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ABSTRACT

As the use of knowledge-based systems increases, there will be a growing need for efficient
artificial intelligence systems and methods to access large lexicons. In the COmposite Document
Expert/extended/effective Retrieval (CODER) system we have, in order to provide rapid access to
data items on CD-ROMS and to terms in a lexicon built from machine readable dictionaries,
investigated the construction of perfect hashing functions. We have considered algorithms
reported earlier in the literature, have made numerous enhancements to them, have developed new
algorithms, and here report on some of our results. This paper covers an O(n3) algorithm that has
been applied to building hashing functions for a collection of 69806 words on a CD-ROM. Most
recently we have developed a much better algorithm and have succeeded in finding a perfect hash
function for a set of S000 words taken from the Collins English Dictionary.

CR Categories and Subject Descriptors: E.2 [Data Storage Representations]:
hash-table representations; H.2.2 [Database Management]: Physical Design - access methods;
H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing - indexing
methods; H.3.2 [Information Storage and Retrieval]: Information Storage - file
organization ,

General Terms: Algorithms, Experimentation

Additional Keywords and Phrases: perfect hashing, random graph, minimal perfect
hashing, indexing

1. Introduction
In the COmposite Document Expert/extended/effective Retrieval (CODER) system we have
investigated the construction of a large lexicon from machine readable dictionaries [FOXES6], and

we are also developing methods to access large databases on CD-ROM:s. Furthermore, we are
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producing such CD-ROMs with suitable access software [FOXESS]. Inall of these contexts, there
are large static collections of records which must be indexed by keys, usually English words or
phrases. Hashing is one method that can provide the desired rapid access, with little overhead in
space, but unless the hash function chosen is suitable, there can be a considerable loss in
performance due to collisions. With static data sets, however, it is possible to build so-called
“perfect” hashing functions that require minimal space for the hash table, and which avoid the
problem of collisions.

There are mainly two ways to obtain perfect hash functions that have been considered. The
first type of approach involves directly searching for a proper function — i.e., using a
“search-only” strategy [SPRU78], [JAES81], [CHANS6]. A class of functions is often chosen,
and constants are sought such that hashing can take place without collisions. While in some of
these approaches it can be shown that a perfect hash function will always be found, it is usually the
case that this direct search is prohibitively expensive (. g., takes time related exponentally to the
number of distinct keys) [JAES81). The method is clearly only practical for very small data sets.
Thus, another class of approaches has been explored.

The second way to obtain perfect hash functions involves “mapping-ordering-searching”
methods [CICHS6], [CERC83] and [SAGESS). To begin with, the key space is mapped to a new
space where an ordering heuristic can be applied to reduce the cost of the search. Then a much less
expensive searching methods can be applied. While th'is‘ general approach seemed to allow
construction of perfect hashing functions for much large data sets than does the search-only
approach, there were no reported results of building suitable functions for very large data sets.

In our on-going knowledge base project, fast access to a very large static lexicon data base of
size on the order of at least 10,000 is required, and methods to handle 100,000 or more items are
desired. An effort was made to compare various perfect hashing methods [DATTS8] and it was

concluded that Sager's algorithm [SAGES5] might be a good candidate, but its efficiency on large
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data sets was not adequate. In the following sections, a more efficient algorithm for finding a
perfect hash function is outlined along with some experimental results. To aid comparison, an

overview of Sager's algorithm and some test results using both methods are presented as well.

2. Terminology
Key Space: Each record in the data file has a key field, and the set of keys in the file forms the key
space. We use W to denote the key space and M to denote the cardinality of W,

Hash Table: The hash table stores virtually the real addresses for records given their keys. The size
of the table is denoted by N,

Load factor of a hash table: LF=M/N.

Bipartite Graph: A bipartite graph G is a graph where the vertex set R can be divided into two _
disjoint subsets Ry and Ry such that every edge in G has one of its vertices in R and the other in

Ry. We define R = R} U Ry, and by our construction of R have IRl even and r = IR/ 2.

To reduce a graph: To reduce a graph G is to take an edge e=(ny,0y) of G and collapse two
vertexes ny and np of G to a single new vertex n'. After reduction, e disappears, and all edges

adjacent to n; or np connect to n'.

Perfect hash function: A perfect hash function assigns each key to an unique slot in the hash table.
A minimal perfect hash function has LF equal one.
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3. Sager's algorithm and test results

3.1 Outline of Sager's algorithm
Since Sager's algorithm [SAGES5] is a mapping-ordering-searching algorithm, we present it

based on its mapping, ordering, and searching stages.

3.1.1 Mapping stage
In this stage, the set W of N words is mapped to three sets by three independent functions
h0, h1 and h2 which will hopefully each lead to a uniform distribution of result values for a given

input set. The functions recommended by Sager are:

hO: W ->1 (a finite set of integers defined only by hO and the data);
hI:W->R,Ry={xlx e [0.11]} so Ryl =T;
h2: W->Rp, Ry={xIx e [r..2r-1] } 50 IRyl =1,

Each word is associated with the tuple (hO(w), h1(w), h2(w)). No two words may be
associated with the same tuple; if such a collison occurs, new h0, h1, and h2 functions must be
selected. A bipartite graph is formed with vertices labelled with each of the values in the range of
the functions h1 and h2; an edge for each word w connects the nodes labelled h1(w) and h2(w).

Note that it is possible for two vertices to have multiple edges (words) between them.

3.1.2 Ordering stage
In this stage, an ordering wg, w1, ..., Wy on words in W that totally determines the search

sequence is found. The ordering is based upon a simple heuristic: always select next an edge in the
bipartite graph that is in a maximal number of cycles of minimal length. One such selected edgeis

called the canonical edge. Any remaining edges that have the same endpoints as the canonical
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edge are also selected; all the selected edges constitute the next level of the search sequence. The
strategy intends to produce a search sequence, called the word tower, where the levels that
contain many edges occur early in the search.

In Sager's algorithm, the selecting procedure is done by reduction on the bipartite graph. The

procedure is repeated until the graph becomes empty. This stage requires O(4) time.

3.1.3 Searching stage

Searching starts by systematically assigning U values to the canonical edges. This follows
the order from the previous stage. At the same time, final hash addresses are computed for all
edges in that level of the word tower. In the case of a collision, another value for the canonical
edge (i.e., one more than the previous value) is tested. If all possible values fail (i.e., we attempt N
tries), the algorithm backtracks to the previous level of the tower to try assigning new values there.

if all canonical edges are successfully assigned values then a perfect hash function, g, is
constructed by a final simple scan of the graph. (Further details can be found in [SAGES$5] and
[DATTS8].)

3.2 Experimental results and discussion

A careful study of Sager's algorithm using our data sets was undertaken and is discussed in
[DATT88]. We have carried out additional experiments as well, and give some of our recent results
in Figure 1 and in Tables 1 and 2. However, we also show results using our own algorithms in
those charts and so suggest to the reader that these charts be examined later or that unexplained
aspects of the charts be ignored.

Our experimental investigation has been carried out using a Macintosh II system with 2
megabytes of Apple memory and 8 megabytes of slower speed National Semiconductor memory.

The Macintosh was run using the A/UX version of UNIX, with all programs written in the C
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language and compiled with the standard software available.
While there are many observations that can be made about Sager's algorithm, two points we
feel are especially important are:
* There was no backtracking observed in any of the sets, which suggests that the
ordering heuristic is quite good.
* The entire computation is dominated by the process of tower-building which is of
time complexity O(*). In case IRI = M, the complexity is O(M%).
However, while the algorithm is polynomial, the complexity O(r#) means that it is still not

practical for large sets of words. Thus, the tower building process for a set of size 120 required

(.29 hours, suggesting that a set of size 240 would require 4.72 hours (i.e., 16 times as long).

4. New algorithm
We decided that based on our analysis of Sager's method, a new algorithm could be
developed which would be more efficient. We make the following observations about Sager's

algorithm and suggest why and how it could be improved.

« It is crucial to have the freedom to map the key space to a different (I, Ry, Ry)
space, through the adjustment of h0, h1, and h2 functions. Doing this causes
the corresponding bipartite graph to vary. Since the later ordering and searching
depend on the bipartite graph, a measure of the quality of the graph may indicate
how successful the search is likely to be. Thus, it is worthwhile to improve the
quality of the graph that is constructed to reduce the cost of later processin g.

» It is important to place any large levels early in the tower. Sager's ordering
strategy works well but is expensive for large sets. We believe a good word
order can be found using more efficient ordering strategies.
* Searching for values for the canonical edges starts at 0 and proceeds incrementally
to N-1. This can lead to undesirable clustering of hash values. Using a random
search of the set of possible values should have advantages.
Based on the above considerations, we have proposed and tested a new algorithm which is able to
find a perfect hash function for a fairly large set (up to 1000 words) yet using less time than

Sager's algorithm, We present the idea of the algorithm in three parts: §4.1 describes the process
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for setting up (I, R1, R2); §4.2 explains building the tower; and §4.3 describes the search stage.

4.1 Setting up (I, R1, R2)
The h0, h1 and h2 function suggested by Sager are:
hO(w) = (length(w) + X ord( w[i], i= 1 to length(w) by 3))
h1(w) = (2, ord(w[i], i =1 to length(w) by 2) mod r
h2(w) = (( X ord(w[i], i=2 to length(w) by 2) mod r) +r
In our implementation, ord(w([i]) returns the ASCII value of the ith letter of the word.
Though these functions work well for many small sets, there have been cases where they
lead to collision among (h0, hl, h2) pairs for a set of words taken from the Collins English
Dictionary [HANK?79]. In general, to handle arbitrary sets it is necessary to vary h0, h1, and h2.
In our implementation, the user (i.., the person using our system to build a perfect hash function
for a given set) can choose from among the following families of more general h0, h1 and h2
functions:
a) hO, hl and h2 in the form of
hO(w) = ( length(w) + X ord( w[i], i=ih0 to length(w) by step0)),
h1{w) = ( X ord(w(i], i=th1 to length(w) by stepl) mod r,
h2(w) = (( X ord[w(i], i=ih2 to length(w) by step2) mod r ) +,
where the iho, ih1, ih2, step0, step1, and step2 are parameters defined by the user.
b) h0, h1 and h2 in the form of |
hO(w) = (length(w) + % ord( f(w[i]}, i = ih0 to length(w) by step0)),
h1(w) = ( X ord([f(w[i]), i=1ih1 to length(w) by stepl) mod r,
h2(w) = (( X ord(f(w][i]), i = ih2 to length(w) by step2) mod ) +r,
where f{w[i]) maps ord(wl[i]) to a pre-defined random number; as before, ih0, ihl, ihw step0,

stepl and step2 are parameters.

We used the chi-square statistical test to measure the randomness of the sequences h1(wy),

hi(ws), ... .... h1(wy,) and h2(w;), h2(wy), ..., h2(wp). Analysis in a later paper will show that a
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random bipartite graph saves searching effort. Getting a randomness measure of the two
sequences will indicate indirectly the randomness of the bipartite graph. We have found that when
we follow Sager's original algorithm, the chi-square measure indicates that the sequences are not
nearly random. When we use functions from the family described in (b) above, we have much

more random sequences.

4.2 Building the tower

In this stage, we build a tower of levels of words, just as in the ordering stage of Sager's
algorithm. The time required for our ordering stage is O(r3).

The ordering is done in two steps. In the first step, a maximum spanning forest Tsp is found
for the bipartite graph, using Prim's algorithm; edge weights are given by edge multiplicities. The
edges in Tsp will be the canonical edges of the tower. Building such a Tsp is based on the
observation that when M=IR|, there are not many edges with multiplicity greater than 1. Thus Tsp
will contain almost all of these multiple edges. These edges with multiplicity greater than 1 each
stand for a set of words that are dependent on each other. Putting such a set in the tower early

tends to decrease searching time.

Once Tsp is built, the second step constructs a search sequence. Let €0: €15 -+ €j.] DE the
canonical edges selected before, and e, the canonical edge chosen in the current step. Then the
level of tower W; is given by

fei} U { x | x is non-spanning edge and
x and ¢; and any subset of {eg, €y, ..., €;.1} form cycle(s)}.
Let Classl be the set of canonical edges with weight > 1, classII the set of canonical edges
lying in at least one cycle of length more than 2, ClassIII all canonical edges not in ClassI and

ClassII, and w(n) the number of edges in the subgraph that has been reduced (see below) to vertex

n. We produce ordered lists from these three sets as follows:
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For Classl, the list is sorted by the muitiplicity value.
For Classll, the list is sorted by the number of cycles.
For ClassIll, the list is sorted by ( w(nj) + w(ny) + X(n1,n9) )
where ny, n; are the vertices of the edge and X(ny,ny) is the number of edges between

the subgraphs represented by n; and ny.
Note that the sorting is done in non-increasing order.
Then the ordering heuristic is to follow the three steps below, in sequence:
a) Select edges from ClassI one by one based on the sorting order until the list is empty.
b) Select edges from ClasslI one by one based on the sorting order until all of the edges

left have the same value (assigned during the Iist sort phase above)
¢) Select edges in order from ClassIII one by one until the list is empty.

4.3 Search Stage
This stage is almost the same as Sager's algorithm, except that initial values for canonical

edges are randomly set.

5. Experimental results

In our recent experimental study we have selected word sets of varying sizes from the Collins
English Dictionary [HANK79). We compare two versions of our algorithm, PHF0 and PHF1,
against the result of using Sager's algorithm. PHFO is our perfect hashing function where the
assigned U values for hashing are constructed without the use of randomization in the searching
stage. PHF1 varies only in our use of randomization during search.

Figure 1 shows that Sager's algorithm indeed has complexity O(n#) while our method PHF1
has lower complexity (i.e., we have claimed complexity O(m3)). The detailed data in Table 1
demonstrates this more completely, by showing times for various sets. We further give the break
down of times for each stage of the processing. It can be seen that backtracking is generally
avoided (PHF1 is slightly better than PHF(, as expected). We were unable to build perfect
hashing functions using Sager's algorithm or PHFOQ for the largest sets.

Table 2 adds additional details regarding the interaction of set size (M) and graph size
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(measured in terms of 2*r). We see that small graphs cause the algorithm performance to degrade.

We observe:

» Our algorithm works very well when M=2r and LF=1. No backtracking occurs
for set sizes from 10 to 1000. The entire computation time is dominated by the
tower-building process which is O(M>3). Therefore, our algorithm is more
practical than Sager's in terms of running time.

* Randomizing the initial U values makes the searching time of our algorithm less
than Sager's.

* The algorithm degrades when 2r is set somewhat smaller than M. For example,
when 2r /M < 0.63, the search did not finish within 20 backtracks.

We have used method PHF1 to build a number of hash functions for the words in the Collins
dictionary. A demonstration program for 69806 words has been built — we constructed a number
of each with 256 words and an associated hash function.

Most recently we have developed a new, much better aigoriﬂlm and have built a perfect

‘hashing function for a set of 5000 word.

6. Conclusion

In this paper, a new perfect hash function finding algorithm is described which adopts a more
efficient ordering heuristic. The experiment data shows that the ordering heuristic is able to incur
no backtracking for data sets up to 1000 words, when the parameteré_arc properly set. Thus, the
algorithm may achieve the same effect as Sager's algorithm yet keep the execution time small
enough to be practical. We have applied this work to our research in CD-ROM and have

developed a new more efficient algorithm that will be described in a future paper.
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Fig.1 Tower Build Time, Sager's vs. PHF1
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Table 1
Performance Comparison of Algorithms on Different Size Sets

Set Tower Build Time Search Time Height of Tower No. of Backtracks
Size Sager PHFQ PHE1 Sager PHEO PHEI Sager PHFQ PHF1 Sager PHF(Q PHF1
10 49 99 99 16 66 83 7 8 8 0 o0 0
20 1049 249 266 66 316 316 17 17 17 0 0 0
30 3399 433 433 166 399 1383 23 21 21 ¢ 0 0
40 16549 716 716 416 416 499 34 33 33 0 0 0
50 28198 1060 1049 683 616 433 41 38 38 ¢ o 0
60 54231 1416 1399 1099 816 999 4 52 52 0 0 0
70 120261 1983 1999 1466 1099 849 6 57 57 0 0 0
80 241723 2566 2566 2333 1599 1366 70 &1 67 0 0 0
90 323320 3433 3433 3683 2899 1299 74 72 72 0 0 0
100 519845 4266 4233 6883 11299 2149 81 82 82 0 16 0
110 385801 5783 5766 9399 7666 2616 77 82 82 0 0 0
120 861415 6466 6466 11340 10566 2633 93 97 97 0 1 0
240 nfa nfa 32682 n/a  nfa 33382 nfa nfa 168 n/a n/a 0
500 n/a nfa 189475 nfa  n/a264385 nfa nfa 395 nfa n/a 1
1000 n/a n/a2101032 nfa  n/a413133 n/a nfa 615 nfa n/a 0
Key:

Set size = number of words
PHFOQ = new algorithm without randomization of initial U values
PHF1 = new algorithm with randomization of initial U values

Notes:
Times are measured in milliseconds using the A/UX system routine “clock.”
LF=1, M=2r.




Table 2
Performance Comparison of Algorithms on Different Size Sets
with various values of r

Set  Graph Tower Build Time Search Time Heightof Tower  No. of Backtracks
Size Size Sager PHFQ PHF1 Sager PHF) PHF1  Sager PHFOPHF1 Sager PHF( PHF1
40 40 16549 716 716 416 416 499 4 33 33 0 0 0
40 30 1999 483 466 383 483  fail 26 - - 2 - -
40 26 c 399 383 - 483  fail - - - - - -
40 20 c c c - - - - - - - - -
60 60 54231 1416 1399 1099 816 999 4 52 52 0 0 0
60 46 9382 933 849 1116 733 716 38 39 4 3 0 0
60 38 2949 720 716 1533 766  fail M4 35 - 13 0 -
60 30 c 540 533 - fail  fail - - - - - -
80 80 241723 2566 2566 2333 1599 1366 70 67T 67 0 0 0
80 60 42048 1449 1466 1660 1616 799 54 54 54 0 i6 0
80 52 19049 1166 1133 2016 3199  fail 49 51 - 7 i1 -
8 40 c 816 799 - 2966  fail - 38 - - 12 -
100 100 519845 4266 4233 6883 11299 2149 81 82 82 0 16 0
100 76 108862 2199 2233 7483 fal 1149 69 - 71 0 - 0
100 64 21999 1649 1716 4333 fail  fail 60 - - i - -
100 50 5283 ¢ c 536795 - - 47 - - 3598 - -

Key:

Set size = number of words

PHFO = new algorithm without randomization of initial U values
PHF1 = new algorithm with randomization of initial U values
c= (hO, hl, h2) collision

fail = backtracking more than 20 times while searching

Notes:
Times are measured in milliseconds using the A/UX system routine “clock.”
LF=1.



