 1.0742 0.6856 1.4627
0 1.3950 0.9600 1.8300
4 1.1297 (.6970 1.5625
a . 0.9291 0.5360 1.3222
0 1.2546 0.7937 1,7155
] 1.1428 0.7201 1.5655
0 1.3240 0.8892 1.7589
0 1.6340 1.2337 2.0343
0 1.0385 0.6511 1.4258
0 1.2822 0.8212 1,7431
2 1.1762 0.7880 1.5645
4 4.9560 4.5022 5.4097
2 1.1306 (.6970 1.5642
0 0.8634 0.4649 1.2618
G 0.9103 0.5121 1.3085
0 0.3713 -0.0209 0.7634
8 2.3896 1.5838 3.1935

21




To do this, the values for each of the metrics used in the model are calculated using the
software analyzer discussed earlier. These values are then put in to the Tegression equation and a
value for NLC is calculated. The following examples are actual measurements from two of the
procedures analyzed. Consider values of 145,335 for E, 59 for V(G) and 1 ,308,016 for INFO-E.
The prediction equation yields a value of 3.86 for NLC, the expected number of lines to chan gein
this procedure. The actual number of lines changed in this procedure was 3. Using values of
12,246 for E, 21 for V(G) and 195,929 for INFO-E, the prediction equation vields a value of 0.07
for NLC. This procedure required no modifications. Table 10 shows that smaller (verification) set
of data with actual values, predicted values, and 95% confidence intervals. The Pearson
correlation between predicted values and actual values is 0.78. After verifying the model, the data
was gathered todether to calculate a predictor equation for future values. The Pearson correlation
coefficient for this "full” model improves to 0.94. The value calculated is not meant to be the value
for the exact number of lines of code we expect to have to change but rather gives a good
indication of what that value will be. If this is done for all procedures in the software system, a
ranking of procedures in order of likelihood of maintenance can be determined. If this is done
before the system is released, future maintenance may be prevented by changing or preferably re-
designing the higher ranking procedures

Research of this type is necessary to reduce the cost of maintenance, A suggested use for
this type of model is for an organization to first collect a i gnificant amount of error or maintenance
data. The second step 1s to fit the error data statistically to the models. This phase of model
development creates models specific to the language, application, and environment area of the
organization. A best set of models is found at this time.

These predictor values can be used during the coding, testing, and maintenance phases of
development. The number of code changes (NCC) value shows the predicted number of errors in
a procedure and the number of lines of code changed value gives an indication of the size of those

changes.
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During the coding phase the procedures with higher values for these predictors can be
redesigned in order to reduce the complexity of the procedure. Remeasuring the entire system
shows whether the changes made actually reduce the predicted maintenance. This process can be
repeated until acceptable values are reached,

During the testing phase, procedures with higher valued predictors can be more thoroughly
tested. Errors are then found and fixed before shipping which provides a better product. Errors
are also less expensive to fix at this time.,

After the product is shipped, if maintenance is necessary, test values for procedures may be
used to help isolate the error. It is more likely that the error will be in a procedure with a very high

value for predicted maintenance than a procedure with a low predicted maintenance value.

V. Conclusions

Analyzing a software system along with its past maintenance history can lead to indications
of future maintenance work. Preventative maintenance can help hold down the high cost of
maintenance. By determining where maintenance might occur and improving that code, future
problems and costs can be minimized.

Values calculated using the regression equation are not meant 1o be an exact value for the
amount of maintenance that will occur on a given procedure, Rather they are meant to give an
indication of how much maintenance will occur. Analyzing a number of procedures creates a
ranking of these procedures which can be used to determine on which preventative maintenance
would be most useful. Fﬁture maintenance (and costs) could be lessened with an approach similar

to the one presented in the last section.
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No single metric seems to be able to determine the overall quality of a software System.
For this reason the multiple regression approach presented here gives a good indication of a
method for develoning a predictor for a system. For an organization to use this approach, it must
first collect a significant amount of error data (on maintenance of systems) and the corresponding
metric values. Second, fit the error data to the metrics using multiple regression analysis, All
Organizations develop software using different tools and different environments, Developing the
multiple regression equation for a specific environment requires data on programs that is specific to
the environment in which it is developed, the application, and the language nsed by the software
development organization. After developing and verifying the predictor equation for the data
collected, it is ready to be used in more productive ways. This equation should be applied durin g
coding, testing and maintenance, During coding, complicated procedures can be considered for
redesign. At the end of the coding phase, procedures can be ranked as to Iikelihood of necessary
maintenance. Preventative maintenance at this point will hold down fature costs.

We were only able to evaluate one system in one language developed in one environment, it
18 obvious that substantially more research must be performed in this area to further validate our
model. Bringing down the cost of software maintenance ig necessary, and we feel that this mode]

using several software quality factors is the direction for predicting software maintainability.
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